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Multicast network model

• Setup:
– Unique service center offers a variety of channels

– Each channel i ∈ I is delivered by a multicast connection with
dynamic membership

– Each multicast connection uses the same multicast tree
⇒ fixed routing of these multicast connections

– Symmetric connections belong to the same class k ∈ K
– Service center located at the root node of the multicast tree

– Users u ∈ U located at the leaf nodes of the multicast tree
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Multicast connections with dynamic membership

• U = new user of channel ‘red’
• A = connection point for user U
• SC = (unique) service centre
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Link states

• Consider first a network with infinite link capacities
• Let

• Detailed link state (for any link j ∈ J)

• Classwise link state (for any link j ∈ J)

• Link state (for any link j ∈ J)
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Stationary state probabilities in a network
with infinite link capacities

• Assume that the probabilities of the detailed leaf link states
(which depend on the user population model adopted) are
known, and denote them by

– where y ∈ {0,1} I

• Due to infinite link capacities and independent behaviour of the
user populations, it follows that the probabilities of the detailed
network states are also known:

– where x = (yu; u ∈ U) ∈ {0,1} U×I =: Ω
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Stationary state probabilities in a network
with finite link capacities

• If the Truncation Principle applies (which depends on the user
population model adopted), then

– where x = (yu; u ∈ U) ∈ and
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Blocking probability

• Bt
ui = time blocking for user population u and connection i

= stationary probability of such network states in which
a new request originating from user population u to join
connection i would be rejected due to lack of link capacity

• How to calculate Bt
ui?
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Calculation of blocking probabilities (1)

• 1st possibility: closed form expression

– where

• Problem : computationally extremely complex
– exponential growth both in U and I
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Calculation of blocking probabilities (2)

• 2nd possibility: recursive algorithm exact

– where probabilities Qj
ui(y) and Qj (y) can be calculated recursively

(from the common link J back to leaf links u)

• Problem : computationally complex
– linear growth in U but (still) exponential growth in I
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Calculation of blocking probabilities (3)

• 3rd possibility: new recursive algorithm combi

– where probabilities Qj
ui(n) and Qj (n) can be calculated recursively

(from the common link J back to leaf links u)

• Remark : computationally reasonable if …
… only few connection classes
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Basic results (1)

• Connections symmetric among a class ⇒
– Whenever there are n connections (belonging to class k ∈ K)

active on any leaf link u ∈ U, each possible index combination
{ i1,…,in} (where i1,…,in ∈ Ik) is equally probable

• This and the independence of the user populations ⇒
– Whenever there are n connections (belonging to class k ∈ K)

active on any link j ∈ J, each possible index combination
{ i1,…,in} (where i1,…,in ∈ Ik) is equally probable
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Basic results (2)

• If link j has two downstream neighbouring links (s,t), then

• Assume (here only) that all connections belong to the same
class and that Ns = l ≥ m = Nt. Then
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Algorithm (1)

• Define (for all j ∈ J):

• Then time blocking probability for pair (u,i) is
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Algorithm (2)

• Recursion 1 to calculate Qj (n):

– where πj(n) = P{ Nj = n} depend on the chosen user population
model

• Truncation operator 1:
– Let f be any real-valued function defined on S
– Then define
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Algorithm (3)

• Definition of operator ⊗:
– Let f and g be any real-valued function defined on S. Then define

• where
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t• Key result:
– If link j has two downstream neighbouring links (s,t), then

– In other words,

– Proved by a “sampling without replacement” argument!
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Algorithm (5)

• Recursion 2 to calculate QJ
ui(n) :

– where πu
(i)(n) = P{ Nu

(i) = n} depend on the chosen user
population model

• Truncation operator 2:
– Let f be any real-valued defined on {0,1,…,I}
– Then define
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Algorithm (6)

• Definition of operator ⋅ :

– Let f and g be any real-valued function defined on S. Then define

• where

( )

)]()()1)[((

),|(

),|(][

)(
1

0
)(

0 111
)(

1

)(

)(

)(

)(

1
1

1
111

ikI

m

I

m

n
l

n
lnm KKK

i
K

n
l

n
lnm

i

ggf

mlns

mlnsgf

ik

ik

ik

ik

K
K

K
KKK

emml

n

++−×

=⋅

+
= −=

= −=

∑ ∑

∑ ∑ �























−
−







−+
=

},min{

},max{

},max{},max{

)(
)(

)(

),|(

ml

I

mln

mlI
nml

ml

i
k i

k

i
k

mlns

18



19

Algorithm (7)

• Key result:
– If link j has two downstream neighbouring links (s,t), and

link s belongs to the interesting route, i.e. s = Du(j), then

– In other words,

– Proved by a “sampling without replacement” argument!
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THE END


