
Congestion Control using FEC for Conversational
Multimedia Communication

Marcin Nagy
Aalto University, Finland
marcin.nagy@aalto.fi

Varun Singh
Aalto University, Finland
varun.singh@aalto.fi

Jörg Ott
Aalto University, Finland

jorg.ott@aalto.fi
Lars Eggert

NetApp, Germany
lars@netapp.com

ABSTRACT
In this paper, we propose a new rate control algorithm for conver-
sational multimedia flows. In our approach, along with Real-time
Transport Protocol (RTP) media packets, we propose sending re-
dundant packets to probe for available bandwidth. These redundant
packets are Forward Error Correction (FEC) encoded RTP packets.
A straightforward interpretation is that if no losses occur, the sender
can increase the sending rate to include the FEC bit rate, and in the
case of losses due to congestion the redundant packets help in re-
covering the lost packets. We also show that by varying the FEC bit
rate, the sender is able to conservatively or aggressively probe for
available bandwidth. We evaluate our FEC-based Rate Adaptation
(FBRA) algorithm in a network simulator and in the real-world and
compare it to other congestion control algorithms.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications (SMTP, FTP, etc.)

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
FEC, RTP, Congestion Control, RMCAT, WebRTC

1. INTRODUCTION
The development of Web Real-Time Communication (WebRTC)

and telepresence systems is going to encourage wide-scale deploy-
ment of video communication on the Internet. The main reason
is the shift from desktop or native real-time communication (RTC)
applications (e.g., Skype, Google Talk, Yahoo and Lync messen-
ger) to RTC-enabled web applications. Currently, each web ap-
plication implements their RTC stack as a plugin, which the user
downloads. With WebRTC the multimedia stack is built into the

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MMSys ’14 March 19 - 21 2014, Singapore, Singapore
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2705-3/14/03 ...$15.00
http://dx.doi.org/10.1145/2557642.2557649.

NACK
(RTX)

RPS

SSA

UEP

3G Link Packet Loss

E
nd

-t
o-

E
nd

 D
el

ay
Figure 1: shows the applicability of an error-resilience scheme
based on the network delay and packet loss [6]. UEP is Un-
equal level of protection implemented by FEC, SSA is slice size
adaptation, RPS is reference picture selection, NACKs are re-
transmissions.

web-browser internals and the developers need to just use the ap-
propriate HTML5 API to enable WebRTC.

With the expected increase in multimedia traffic, congestion con-
trol is a re-emergent problem. These flows are subject to the fluc-
tuations in path properties, such as packet loss, queuing delay, path
changes, etc. Moreover, buffer bloat [1] and drop-tail routers cause
delay and bursty loss, which affects the user experience. Unlike
in elastic applications, there are normally bit rate constraints on
codecs, i.e., the codec may not be able to encode the video at
the new target bit rate immediately. This largely depends on the
amount of movement in the scene being captured and the encoder
responsiveness. Moreover, varying the encoding rate too often or in
large steps degrades video quality [2]. Conversational multimedia
differs from streaming multimedia because the former imposes a
strict delay on end-to-end packet delivery. Consequently, it affects
the size of the playout buffer, which for the conversational multi-
media is at least an order of magnitude smaller than for streaming.

To tackle congestion control, the IETF has chartered a new work-
ing group, RTP Media Congestion Avoidance Techniques (RM-
CAT)1, which is expected to be a multi-year process [3]. There-
fore, [4] proposes minimum circuit breaker conditions under which
a multimedia flow terminates its session. While this is not enough
to perform congestion control, it reduces the effect of an unadap-
tive multimedia flow on the network [5]. Additionally, the circuit
breaker is triggered, if the observed packet loss rate is high over
successive reporting intervals indicating an unusable channel.

1http://tools.ietf.org/wg/rmcat/

Conversational multimedia systems use Forward Error Correc-
tion (FEC) and Packet Loss Indication (PLI) to protect against packet
loss [6–8], i.e., the endpoint trades-off part of the sending rate for
redundant packets or retransmissions to reduce the effect of losses
on the user experience. An endpoint prefers to use FEC in networks
where retransmissions would arrive later than the playback time
of the packet. Figure 1 shows the applicability of different error-
resilience schemes based on network latency and packet loss [6].
The endpoint changes the amount of FEC based on the observed
loss rate and the expected loss rate over several observation inter-
vals. To summarize, an endpoint needs to adapt the sending rate to
best fit the changing network capacity and the amount of FEC (or
FEC interval) to best fit the observed network loss rate. Therefore,
in this paper, we investigate the use of redundant packets not only
for error-concealment but also as a probing mechanism for conges-
tion control (ramping up the sending rate). Other error-resilience
methods like, retransmissions (such as, ARQ [6]), sending dupli-
cate packets [9] (reduces network efficiency), error-concealment at
the sender and receiver [8] are ignored.

By choosing a high FEC rate, an endpoint aggressively probes
for available capacity and conversely by choosing a low FEC rate,
the endpoint is conservative in probing for additional capacity. If
during probing for additional capacity, a packet is lost due to con-
gestion, the receiver may be able to recover it from the FEC packet
(i.e., if the FEC arrives in time for decoding). If no packet is lost,
the sender is able to increase the media encoding rate to include the
FEC rate. This method is especially useful when the sending rate
is close to the bottleneck link rate, by choosing an appropriate FEC
rate the endpoint can probe for available capacity without affecting
the baseline media stream.

To verify that FEC is applicable for multimedia congestion con-
trol (for WebRTC), we propose FEC Based Rate Adaptation (FBRA),
a new RTP rate adaptation algorithm (see Section 4). Section 3 de-
scribes the the simplified state machine of the algorithm. We eval-
uate the applicability of the algorithm using ns-2 [10] and in a real-
world testbed (Section 5). Section 6 presents a detailed description
of the system design and Section 7 concludes the paper.

2. RELATED WORK
The Real-time Transport Protocol (RTP) [11] is used to deliver

multimedia flows and is favored over TCP for media delivery due
to the very stringent timing requirements of multimedia [12]. RTP
carries the media packets while the RTCP reports carry media play-
out and sender-to-receiver path statistics, such as, jitter, RTT, loss
rate, etc. The media playout information can be used to synchro-
nize the audio and video streams at the receiver and the path statis-
tics are used by the sender to monitor the session.

Standard RTP limits the reporting interval to a minimum of 5±
2.5s to avoid frequent reporting. Due to the long reporting interval,
the end-to-end path statistics become too coarse-grained to be ap-
plicable for congestion control. However, RFC4585 [13] removes
this minimum reporting interval constraint and endpoints can use
up to 5% of the media rate for RTCP. With the smaller report-
ing interval, the congestion control algorithm can expect feedback
packets on a per-packet, per-frame or per-RTT basis [14]. Using
RTCP Extended Reports (XR) [15], an endpoint can report other
path heuristics, such as discarded packets, bursts and gaps of losses,
playout delay, packet delay variation, among others.

Several sender-driven congestion control algorithms have been
proposed over the years. Most prominent is the TCP Friendly Rate
Control (TFRC) [16], which can be implemented using the infor-
mation contained in standard RTCP reports (e.g., RTT and loss
measurements). However, TFRC requires feedback on a per-packet

basis [17], which can produce an increase and decrease in the media
rate (sawtooth) in a very short interval of time [18, 19]. RAP [20]
uses a token bucket approach to additively increase and multiplica-
tively decrease the rate (AIMD), but as the media rate reaches the
bottleneck rate the encoding rate in this case as well exhibits a
sawtooth-type of behavior. Due to the impact on perceived media
quality, any algorithm that consistently produces a sawtooth-type
of behavior is not well suited for conversational multimedia com-
munication [21, 22].

Instead of just relying on RTT and loss for congestion control,
Garudadri et al. [23] also use the receiver playout buffer to de-
tect under and overuse and schedule RTCP feedback packets every
200-380ms to have timely feedback. Singh et al. [24] use a com-
bination of congestion indicators: frame inter-arrival time, playout
buffer size for congestion control. Zhu et al. [25, 26] use ECN and
loss rate to get a better estimate of losses for congestion control.
Their algorithm also relies on accurate measurement of one-way
delay, which is yet to be specified for deployment in the real-world.
O’Hanlon et al. [27, 28] use a delay-based estimate when compet-
ing with similar traffic and use a windowed-approach when com-
peting with TCP-type cross traffic, the algorithm switches modes
by using a threshold on the observed end-to-end delay, their idea
is similar to the one discussed in [29]. Holmer et al. [30] proposes
a Receive-side Real-time Congestion Control (RRTCC) algorithm,
which uses the variation in frame inter-arrival time to detect link
under and overuse. The new media rate is calculated at 1s intervals
by the receiver and signaled to the sender in a Temporary Maximum
Media Stream Bit Rate Request (TMMBR) message [31]. RRTCC
also does not react to losses less than 2%, instead increases the rate
until 10% losses are observed. Recent analysis of RRTCC shows
that it performs poorly when competing with cross-traffic [32–34].

Most of the above literature for congestion-control of conversa-
tional multimedia considers using error resilience and congestion
control separately. Zhu et al. [35, 36] propose using Unequal Loss
Protection (ULP) for both congestion control and error-resilience.
Firstly, they estimate the available rate using a variant of TFRC,
called Multimedia Streaming TCP-friendly protocol (MSTFP) [37].
Secondly, they take packet loss and historical sending rate to smooth
out the encoding rate. Lastly, they apply FEC while performing
congestion control and their results show a significant increase in
Peak Signal-to-Noise Ratio (PSNR). MSTFP does not use RTP, ap-
plies it to streaming video and acknowledges each packet for cal-
culating the TFRC estimate. While our proposal applies to conver-
sational video with tight delay requirements.

An alternative to performing fine-grained congestion control of a
single media stream, is by using Scalable Video Coding (SVC) [38],
wherin the sender provides a single video stream as a combination
of layers with varying descriptions: different frame rates and/or
frame resolutions. The reciver based on the prevailing network
conditions chooses to recieve one or more layers, combining them
to finally render a single video stream. Correctly receiving addi-
tional layers usually results in better video quality. Typically, the
lowest description is protected by FEC because failing to receive
the stream would cause decoding errors [39]. SVC is mainly im-
plemented in endpoints where the media stream is routed through
a centralized Multipoint Control Unit (MCU), instead of going di-
rectly between the endpoints (e.g., in a mesh topology). The main
rationale for this is, with multiple participants, the capacity avail-
able to each participant is different and instead of performing con-
gestion control for each call leg, the MCU selectively forwards me-
dia to each receivers by switching between layers and does not need
to re-encode the video for each receiver [40].

RTCP
Interval

time

Th
ro

ug
hp

ut

media rate

FEC

S
T
A
Y

s
t
a
t
e
!

P
R
O
B
E

s
t
a
t
e
!

S
T
A
Y

s
t
a
t
e
!

S
T
A
Y

s
t
a
t
e
!

U
P

s
t
a
t
e
!

U
P

s
t
a
t
e
!

D
O
W
N

s
t
a
t
e
!

P
R
O
B
E

s
t
a
t
e
!

(A) Adding FEC

(B) Swapping
FEC with media (C) Partially swapping

FEC with media

Available
Capacity

Figure 2: Figure shows the concept of using FEC for rate con-
trol. When congestion cues indicate no congestion, the FEC
stream is enabled to probe for available bandwidth. When no
losses are reported in the next RTCP report, the media bit rate
is increased. When congestion is observed, the congestion con-
trol algorithm reduces the media rate.

STAY

UP

DOWN

PROBE

Good conditions, probe network

No more bandwidth available

St
ab

le
 c

on
di

tio
nsStable conditions

Unstable conditions Unstable conditions

Unstable
conditions

Figure 3: State machine of a congestion control algorithm en-
abling FEC. It shows that after enabling FEC three conditions
may occur. 1) No more bandwidth is available, the sender
should keep the current rate, 2) Stable conditions are detected,
the sender should increase the rate and disable FEC, and 3)
Unstable conditions are detected, and the sender should reduce
the rate to the goodput.

3. CONCEPT: USING FEC FOR CONGES-
TION CONTROL

FEC is one method of error protection that improves flow relia-
bility by adding redundant data to the primary flow which is used
by the receiver to recover parts that have been lost due to either
congestion, or bit-errors. The rate control algorithm on the other
hand aims at providing the best possible network path utilization,
but risks over-estimating the available end-to-end capacity that may
lead to congestion induced losses.

The main idea behind using FEC for rate control is to enable
FEC alongside the media stream and use it to probe the path for
available bandwidth. If the path conditions are good and stable
after the FEC stream is switched on, the media encoding rate is
increased by the amount of the FEC stream rate and the FEC stream
is disabled (see figure 2). The main advantage of this approach is
that the applied rate control algorithm can be more adventurous in
probing for available capacity, as improved reliability compensates
for possible errors resulting from link overuse.

Figure 3 illustrates the state machine of a congestion control
algorithm incorporating FEC for probing. The state machine in-
cludes 4 states: STAY, PROBE, UP, and DOWN. The rate adapta-
tion algorithm decides based on the congestion cues (such as, RTT,
loss/discard rate, jitter, packet delay variation, ECN, etc.) to stay in
the current state, or transit to another. The state machine does not
specify the conditions for the transition between states, but only
gives a very generic description of the path conditions and leaves
the interpretation to the underlying congestion control algorithm.

The primary consideration for probing using FEC is “How much
FEC should be introduced alongside the media stream?” If the
endpoint uses a higher FEC rate, it has better protection against
losses, irrespective of what FEC scheme it is using. Moreover, the
ramp-up is quicker but at the risk of overloading the path and caus-
ing congestion. If the endpoint uses a lower FEC rate, it has weaker
protection against losses and also a potentially slower ramp-up.
Therefore, the sender should observe the congestion cues to make
its decision. If the congestion cues indicate that it is operating close
to the bottleneck link, it should use lower FEC rate; however, if the
cues indicate that it is underutilizing the link it should use a higher
FEC rate. Hence, an important aspect of the rate adaptation al-
gorithm is the ability to find the correct FEC rate for the current
network conditions. Another aspect to consider is the FEC scheme.
It determines the amount of redundancy injected into the network.
An application may employ FEC at the packet-level, frame-level or
use an unequal level of protection (ULP).

4. FEC-BASED RATE-CONTROL
ALGORITHM (FBRA)

In this section, we describe our proposed congestion control al-
gorithm and the RTP/RTCP extensions it uses. We also describe
the conditions under which to enable FEC.

4.1 Using RTP/RTCP Extensions
Our algorithm uses a short RTCP reporting interval and our ex-

periments show that the interval need not be shorter than 2×RTT .
In exigent circumstances, such as the receiver detects that the play-
out buffer is about to underflow due to late arrival of packets2 then
the receiver may send the RTCP feedback early, however, an end-
point can only send an early feedback once every other reporting
intervals [13].

Apart from the congestion cues reported in the standard RTCP
Receiver Report (RR), such as jitter, RTT, and loss rate, we ad-
ditionally use Run-length encoded (RLE) lost [15], and RLE dis-
carded [41] packets. Using the RLE lost and discarded packets3

the sender can correlate when exactly the loss and discard events
took place in the reporting interval. If these events occurred earlier
in the reporting interval, the sender may ignore them as transient
and keep the same sending rate. Conversely, if the events occurred
later in the interval (more recent) then the sender would calculate
the exact goodput4 and use that as the sending rate. Furthermore,
using the RLE lost and discarded packet information the receiver
may be able to distinguish between bit-error losses and congestion
losses [24].

RTT, as a congestion cue, has one fundamental issue, namely
it assumes that the network paths in both directions are symmetric

2Typically underflow may occur due to routing updates or queuing
delay at an intermediate router.
3Packets that arrive too late to be displayed are discarded by the
receiver.
4using the history of sent, lost and discarded packets in the last
reporting interval [19].

and that the congestion upstream is similar to the congestion down-
stream, which may not be always true [42]. As a result, we use the
technique defined in [42] to precisely calculate the one-way delay
(OWD) at the receiver without the need for clock synchronization
and the receiving endpoint reports the observed OWD in the re-
porting interval using the extension defined in [43]. This method
examines packet inter-arrival times, and knowing packetization de-
lay, it is able to calculate queuing delay and finally one-way delay.
Increase in the one-way delay may indicate a queuing delay in the
network, which is an early sign of congestion. To calculate the un-
congested OWD, the sender only collects the reported OWD from
the RTCP RRs that do not report any losses or discards into a data
structure, OWDhistory . The sender then uses theOWDhistory to
determine the optimum OWD.

As most of the OWDhistory values are close to the “ideal”
OWD value, we use the 40th percentile5 to determine the threshold
for increasing the sending rate (low watermark), i.e., if the current
OWD measurement is smaller than the 40th percentile value indi-
cates link under-utilization.

Similarly, we use the 80th percentile, (which is at the higher end
of the distribution) to set the threshold for decreasing the rate (high
watermark), i.e., if the most recent OWD measurement is larger
than the 80th percentile value indicates the onset of congestion (see
Figure 4). This method is very similar to the one used in [19],
which uses RTT measurements instead of OWD.

CorrelatedlowOWD =
currentOWD

40thpercentile(OWDhistory)

CorrelatedhighOWD =
currentOWD

80thpercentile(OWDhistory)

 100

 1000

 0 100 200 300 400 500 600 700 800 900

O
ne

-w
ay

 D
el

ay
 (O

W
D

) [
m

s]

time [s]

OWD low watermark high watermark

Figure 4: The plot shows the variation in measure OWD value
(dark line) during a video call, the low and high watermark
represent the 40th and 80th percentile. The FBRA algorithm
uses the α and β thresholds to validate, if the recently measured
OWD value falls in the region of operation (shaded area).

The FBRA algorithm uses the correlated OWD by checking if
its value exceeds thresholds: α and β. α and β thresholds values
must be within [1;2] interval, and have been derived empirically in
a series of experiments. Because these values depend on the state of
the congestion control algorithm, the exact thresholds are described
in more detail in Section 4.3.

4.2 Size of FECinterval

In this paper, we use FEC for both rate adaptation and for the
error protection because we can adapt the rate without the fear of
creating packet losses that impair QoE. We use a basic per packet
parity FEC scheme because it gives 1 redundant packet for every
N RTP packets. By varying the number of RTP packets encoded

5in our experiments, we find that the 40th percentile value provides
better tolerance than the median.

by a single FEC packet (known as the FECinterval) the conges-
tion control algorithm can vary the ramp-up rate, i.e., to increase
redundancy the congestion control algorithm only needs to reduce
the FECinterval. Therefore, for the rest of the paper, we have ig-
nored the use of more complex FEC schemes and leave it for further
study.

We have limited the FECinterval to encode between 2 and 14
RTP packets. The minimum FECinterval = 2 is the lowest possi-
ble and creates maximum redundancy and high FEC rate, whereas,
the maximum FECinterval = 14 creates low redundancy and a
low FEC rate. In our experiment, we found that a FECinterval >
14 had negligible impact on both congestion control (because the
additional FEC rate is too small) and for error protection (because
the FEC packet is generated too late to help in decoding the lost
packet, the playout buffer of an interactive flow is very small).

The FECinterval is calculated based on the following observa-
tions. When the RTP media rate is low, it is assumed that there is
a lot of available end-to-end capacity for the media stream, and the
FECinterval is set low. This allows the sender to quickly ramp-up
the sending rate, and if the link is overused it also provides higher
protection against possible losses. Conversely, when the RTP me-
dia rate is high, it is assumed that the sender is approaching the
bottleneck link capacity and there may not be much more band-
width left for the media stream, and the FECinterval is set to a
high value. This allows the sender to ramp-up slowly and avoid
overshooting the bottleneck link capacity. To determine if the cur-
rent media rate is low or high, the sender keeps a history of all the
rates (goodput, sending rate, combined FEC and RTP sending rate)
recorded in the last two seconds, and compares the current rate with
the highest recorded value in the set and with the initial goodput.

4.3 FBRA: Algorithm
The FBRA algorithm has the following states: STAY, PROBE,

UP, DOWN. The state names match exactly the ones described in
Section 3. The algorithm changes state depending on the infor-
mation received in the new RTCP RR and is constrained by the
following state transition rules.

In the DOWN state the algorithm (see Sub-algorithm 1a), re-
duces the sending rate by executing the undershooting procedure.
If no congestion is reported in the next RTCP interval the algo-
rithm transits to the STAY state. However, if losses and discards
still appear the algorithm stays in the DOWN state. In the edge
case, when high OWD values are reported, the DOWN state is also
kept. As the algorithm should not be very sensitive to high OWD
values during congestion, the threshold for the edge case is set to
αundershoot = 2.0.

In the STAY state the algorithm (see Sub-algorithm 1b), keeps
the sending rate constant, and the FEC packets are not generated.
The algorithm can remain in this state and not probe for additional
capacity if the congestion cues indicate that the sender is operating
very close to the bottleneck link capacity. Otherwise, it can transit
to the PROBE state for probing the path for additional capacity or
for error-resilience. In either case, the stream may benefit with sta-
bility or increased error-resilience. In order to switch to the PROBE
state, the CorrelatedhighOWD must be lower than αstay = 1.1.
Direct transition to the PROBE state is not possible when the cur-
rent sending rate is higher than 90% of the highest rate recorded
in the last 2 seconds. In this case, the algorithm assumes that the
current rate is operating close to the bottleneck link capacity, and it
must make sure that current rate is stable by staying in the current
state for one more RTCP report interval before probing further. Ob-
viously, if congestion is detected, the algorithm goes from the STAY
state to the DOWN state.

Sub-algorithm 1a DOWN state function
1: function STATE DOWN
2: if Recent Losses ∨Discards then
3: if PreviousState = DOWN then
4: NewState← STAY
5: else
6: if Discards ∧No losses then
7: Undershoot without disabling rate control
8: else
9: Undershoot and disable rate control

10: end if
11: NewState← DOWN
12: end if
13: else if CorrhighOWD > αundershoot then .

αundershoot = 2.0
14: Undershoot and disable rate control
15: NewState← DOWN
16: else
17: NewState← STAY
18: end if
19: Disable FEC
20: end function

In the PROBE state the algorithm (See Sub-algorithm 1c) main-
tains the current sending rate, but sends FEC packets alongside. If
the next RTCP report shows signs of congestion, the algorithm dis-
ables FEC and goes back to the STAY state and if further congestion
is detected, it goes to the DOWN state. Otherwise it normally tran-
sitions to the UP state. When no losses and discards are observed,
the state transition is based on the measured OWD. If the observed
OWD is higher than theCorrelatedhighOWD , the sender assumes
that congestion is severe and thus cuts the sending rate more drasti-
cally. Our experiments show that the best results are obtained when
αdown parameter, which is the threshold for entering the DOWN
state is between 1.4 and 1.6. Because in this state, it is desirable to
find out if the link is underutilized, less sensitivity is needed. Thus,
we choose αdown = 1.6. Less sensitivity, increases possibility of
getting discards, but appearance of them allows us to find out about
the link limit. Transition back to the STAY state occurs for corre-
lation values exceeding αstay = 1.1 (similarly to the STAY state).
Furthermore, the algorithm may also decrease amount of the FEC
rate if the OWD value is unexpectedly higher. This condition is
checked by comparison the CorrelatedlowOWD value against the
β parameter. If the OWD value is low enough the UP state is en-
tered, thus β parameter should be close to the lower boundary of
[1;2] interval (we use β = 1.2).

In the UP state the algorithm (See Sub-algorithm 1d) increases
the sending rate by replacing the FEC rate with additional RTP me-
dia rate. If congestion is detected, the algorithm transits to the
DOWN state, or else to maintain stability for one more reporting
interval, it transits to the STAY state. Transition to the DOWN state
happens when theCorrelatedhighOWD exceeds αdown value. We
use αdown = 1.4, as in the UP state more sensitivity for early con-
gestion indication is required.

The algorithm is also sensitive to the RTCP reporting interval
duration. This means that if the sender receives an RTCP RR at an
interval shorter than 1.5× RTTmedian, it assumes this is an early
report and immediately transits to the DOWN state. Furthermore,
If no RTCP report is received for 2s, the sender halves the rate
entering the DOWN state [4].

4.4 FBRA: Undershooting & Bounce-back Pro-
cedure

We define two additional procedures: the undershooting and the
bounce-back procedure. The undershooting procedure attempts to
reduce the overuse of the network caused by the stream. The stream
sets the new sending rate to a value lower than the current good-

Sub-algorithm 1b STAY state function
1: function STATE STAY
2: if Losses then
3: if Recent Losses then
4: Undershoot and disable rate control
5: NewState← DOWN
6: else
7: NewState← STAY
8: end if
9: Disable FEC

10: else
11: if Recent Discards then
12: Undershoot, disable rate control and FEC
13: NewState← DOWN
14: else
15: if CorrhighOWD > αstay then . αstay = 1.1
16: if PreviousState = STAY then
17: Undershoot and disable rate control
18: NewState← DOWN
19: else
20: NewState← STAY
21: end if
22: Disable FEC
23: else
24: NewState← PROBE
25: EnableFEC
26: end if
27: end if
28: end if
29: end function

Sub-algorithm 1c PROBE state function
1: function STATE PROBE
2: if Recent Losses ∨Recent Discards then
3: Undershoot, disable rate control and FEC
4: NewState← DOWN
5: else if Losses ∨Discards then
6: NewState← STAY
7: Disable FEC
8: else
9: if CorrhighOWD > αdown then . αdown ∈ [1.4; 1.6]

10: Undershoot, disable rate control and FEC
11: NewState← DOWN
12: else if CorrhighOWD > αstay then . αstay = 1.1
13: NewState← STAY
14: Disable FEC
15: else if CorrlowOWD > β then . β = 1.2
16: IncrementFECinterval
17: NewState← PROBE
18: else
19: NewState← UP
20: NewRate← CurrentRate+ FECRate
21: Disable FEC
22: end if
23: end if
24: end function

Sub-algorithm 1d UP state function
1: function STATE UP
2: if (RecentLosses∨Discards∨CorrhighOWD > αdown then
. αdown ∈ [1.4; 1.6]

3: Undershoot and disable rate control
4: NewState← DOWN
5: else
6: NewState← STAY
7: Disable FEC
8: end if
9: end function

put [19,30], i.e., the sender calculates the new sending rate by sub-
tracting twice the difference between the current sending rate and
the current goodput and taking 90% of the obtained value.

After undershooting, if the sender predicts that the congestion
cues in the upcoming reports may still show signs of congestion
due to the previous overuse, the sender may disable the rate adap-
tation for a brief period of time. This action prevents any further
reduction in the sending rate, while waiting for the congestion cues
to stabilize. The deactivation period is is a bit more than the RTCP
Interval, i.e., the sender ignores the next RTCP report that arrives.
After the deactivation period expires, the bounce-back procedure is
executed.

In the bounce-back procedure, the sender examines the most re-
cent RTCP report (the one received after the period expires), and
if there are no signs of congestion, it increases the sending rate to
90% of the goodput stored during the undershooting. The algo-
rithm in this case attempts to gradually bring the sending rate back
to the goodput observed at the moment of undershooting. However,
if the new RTCP RRs continues to report congestion, the FBRA
once again enters the undershooting procedure and this time does
not disable the congestion control.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed al-

gorithm, FBRA, RRTCC [30] and C-NADU [24] in ns-2 [10]. Our
simulations comprise of the following scenarios: a single RTP flow
on a variable link capacity, one or more RTP flows competing on a
bottleneck link, and one or more RTP flows competing with other
short TCP flows on a bottleneck link. This paper mainly focuses
on the congestion control in the Internet environment, where bit-
error losses are few, therefore, we use simple duplex-links with no
link loss rate. For intermediate routers we set the queue length to 50
packets (ns-2 default) and drop-tail queuing strategy, i.e., the packet
loss observed in the simulation results are due to link overuse. In
all the scenarios, we further divide the simulations into three sub-
scenarios with each sub-scenario using a different bottleneck link
delay (50 ms, 100 ms, and 240 ms) [12,44,45]. For statistical rele-
vance, each sub-scenario is simulated 30 times and the standard de-
viation is noted for each metric. The simulation scenarios and the
corresponding evaluation parameters are based on those defined in
the RTP evaluation framework [46].

Furthermore, as the simulations are performed at the packet/frame
level, we decided not to differentiate between the different types of
video frames (namely, I-, P-frames), but represent each frame as
a packet of equal size corresponding to the instantaneous sending
rate. However, the sender may fragment large frames (at high bit
rate) to fit the MTU size (= 1500 bytes). The endpoints generate
the frames at 30 FPS and all three congestion control algorithms
use the same frame rate and packetization methodology. Startup
rate is outside the scope of this paper and therefore both endpoints
begin their session with an initial sending rate of 128kbps, and re-
strict the minimum rate for each congestion control algorithm to
32kbps. There is no restriction on the maximum rate but, the max-
imum allowed end-to-end packet delay (delaymax) for a packet is
set to 400ms [44], packets arriving after this cut-off are discarded
by the receiver without sending them to the playout buffer.

5.1 Metrics
Apart from the standard metrics—e.g., goodput, Peak signal-to-

noise ratio (PSNR), Packet Loss Rate (PLR), Average Bandwidth
Utilization (ABU)—for evaluating the impact of the congestion
control algorithm, we propose three new metrics to evaluate the
performance of using FEC for rate control.

FEC Rate-Control Correctness: FRCC specifies times the frac-
tion of time the congestion control algorithm correctly uses FEC,
i.e., the algorithm starts from the STAY state, enables FEC and re-
turns to the STAY state without entering the DOWN state. Conse-
quently, the decision is incorrect if the algorithm enters the DOWN
state after enabling FEC. Figure 3 shows which state transitions are
allowed and which are not. Formally, we define:

FRCC =
count(FEC raises rate) + count(FEC keeps rate)

count(FEC enabled)

FEC Frame Recovery Efficiency: FFRE specifies the fraction
of successfully recovered frames from all the lost frames that were
protected by FEC. Formally:

FFRE =
framesrecovered

framesprotected but lost + framesrecovered

TCP fair share: TFS specifies the ratio between the TCP flow
throughput and the fair amount of bandwidth that should be granted
to it. The ratio can be greater than 1, if TCP uses more than its fair
share. Formally:

TFS =

(
TCP Throughput
no.of TCP flows

)
(

Total Throughput
no. of flows

)

BA

[50,100,240] ms
Variable link

capacity
RTP2RTP1

1ms
100Mb/s

1ms
100Mb/s

(a)

BA

[50,100,240] ms
5Mb/s

RTP1
1ms

100Mb/s

1ms

100Mb/s

TCP10

TCP1

...

TCP11

TCP20
...

RTP2

(b)

BA

[50,100,240] ms
5Mb/s

RTP4

RTP1

1m
s

100M
b/s

1m
s

10
0M

b/
s

TCP10

TCP1

...

TCP11

TCP20
...

RTP2

RTP3

(c)

Figure 5: Shows the ns-2 simulation topologies for (a) single
RTP flow on a variable capacity link and (b) One or more RTP
flows competing with multiple short TCP flows.

5.2 Single RTP flow on a Variable Capacity
Link

Figure 5a illustrates this scenario topology, an RTP node is simu-
lating a video conversation with another node connected through a
constrained bottleneck link (dumbbell topology). The access links
have a capacity of 100Mbps and 1ms delay, while the bottleneck

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900

Th
ro

ug
hp

ut
 [k

bp
s]

Time [s]

(a) OWD=50ms, FRCC=92.6%

 0 100 200 300 400 500 600 700 800 900

Time [s]

(b) OWD=100ms, FRCC=95.9%

 0 100 200 300 400 500 600 700 800 900

Time [s]

Link capacity
FBRA

FEC probe rate

(c) OWD = 240ms, FRCC=90.1%

Figure 6: The plot shows the performance of a single RTP flow using FBRA in a varying link capacity scenario with different
bottleneck delays. The plots also show the FEC probing rate. We observe that the FEC rate is low when the FBRA rate drops and
FEC rate is high when the FBRA is ramping-up, but with FRCC > 90% in all the cases shows that the FEC probing was accurate.
The bandwidth utilization in the high delay (240ms) scenario is low because the FBRA senses that the one-way delay is very close to
the delaymax(= 400ms) and is conservative in its bandwidth probing.

link capacity varies between 100kbps and 256kbps. In the sce-
nario, we evaluate the reactivity and convergence of the congestion
control algorithm to the available end-to-end capacity.

Our simulations show that RRTCC achieves the best goodput
(169-180kbps) for the three bottleneck link delays (see Table 1),
but has the worst loss rate (3-4%). RRTCC is aggressive in its prob-
ing for available bandwidth and as per the algorithm defined in [30]
does not react to losses up to 2%. On the other hand, C-NADU
achieves excellent reliability (0.15-0.5%) results in all the cases,
but has lower goodput (about 10-15kbps lower than RRTCC). The
two algorithms trade-off throughput for packet loss and vice-versa.

For the 50ms and 100ms bottleneck link delay, the goodput
achieved by FBRA is comparable to RRTCC but with compara-
tively lower loss rates (≈1.5%). Figures 6(a)–(b) show that the
FBRA can quite quickly bounce-back after undershooting. The fig-
ure also shows that the FEC probing rate increases when the FBRA
ramps up and the FEC rate is low or disabled when the FBRA un-
dershoots. However, FBRA is primarily a delay-based control al-
gorithm and for the 240ms bottleneck delay, it observes that the
packets are arriving very close to the delaymax and is therefore,
conservative in its probing for available bandwidth (this is observed
by the low FEC rate in Figure 6c). FEC rate is about 10% of the
media rate at about 15-20kbps and the accuracy of using FEC for
congestion control (FRCC > 90%) is also very high in each case.

Table 1: Overall metrics for an RTP Flow on a Variable Capac-
ity Link

Delay Metric FBRA RRTCC C-NADU
avg. σ avg. σ avg. σ

50
m

s Goodput [kbps] 179.13 2.26 181.8 3.11 165.42 3.87
Loss rate [%] 1.23 0.28 4.27 0.78 0.34 0.11

No. of lost frames 441.43 82.37 1842 25.4 93.67 29.64

10
0m

s Goodput [kbps] 172.83 2.74 172.48 6.6 163.84 3.11
Loss rate [%] 1.72 0.37 3.09 0.85 0.17 0.09

No. of lost frames 562.83 103.44 740 42.82 46.4 22.94

24
0m

s Goodput [kbps] 144.89 8.35 169.22 5.68 153.52 6.81
Loss rate [%] 2.82 0.89 2.98 0.55 0.19 0.07

No. of lost frames 789.93 223.55 705.67 41.33 53.23 21.41

5.3 One RTP flow competing with multiple short
TCP flows

In this simulation experiment, we evaluate the performance of
the RTP flow when it competes with a number of TCP flows. Sim-
ilar to the previous scenario, we use a dumbbell topology but in-
stead of just a single RTP flow traversing the bottleneck link, it
is shared with 10 short TCP connections (for e.g., having 10 tabs

Table 2: Overall metrics for 1 RTP Flow competing with 10
TCP Flows

Delay Metric FBRA RRTCC C-NADU
avg. σ avg. σ avg. σ

50
m

s Goodput [kbps] 1044.24 122.9 3592. 9 279 2657.1 164
Loss rate [%] 1.95 0.26 3.68 0.26 0.67 0.15

No. of lost frames 821.63 106.5 5292 153 1418 134
TCP flow throughput [kbps] 669.76 5.41 688.5 52.98 502.28 94.75

TFS [%] 147.35 1.19 151.2 7.59 142.27 2.3

10
0m

s Goodput [kbps] 1219.83 210.11 3699.43 419.81 2968.84 59.38
Loss rate [%] 1.54 0.17 4.05 0.19 0.64 0.09

No. of lost frames 685.47 89.34 6210.82 261.12 1422 49.26
TCP flow throughput [kbps] 491.34 4.17 323.13 110.99 515.29 68.73

TFS [%] 108.1 0.92 71.09 0.21 113.37 0.73

24
0m

s Goodput [kbps] 504.82 82.18 3827.42 423.55 3028.22 78.55
Loss rate [%] 0.4 0.05 4.82 0.17 0.36 0.05

No. of lost frames 165.07 27.7 8547.93 526.8 597.24 123.96
TCP flow throughput [kbps] 299.12 2.56 262.4 88.34 291.22 37.05

TFS [%] 65.81 0.56 57.73 0.13 64.07 0.6

open in a browser). Each TCP flow is modeled as a sequence of file
downloads interleaved with idle periods (on-off traffic simulating
webpage downloads). The sizes of the webpages are obtained from
a uniform distribution between 100KB and 1.5MB. Lengths of
the idle periods are drawn from an exponential distribution with
the mean value of 10 seconds. Unlike the previous scenario, the
bottleneck link has a constant available capacity of 5Mbps and the
topology is illustrated in the Figure 5b.

In our simulations, the RRTCC produces the highest goodput
(3.6-3.8Mbps), but with high variation (see standard deviation in
Table 2). Additionally, the RTP flow experiences high packet loss
(3.5-5%). C-NADU makes the opposite trade-off between through-
put and loss rate and therefore, has lower goodput (2.6-3Mbps) and
lower loss rate (0.3-0.7%).

Similar to the previous scenario, the FBRA algorithm performs
very well in the 50ms and 100ms delay cases with goodput over
1Mbps and compared to RRTCC significantly lower loss rate (0.4-
2.0%) and standard deviation of goodput results. In the 240ms
bottleneck delay case the goodput falls to 505kbps because the
FBRA being delay-based becomes conservative. Furthermore, we
observe that at 240ms, FEC becomes more useful for error pro-
tection (FFRE = 18%) than for congestion control (FFRC =
83.6%). For other delays the FFRE is lower (11-12%) and FFRC is
higher (87-91%). In all the scenarios the FEC rate is about 10% of
the media rate and we observe recoveries due to congestion losses
in this scenario, with 10-20% of the protected lost packets are re-
covered. Some packets were lost in bursts, in these cases a parity
FEC scheme cannot provide additional protection.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800 900

Th
ro

ug
hp

ut
 [k

bp
s]

Time [s]

(a) OWD=50ms, FRCC=90.5%

 0 100 200 300 400 500 600 700 800 900

Time [s]

(b) OWD=100ms, FRCC=87.8%

 0 100 200 300 400 500 600 700 800 900

Time [s]

FBRA
FEC probe rate
Avg. TCP rate

(c) OWD=240ms, FRCC=83.6%

Figure 7: The plot shows the performance of a single RTP flow using FBRA when competing with 10 short TCP flows on a common
bottleneck link. The bottleneck link capacity is a constant 5Mbps. To show the bottleneck link utilization, the FBRA rate and the
Average TCP rate are stacked on top of each other. The FEC probing rate is plot independently to show that the FEC probing
rate correlates with the FBRA sending rate. As before, the link utilization in the very high delay (OWD = 240ms) scenario is low
because the FBRA sense that it is operating very close to the delaymax.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800 900

Th
ro

ug
hp

ut
 [k

bp
s]

Time [s]

(a) OWD=50ms, FRCC=90.5%

 0 100 200 300 400 500 600 700 800 900

Time [s]

(b) OWD=100ms, FRCC=88%

 0 100 200 300 400 500 600 700 800 900

Time [s]

FBRA Call 1
FBRA Call 2

Avg. TCP rate

(c) OWD=240ms, FRCC=81.75%

Figure 8: The plot shows the performance of two RTP flows using FBRA competing with 10 short TCP flows on a bottleneck link
with different delays. The sending rate for the two RTP flows and the average TCP throughput are stacked on top each other. The
flows in all cases appear fair to one another, but as observed in the previous scenarios the FBRA is very conservative in probing for
available bandwidth in the high delay scenario (OWD = 240ms).

5.4 Multiple RTP flows competing with mul-
tiple TCP flows

In this simulation experiment, we add another RTP flow to the
scenario in Section 5.3, i.e., the second flow competes for capac-
ity with the other flows at the bottleneck link. All other parame-
ters including the network topology, link characteristics, and traffic
source properties remain the same (see Figure 5c for details).

Table 3: Overall metrics for 2 RTP Flows competing with 10
TCP flows

Delay Metric FBRA RRTCC C-NADU
avg. σ avg. σ avg. σ

50
m

s

Fl
ow

1 Goodput [kbps] 571.21 94.42 1640.29 37.625 742.63 100.55
Loss rate [%] 2.1 0.21 5.65 0.09 1.2 0.12

No. of lost frames 746.83 94.84 7787.67 124.83 801 68.11

Fl
ow

2 Goodput [kbps] 520.08 84.33 1750.09 65.45 748.65 72.95
Loss rate [%] 2.4 0.18 5.48 0.30 1.17 0.14

No. of lost frames 674.5 74.99 8140.33 420.82 787.67 128.85

T
C

P Throughput [kbps] 674.28 4.78 389.53 36.65 786.13 37.80
Fair share [%] 134.86 0.96 77.9 7.78 152.7 2.92

10
0m

sd
el

ay Fl
ow

1 Goodput [kbps] 745.42 87.85 1782.71 54.49 811.52 89.20
Loss rate [%] 1.43 0.2 5.42 0.33 0.69 0.15

No. of lost frames 566.53 77.02 8112.67 480.53 484 137.49

Fl
ow

2 Goodput [kbps] 691.8 83.58 1904.13 46.69 879.89 140.26
Loss rate [%] 1.67 0.18 5.3 0.17 0.77 0.14

No. of lost frames 521.57 68.05 8579.67 214.22 578.33 115.8

T
C

P Throughput [kbps] 466.21 3.26 281.7 23.51 547.63 32.77
Fair share [%] 93.24 0.65 56.2 7.27 109.4 3.91

24
0m

sd
el

ay Fl
ow

1 Goodput [kbps] 260.26 100.42 2145.09 18.96 1299.87 364.3
Loss rate [%] 0.59 0.19 6.26 0.26 0.47 0.19

No. of lost frames 155.47 52.85 11001.3 440.96 514.67 104.71

Fl
ow

2 Goodput [kbps] 287.41 140.73 2231.51 14.01 1039.08 277.35
Loss rate [%] 0.71 0.19 6.02 0.06 0.54 0.09

No. of lost frames 174.37 61.59 11234.67 120.29 459.67 119.68

T
C

P Throughput [kbps] 299.91 1.94 101.6 6.52 291.22 37.05
Fair share [%] 59.98 0.39 20.32 0.10 58.24 0.41

The goodput for each RTP flow is comparable to the other for all
three congestion control algorithms, i.e., each RTP flow is fair to
the other and leaves the competing RTP flow enough bandwidth to
provide a similar user experience. However, what differs between
them is the interaction with the short TCP flows. At low bottleneck
link delays, the TCP Fair Share (TFS) for TCP flows competing
with FBRA and C-NADU is around or greater than 100% (see Ta-
ble 3), which shows that both algorithms move out of the way of
the TCP flows. However, RRTCC is more competitive and allows
TCP flows only 55-80% of their fair share, which affects the com-
pletion times for these TCP flow sand may raise some doubts about
its fairness. Our observations show that TCP flows competing with
RRTCC will take 2-3 times longer than TCP flows competing with
C-NADU or FBRA (compare the average TCP throughputs in Ta-
ble 3).

FBRA’s performance is comparable to C-NADU in the low delay
scenario but due to its delay sensing behavior performs conserva-
tively in the high delay scenario (240ms). The FEC rate is 10%
of the media rate and the FEC recovers FFRE = 13-17% of the
protected media packets. The FEC is more accurate for congestion
control in the low delay scenario (FFRC = 88-91%) than for
high delay (240ms) scenario (FFRC = 81-82%).

5.5 Real World
Ns-2 simulations only take the network aspects into account,

such as packet loss due to router drop, bit-error loss, queuing delay
etc., ignoring multimedia aspects like, the Group of Picture (GOP)
structure, different types of video frames (I- P-, or B-frames), etc.
Since no real media packets are sent in ns-2, the simulations can

neither measure the PSNR nor determine the Mean-opinion Score
(MoS) for evaluating the multimedia quality experienced by the
user. Simulations in ns-2 also ignore the performance issues with
real-life systems, like OS kernel, device drivers, etc. Therefore, we
also conduct experiments in a real-world setting.

Our video call application is built on top of open-source libraries:
Gstreamer6, x2647 and JRTPLib8. We have also extended the JRT-
PLib to generate and decode FEC, perform congestion control, gen-
erate RTCP XRs, and be compliant with RFC4585 RTCP timing
rules. In addition, the FEC module is fully compatible with RFC
5109 [47]. The application can encode and decode files or take
input from a webcam and render on the screen. To evaluate per-
formance, we use the “News” video sequence9 in VGA frame size
and 15 FPS. Details concerning the system design are presented in
section 6.

Due to heterogeneity in the networks, interactive multimedia ap-
plications use a short GOP structure (≤ 5) [19, 23, 44, 48], help-
ing overcoming variability in the available end-to-end capacity, bit-
error losses, etc. By using FEC for congestion control, our exper-
iments show that the congestion control algorithms can use a very
long GOP structure. Since FBRA’s maximum FECinterval is 14
packets, we propose using a GOP of a similar size. In addition,
the encoding/decoding complexity of a stream using a larger GOP
is much smaller than of a stream using a smaller GOP and for the
same encoding rate P-frames can be less compressed. Hence, a
larger GOP stream should lead to a better PSNR and improved en-
ergy consumption [39].

We use Dummynet10 [49] to emulate the variation in link ca-
pacity, latency and/or losses in our testbed. Using Dummynet, we
evaluate the FBRA algorithm in two scenarios: 1) two RTP flows
compete on a bottleneck link, 2) RTP flow competes against short
TCP flows on a bottleneck link. In both scenarios, the bottleneck
link capacity is 1Mbps and the end-to-end path latencies are 50ms
and 100ms. The TCP traffic model is identical to the one imple-
mented in the simulations. Finally, we initiate a video call between
a Linux machine at Aalto University (Helsinki) and an Amazon
EC2 virtual machine over the public Internet. For deriving statisti-
cal significance, each scenario is run 10 times.

To compare our results with RRTCC in the real-world, we use
Google’s Chrome browsers and the video source uses the same test
YUV file instead of a webcam. To evaluate the performance, the
browsers send the media streams through our dummynet testbed.

Dummynet two RTP flows competition scenario: The RTP
flows using FBRA are fair to one another (see Table 4) and the
goodput results are similar in magnitude when compared to the
simulation results. The loss rate is much lower than in the simu-
lation results. Hence, the frame recoveries (FFRE) are also lower.
The difference in the goodput of the calls in the two delay cases is
about 30-50 kbps, but the PSNR of these calls are similar (see Ta-
ble 4). Therefore, we conclude that small rate variations (≈ 10%-
20%) have little bearing on the quality of the call. The FEC rate is
about 10-12kbps and is smaller than the rate achieved in the simu-
lations, which means that actual overhead introduced by FEC addi-
tion is also smaller. This also implies that the rate control algorithm
remains longer in the STAY state, thus avoiding abrupt changes to
the encoding rate, which is detrimental for user experience [2]. On
the other hand, RTT variations in the physical networks causes the

6http://gstreamer.freedesktop.org/
7http://www.videolan.org/developers/x264.html
8http://research.edm. uhasselt.be/~jori/
9http://xiph.org

10http://info.iet.unipi.it/ luigi/dummynet/

Table 4: Dummynet: Two RTP flows on a bottleneck link
Metric Call 1 Call 2

avg. σ avg. σ

50
m

sd
el

ay

Goodput [kb/s] 375.39 88.25 348.77 83.64
Loss rate [%] 1.21 0.19 1.39 0.69

FEC rate [kb/s] 12.24 1.64 11.78 1.39
No. of lost frames 72.5 7.8 80.1 27.85

No. of FEC protected lost frames 15.3 3.44 14.6 2.73
FFRE [%] 7.41 9.76 2.2 3.58
FRCC [%] 83.19 2.55 83.39 2.62
PSNR [dB] 38.08 2.1 37.7 1.53

10
0m

sd
el

ay

Goodput [kb/s] 295.33 48.27 351.1 63.4
Loss rate [%] 3.15 0.93 2.33 0.87

FEC rate [kb/s] 10.7 0.68 11.69 1.52
No. of lost frames 174.6 92.44 133.8 42.33

No. of FEC protected lost frames 3.0 2.1 4.1 3.14
FFRE [%] 0.0 0.0 1.54 4.62
FRCC [%] 82.99 2.16 84.69 3.79
PSNR [dB] 35.64 1.17 37.32 1.65

Table 5: Dummynet: An RTP flow sharing a bottleneck link
with short TCP flows

Metric 50ms delay 100ms delay
avg. σ avg. σ

Goodput [kb/s] 302.24 87.07 280.97 92.15
Loss rate [%] 4.24 0.89 4.1 0.58

FEC rate [kb/s] 13.6 2.15 12.58 2.18
No. of lost frames 154.6 16.56 170.9 12.38

No. of FEC protected lost frames 38.0 6.08 23.7 8.99
FFRE [%] 6.62 4.01 6.77 5.8
FRCC [%] 83.32 2.7 84.06 2.81
PSNR [dB] 35.62 1.49 34.7 2.26

TCP throughput [kbit/s] 612.22 48.45 575.11 45.67

accuracy of using FEC for rate control (FRCC) to be also lower
than in the simulations, and is around 83-84%.

RRTCC calls have a throughput of 392 kbps (σ = 120) and
545 kbps (σ = 130) for 50 ms delay scenario and approximately
10-25 kbps lower for the 100 ms delay scenario. These results are
comparable to the goodput achieved by FBRA. However, the higher
standard deviation in the bandwidth measurement of the RRTCC
calls denotes higher variation during the session and hence, poor
user experience.

Dummynet RTP vs. TCP flows competition scenario: The
RTP flow competes well against short TCP flows achieving an av-
erage goodput of 302 kbps and 280 kbps in the 50ms and 100ms
delay scenario, respectively (see Table 5). The TCP flow achieves
a throughput of around 600 kbps on average, the loss rate is around
4%, which is higher than in the simulation results. This effect
mainly arises from the variations in RTT, which leads to a higher
amount of packet discards at the receiver. Frame recoveries are
also less frequent with FFRE ≈ 6-7%. PSNR results obtained in
both scenarios are very similar (≈ 35dB), the PSNR is lower for
the 100ms delay scenario because the average goodput is also a bit
lower in this case. Similar to the previous scenario, the FEC rate is
about 12-13kbps and the FRCC≈ 83-84%. This is lower than in
the ns-2 simulations, and is again due to the RTT variations, which
are not present in the simulation environment.

RRTCC calls have a throughput of 203 kbps (σ = 26) in the 50
ms delay scenario, with TCP throughput of 761 kbps (σ = 238). In
the 100 ms case, RRTCC obtains 189 kbps (σ = 23), while TCP
reaches 867 kbps (σ = 236).

Higher standard deviation is not the only metric in which FBRA
outperforms RRTCC. While RRTCC flows achieve high through-
put, they also induce higher packet delay. Figure 10 illustrates the

0

200

400

400

200

0

 0 50 100 150 200 250 300 350 400
0

40

40

0
Th

ro
ug

hp
ut

 [k
bp

s]

PS
N

R
 [d

B
]

Time [s]

FBRA Call1 FBRA Call2 PSNR Call1 PSNR Call2

(a) OWD=50ms

0

200

400

400

200

0

 0 50 100 150 200 250 300 350 400
0

40

40

0

Th
ro

ug
hp

ut
 [k

bp
s]

PS
N

R
 [d

B
]

Time [s]

FBRA Call1 FBRA Call2 PSNR Call1 PSNR Call2

(b) OWD=100ms

Figure 9: Shows the goodput of two RTP calls sharing a com-
mon bottleneck. To illustrate amount of empty link capacity
and how two flows push one another, we plot one of them on
the reverse axis. The end-to-end path capacity is 1Mbps in
both delay scenarios and delays are 50ms and 100ms. The plot
also shows the PSNR variation for the two calls (on the minor
Y-axis).

variation in the observed packet delay: 1) when two RRTCC flows
compete with one another, and 2) when an RRTCC flow competes
with a short TCP flow on a bottleneck link. We observe that the
packet delay constantly exceeds the recommended 400ms end-to-
end delay [44] and sometimes spikes to values as high as 3s (see
figure 10b). On the other hand, FBRA always maintains packet
delay below 400ms, and discards all packets that arrive later. As
a result, despite very comparable results in terms of throughput,
FBRA provides better user experience, as the throughput variations
are smoother, and the packet delay variation is lower.

Call over the public Internet: By initiating a video call between
a host on an Amazon EC2 instance and a machine at the university,
we measure the performance of the FBRA in the public Internet.
We observe varying results between each successive run, as the
public Internet has varying amount of cross traffic. The goodput
ranges between 100-700 kbps and the maximum loss rate does not
exceed 1.5%. The PSNR of the calls also varies between 35-40
dB. Despite results diversity, we show that FBRA may work in the
public Internet.

6. SYSTEM CONSIDERATIONS
Congestion control algorithms for multimedia communication

are never used stand-alone, but are built into advanced systems
where tight co-operation between multiple components is required.
In this section, we present the design and implementation of the
Adaptive Multimedia System (AMuSys).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

00:00:00 00:00:30 00:01:00 00:01:30 00:02:00 00:02:30 00:03:00 00:03:30 00:04:00 00:04:30 00:05:00

O
bs

er
ve

d
de

la
y

[s
]

Time [s]

Average delay

(a) Two RTP competition scenario

(b) RTP vs. TCP competition scenario

Figure 10: shows the variation in packet delay for RRTCC con-
gestion control. We observe packet delay much higher than the
100ms link latency. Furthermore, the observed end-to-end de-
lay rarely goes below the recommended 400ms, and sometimes
the delay spikes to 3s, which makes video conversation effec-
tively impossible. This is a representative plot of 10 successive
runs using the Chrome browser on our testbed.

6.1 System Description
AMuSys is made up of 3 sub-systems, namely, the application,

codecs and the networking components. Figure 11 illustrates the
integration of the application, codec, and the network subsystems
in AMuSys. It also implements the control loops (presented in [50])
needed to design advanced congestion control algorithms that take
into consideration the codec constraints along with the network-
related parameters. Application developers, who may not be multi-
media communication experts, may delegate the responsibility for
the whole communication process to AMuSys by just specifying the
desired application preferences. AMuSys defines three main inter-
faces, namely the application interface, the network interface, and
the codec interface. Table 6 summarizes the methods offered by
each interface.

The application interface allows an end-user application to spec-
ify its preferences by calling the setPreferences() method.
The typical preferences are:

(1) codec type,
(2) expected frame rate,
(3) signal source device,
(4) expected display resolution.

These preference may also be a result of capability negotiation dur-
ing session setup between the endpoints

The codec interface allows the AMuSys to modify the codec set-
tings during an ongoing multimedia session. The interface is de-
signed to be flexible and codec independent. Therefore, all codec
parameters are set using the setParam() method, which takes
2 arguments, namely a key-value pair containing the name of the
codec-parameter, and the updated value. Since the method is codec-
independent, it is the responsibility of the systems integrator to use
the correct parameter name and value. Using incorrect arguments
causes a non-fatal error to be reported and the parameter is not mod-
ified. The interface also provides a getParam() method to be
able to fetch the current value of a desired parameter. In addition,

the interface explicitly provides a method to obtain and update the
media encoding rate. The setBitrate() method updates the
encoding rate, while the getBitrate() method can be used to
check if the requested rate has been actually imposed by the en-
coder, or to monitor how quickly the codec is able to converge its
encoding rate to the requested value.

The network interface provides functions to modify the network
parameters of the multimedia session. The features are divided into
two main categories. The first one comprises callback functions
that are invoked in the AMuSys control unit by the network compo-
nent (e.g., RTP library) when a specific event occurs. For instance,
it may process the RTCP RR in the onReceivedRTCPPacket()
callback. The most important callback functions are listed in the ta-
ble 6. The second category consists of basic session settings that
can be updated during runtime. These settings include:

(1) session profile choice (AVP [11] vs. AVPF [13]),
(2) RTCP interval modifications,
(3) RTCP extensions choice (e.g., XR blocks [15],
(4) rapid timestamp synchronization (RFC 6051 [51]).
Since the AMuSys is able to access information from the other

interfaces, it has a better understanding of the current system state,
i.e., the current network, codec and application state, and thus is
able to make better decisions for providing good quality user-experience.

Expecta(ons:	
-‐camera	
-‐codec	
-‐frame	 rate	

Obtain:	
-‐	 recep(on	 stats	
-‐	 received	 content	

-‐	 RTP/RTCP	 communica(on	
-‐	 Capacity	 es(ma(on	

-‐	 set	 parameters	
-‐	 change	 bitrate	

-‐	 get	 parameters	
-‐	 get	 bitrate	 	

Figure 11: shows the design of the Adaptive Multimedia System
(AMuSys). The system provides APIs to communicate between
the application, the network component and the codec.

7. CONCLUSION
In this paper, we show that FEC can be applied not only for error

resilience, but can also be used for congestion control. We present
a new congestion control algorithm (FBRA) that incorporates FEC
packets for probing for available capacity. Performance of FBRA
is compared with two other congestion control algorithms, namely,
RRTCC and C-NADU. Our simulations show that RRTCC and C-
NADU make opposite performance trade-offs (higher capacity in-
stead of lower packet loss rate, and vice-versa). The FBRA algo-
rithm evaluation shows that it can perform at a trade-off point be-
tween the other two algorithm. FBRA on average has better good-
put than C-NADU and better packet loss rate than RRTCC. We also
note that FBRA’s performance drops at high e2e delay (240ms),
because FBRA uses OWD to sense congestion. Also the applica-
bility of FEC for congestion control reduces at high link delays,
which is visible in worsening FRCC metric.

Furthermore, we evaluate the performance of FBRA and RRTCC

in the real-world scenarios. We show that despite obtaining compa-
rable throughput, FBRA provides users with enhanced user expe-
rience, as its packet delay variation and goodput variations are far
lower.

Finally, we measure the performance of FBRA on the public
Internet and show that the algorithm can be successfully applied.
Since using FEC increases error resilience, we are able to increase
the GOP size, which reduces the encoding and decoding complex-
ity without affecting the user-experience.

As our concept is targeted to work on top of a congestion control
unit, we believe that it can be applied not only to the FBRA algo-
rithm, but also to any other rate control algorithm. This idea can
be realized by adding an extra FEC subsystem to the congestion
controller. For instance in RRTCC, when it receives a TMMBR
message for increasing the rate, it can allocate the difference in the
current rate and the new rate to FEC.

Recently, Google announced Quick UDP Internet Connections
(QUIC) [52] to replace TLS and TCP from HTTP/2.0, it provides
multiplexed in-order reliable stream transport over UDP. Similar to
FBRA, it trades bandwidth for decrease in latency. QUIC too keeps
a running-XOR of some packets and sends at least 1 FEC packet for
every 20 packets. Their initial experiments show that retransmis-
sions are reduced from 18% to 10% and the FEC produced at most
5% overhead [53].

In the future work, we envision exploring incorporation of more
complex FEC schemes. As the FEC frame recovery metric still
shows room for improvement, we believe that application of differ-
ent FEC scheme can provide useful gain to the overall performance.
Furthermore, we are also interested in applying our concept in chal-
lenging heterogeneous environments where FEC features can prove
to be particularly useful.

Acknowledgement
Varun Singh is partially supported by Future Internet Graduate School
and the EIT ICT Labs activity RCLD 11882.

8. REFERENCES
[1] J. Gettys and K. Nichols, “Bufferbloat: dark buffers in the Internet,” in Proc. of

Communications of the ACM, vol. 55, pp. 57–65, Jan 2012.
[2] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz, “Subjective Impression of

Variations in Layer Encoded Videos,” in Proc. of IWQoS, 2003.
[3] C. Jennings, T. Hardie, and M. Westerlund, “Real-time communications for the

web,” IEEE Communications Magazine, vol. 51, no. 4, pp. 20–26, April 2013.
[4] C. Perkins and V. Singh, “Multimedia Congestion Control: Circuit Breakers for

Unicast RTP Sessions,” 2013, IETF Internet Draft.
[5] V. Singh, S. McQuistin, M. Ellis, and C. Perkins, “Circuit Breakers for

Multimedia Congestion Control,” in Proc. of IEEE Packet Video, 2013.
[6] J. Devadoss, V. Singh, J. Ott, C. Liu, Y.-K. Wang, and I. Curcio, “Evaluation of

Error Resilience Mechanisms for 3G Conversational Video,” in Proc. of IEEE
ISM, 2008, pp. 378–383.

[7] Y. Wang and Q.-F. Zhu, “Error control and concealment for video
communication: a review,” in Proc. of the IEEE, vol. 86, no. 5, pp. 974 –997,
may 1998.

[8] Y. Wang, S. Wenger, J. Wen, and A. Katsaggelos, “Error resilient video coding
techniques,” in Proc. of IEEE Signal Processing Magazine, vol. 17, no. 4, pp.
61 –82, jul 2000.

[9] J. Evans, A. Begen, J. Greengrass, and C. Filsfils, “Toward lossless video
transport,” in Proc. of IEEE Internet Computing, vol. 15, no. 6, 2011.

[10] “The Network Simulator NS-2,” http://www.isi.edu/nsnam/ns/.
[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport

Protocol for Real-Time Applications,” RFC 3550 (INTERNET STANDARD),
Internet Engineering Task Force, Jul. 2003, updated by RFCs 5506, 5761, 6051,
6222, 7022. [Online]. Available: http://www.ietf.org/rfc/rfc3550.txt

[12] E. Brosh, S. A. Baset, D. Rubenstein, and H. Schulzrinne, “The
Delay-Friendliness of TCP,” in Proc. of ACM SIGMETRICS, 2008.

[13] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey, “Extended RTP Profile for
Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF),”
RFC 4585 (Proposed Standard), Internet Engineering Task Force, Jul. 2006,
updated by RFC 5506. [Online]. Available: http://www.ietf.org/rfc/rfc4585.txt

Name Input Output Description
Application interface

setPreferences() dictionary - Specifies end-user application requirements
Codec interface

getParam() name value Gets value of parameter name
setParam() name, value true/false Sets parameter name to value
getBitrate() - value Gets current bitrate
setBitrate() value - Sets bitrate to value

Network interface
onReceivedRTPPacket() payload, source address, timestamp - Invoked on RTP packet reception
onReceivedRTCPPacket() payload, source address, timestamp - Invoked on RTCP packet reception
onSendRTPPacket() payload, timestamp - Invoked after RTP packet sending
onSendFECPacket() payload, timestamp - Invoked after FEC packet sending
onReceivedFECPacket() payload, source address, timestamp - Invoked on FEC packet reception
enableFEC() true/false - Switches on/off FEC
setFECScheme() Scheme specific input - Updates used FEC scheme
setSessionParams() dictionary - Specifies session parameters
sendEarlyRTCPReport() - - Sends early RTCP packet

Table 6: Methods exposed by the application, codec and network subsystems of AMuSys.

[14] C. Perkins, “On the Use of RTP Control Protocol (RTCP) Feedback for Unicast
Multimedia Congestion Control,” 2013, IETF Internet Draft.

[15] T. Friedman, R. Caceres, and A. Clark, “RTP Control Protocol Extended
Reports (RTCP XR),” RFC 3611 (Proposed Standard), Internet Engineering
Task Force, Nov. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3611.txt

[16] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion
control for unicast applications,” in Proc. SIGCOMM CCR, vol. 30, pp. 43–56,
2000.

[17] L. Gharai and C. Perkins, “RTP with TCP Friendly Rate Control,” March 2011,
(Work in progress).

[18] A. Saurin, “Congestion Control for Video-conferencing Applications,” Master’s
Thesis, University of Glasgow, December 2006.

[19] V. Singh, J. Ott, and I. Curcio, “Rate adaptation for conversational 3G video,” in
Proc. of INFOCOM Workshop, Rio de Janeiro, BR, 2009.

[20] R. Rejaie, M. Handley, and D. Estrin, “Rap: an End-To-End Rate-Based
Congestion Control Mechanism for Realtime Streams in the Internet,” in Proc.
of INFOCOM, Mar 1999.

[21] L. Gharai and C. Perkins, “Implementing Congestion Control in the Real
World,” in Proc. of ICME ’02, vol. 1, 2002, pp. 397 – 400 vol.1.

[22] H. Vlad Balan, L. Eggert, S. Niccolini, and M. Brunner, “An Experimental
Evaluation of Voice Quality Over the Datagram Congestion Control Protocol,”
in Proc. of IEEE INFOCOM, 2007.

[23] H. Garudadri, H. Chung, N. Srinivasamurthy, and P. Sagetong, “Rate
Adaptation for Video Telephony in 3G Networks,” in Proc. of PV, 2007.

[24] V. Singh, J. Ott, and I. Curcio, “Rate-control for Conversational Video
Communication in Heterogeneous Networks,” in in Proc. of IEEE WoWMoM
Workshop, SFO, CA, USA, 2012.

[25] X. Zhu and R. Pan, “NADA: A Unified Congestion Control Scheme for
Real-Time Media,” 2013, IETF Internet Draft.

[26] ——, “NADA: A Unified Congestion Control Scheme for Low-Latency
Interactive Video,” in Proc. of IEEE Packet Video 2013, 2013.

[27] P. O’Hanlon and K. Carlberg, “Congestion control algorithm for lower latency
and lower loss media transport,” 2013, IETF Internet Draft.

[28] ——, “Dflow: Low delay congestion control,” in IEEE Capacity Sharing
Workshop, 2013.

[29] Ł. Budzisz, R. Stanojević, A. Schlote, F. Baker, and R. Shorten, “On the fair
coexistence of loss-and delay-based tcp,” IEEE/ACM Transactions on
Networking (TON), vol. 19, no. 6, pp. 1811–1824, 2011.

[30] H. Alvestrand, S. Holmer, and H. Lundin, “A Google Congestion Control
Algorithm for Real-Time Communication on the World Wide Web,” 2012,
IETF Internet Draft.

[31] S. Wenger, U. Chandra, M. Westerlund, and B. Burman, “Codec Control
Messages in the RTP Audio-Visual Profile with Feedback (AVPF),” RFC 5104
(Proposed Standard), Internet Engineering Task Force, Feb. 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5104.txt

[32] L. D. Cicco, G. Carlucci, and S. Mascolo, “Experimental Investigation of the
Google Congestion Control for Real-Time Flows,” in Proc. of ACM SIGCOMM
Workshop on Future Human-Centric Multimedia Networking, 2013.

[33] V. Singh, A. A. Lozano, and J. Ott, “Performance Analysis of Receive-Side
Real-Time Congestion Control for WebRTC,” in Proc. of IEEE Packet Video
2013, Santa Clara, CA, USA, Dec 2013.

[34] L. D. Cicco, G. Carlucci, and S. Mascolo, “Understanding the Dynamic
Behaviour of the Google Congestion Control,” in Proc. of IEEE PV2013.

[35] W. Zhu and Q. Zhang, “Network-Adaptive Rate Control With Unequal Loss
Protection For Scalable Video Over Internet,” in Proc. of Circuits and Systems,
2001.

[36] Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Network-adaptive rate control and
unequal loss protection with tcp-friendly protocol for scalable video over
internet,” in Proc. of The Journal of VLSI Signal Processing, vol. 34, 2003.

[37] ——, “Network-adaptive rate control with tcp-friendly protocol for multiple
video objects,” in Proc. of ICME, 2000.

[38] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding
extension of the h. 264/avc standard,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 17, no. 9, pp. 1103–1120, 2007.

[39] M. Wien, H. Schwarz, and T. Oelbaum, “Performance analysis of svc,” in Proc.
of IEEE Transactions on Circuits and Systems for Video Technology, vol. 17,
no. 9, 9 2007.

[40] M. Westerlund and S. Wenger, “Rtp topologies,” April 2013, IETF Internet
Draft.

[41] J. Ott, V. Singh, and I. Curcio, “RTP Control Protocol (RTCP) Extended Report
(XR) for RLE of Discarded Packets,” RFC 7097 (Proposed Standard), Internet
Engineering Task Force, Jan. 2014. [Online]. Available:
http://www.ietf.org/rfc/rfc7097.txt

[42] B. Ngamwongwattana and R. Thompson, “Sync & Sense: VoIP Measurement
Methodology for Assessing One-Way Delay Without Clock Synchronization,”
in Proc. of IEEE Transactions of Instrumentation and Measurement, vol. 59,
no. 5, pp. 1318–1326, 2010.

[43] R. Brandenburg, K. Gross, Q. Wu, F. Boronat, and M. Montagud, “RTCP XR
Report Block for One Way Delay metric Reporting,” 2012, IETF Internet Draft.

[44] 3GPP S4-080771, “MTSI Video Dynamic Rate Adaptation: Evaluation
Framework,” Oct. 2008.

[45] R. Jesup, “Congestion control requirements for rmcat,” 2013, IETF Internet
Draft.

[46] V. Singh and J. Ott, “Evaluating Congestion Control for Interactive Real-time
Media,” 2013, IETF Internet Draft. [Online]. Available:
http://tools.ietf.org/html/draft-singh-rmcat-cc-eval

[47] A. Li, “RTP Payload Format for Generic Forward Error Correction,” RFC 5109
(Proposed Standard), Internet Engineering Task Force, Dec. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc5109.txt

[48] I. Curcio and D. Leon, “Application rate adaptation for mobile streaming,”
Proc. of IEEE WOWMOM, 2005.

[49] M. Carbone and L. Rizzo, “Dummynet revisited,” in Proc. of ACM SIGCOMM
CCR, Jan 2010.

[50] V. Singh, J. Ott, and C. Perkins, “Congestion Control for Interactive Media:
Control Loops & APIs,” in IAB/IRTF Workshop on Congestion Control for
Interactive Real-Time Communication, July 2012. [Online]. Available:
http://csperkins.org/publications/2012/07/iab-cc-workshop.pdf

[51] C. Perkins and T. Schierl, “Rapid Synchronisation of RTP Flows,” RFC 6051
(Proposed Standard), Internet Engineering Task Force, Nov. 2010. [Online].
Available: http://www.ietf.org/rfc/rfc6051.txt

[52] J. Roskind, “Multiplexed Stream Transport over UDP,” December 2013.
[53] ——, “Quick UDP Internet Connections (QUIC),” November 2013.

