
1pract2.ppt TKK/VTT meeting, 15.8.2000

Combinatorial Algorithm for
Calculating Blocking Probabilities

in Multicast Networks
with Multiple Connection Classes

Samuli Aalto, Jouni Karvo & Jorma Virtamo

Laboratory of Telecommunications Technology
Helsinki University of Technology

samuli.aalto@hut.fi

2

Multicast network model

• Setup:
– Unique service center offers a variety of channels

– Each channel i ∈ I is delivered by a multicast connection with
dynamic membership

– Each multicast connection uses the same multicast tree
⇒ fixed routing of these multicast connections

– Symmetric connections belong to the same class k ∈ K
– Service center located at the root node of the multicast tree

– Users u ∈ U located at the leaf nodes of the multicast tree

3

Multicast connections with dynamic membership

• U = new user of channel ‘red’
• A = connection point for user U
• SC = (unique) service centre

U

A

SC

4

Link states

• Consider first a network with infinite link capacities
• Let

• Detailed link state (for any link j ∈ J)

• Classwise link state (for any link j ∈ J)

• Link state (for any link j ∈ J)

I
jij SIiY }1,0{:);(=∈∈=Y

}linkonactiveconnection{1 jiYji =

},,1,0{},,1,0{:);(1 K
Ii

jij IISKkY
k

��� ××=∈∈= ∑
∈

N

},,1,0{ IYN
Ii

jij �∈= ∑
∈

4

5

Stationary state probabilities in a network
with infinite link capacities

• Assume that the probabilities of the detailed leaf link states
(which depend on the user population model adopted) are
known, and denote them by

– where y ∈ {0,1} I

• Due to infinite link capacities and independent behaviour of the
user populations, it follows that the probabilities of the detailed
network states are also known:

– where x = (yu; u ∈ U) ∈ {0,1} U×I =: Ω

}{:)(yYy == uu Pπ

∏∏
∈∈

=====
Uu

uu
Uu

uuPP)(}{}{:)(yyYxXx ππ

6

Stationary state probabilities in a network
with finite link capacities

• If the Truncation Principle applies (which depends on the user
population model adopted), then

– where x = (yu; u ∈ U) ∈ and

∑
Ω∈

=
~

)(
)(

)(~

x
x

x
x

π
ππ

Ω~

statesnetworkallowedofset~ =Ω

7

Blocking probability

• Bt
ui = time blocking for user population u and connection i

= stationary probability of such network states in which
a new request originating from user population u to join
connection i would be rejected due to lack of link capacity

• How to calculate Bt
ui?

8

Calculation of blocking probabilities (1)

• 1st possibility: closed form expression

– where

• Problem : computationally extremely complex
– exponential growth both in U and I

∑

∑
∑

Ω∈

Ω∈

Ω∈
−=−=

~

~

~)(

)(

1)(~1:

x

x

x x

x

x
π

π
π ui

ui

t
uiB

statesnetworkallowedofset~
)(forstatesnetworkgnonblockinofset~

=Ω

=Ω u,iui

9

Calculation of blocking probabilities (2)

• 2nd possibility: recursive algorithm exact

– where probabilities Qj
ui(y) and Qj (y) can be calculated recursively

(from the common link J back to leaf links u)

• Problem : computationally complex
– linear growth in U but (still) exponential growth in I

∑

∑

∈

∈−=

S
J

S

ui
J

t
ui Q

Q

B

y

y

y

y

)(

)(

1

10

Calculation of blocking probabilities (3)

• 3rd possibility: new recursive algorithm combi

– where probabilities Qj
ui(n) and Qj (n) can be calculated recursively

(from the common link J back to leaf links u)

• Remark : computationally reasonable if …
… only few connection classes

∑

∑

∈

∈−=

S
J

S

ui
J

t
ui Q

Q

B

n

n
n

n

)(

)(

1

11

Basic results (1)

• Connections symmetric among a class ⇒
– Whenever there are n connections (belonging to class k ∈ K)

active on any leaf link u ∈ U, each possible index combination
{ i1,…,in} (where i1,…,in ∈ Ik) is equally probable

• This and the independence of the user populations ⇒
– Whenever there are n connections (belonging to class k ∈ K)

active on any link j ∈ J, each possible index combination
{ i1,…,in} (where i1,…,in ∈ Ik) is equally probable

12

Basic results (2)

• If link j has two downstream neighbouring links (s,t), then

• Assume (here only) that all connections belong to the same
class and that Ns = l ≥ m = Nt. Then

j
s

t

},min{},max{ INNNNN tsjts +≤≤















−
−








−−====

m

I
ln

lI

lnm

l

tsj mNlNnNP
)(

},|{

n = 4
l = 3

m = 2

13

Algorithm (1)

• Define (for all j ∈ J):

• Then time blocking probability for pair (u,i) is

}\',

;',1;{)(

}',;{)(

''

'
)(
'

)(

''

ujjj

ujj
i
j

i
j

ui
j

jjjjj

RMjCN

RMjCNPQ

MjCNPQ

∈∀≤

∩∈∀−≤==

∈∀≤==

nNn

nNn

∑

∑
−=−=

∈

∈
Ω∈

Ω∈

Sn
J

Sn

ui
J

ui
Q

Q

P

Pt
uiB

)(

)(

}~{

}~{
11

n

n

X
X

14

Algorithm (2)

• Recursion 1 to calculate Qj (n):

– where πj(n) = P{ Nj = n} depend on the chosen user population
model

• Truncation operator 1:
– Let f be any real-valued function defined on S
– Then define

()






∉
∈

= ⊗
∈

UjQT

UjT
Q j

Nj
j

jj

j

j

),]([

),]([

'
'

n

n
n

π

() }{1)(][1 jKj CnnffT ≤++⋅= �nn

15

Algorithm (3)

• Definition of operator ⊗:
– Let f and g be any real-valued function defined on S. Then define

• where

()

)()(

),|(

),|(][

0

0 1111
1

1
1

111

ml

n

gf

mlns

mlnsgf

K
K

K
KKK

n
l

n
lnm KKKK

n
l

n
lnm

×

=⊗

∑ ∑

∑ ∑

= −=

= −= �















−
−








−+=

},min{

},max{

},max{},max{

),|(

ml

I
mln

mlI

nml

ml

k
k

k

mlns

16

}{}{

),|(

),|(}{

0

0 1111
1

1
1

111

mNlN

nN

==×

==

∑ ∑

∑ ∑

= −=

= −=

ts

n
l

n
lnm KKKK

n
l

n
lnmj

PP

mlns

mlnsP

K
K

K
KKK

�

Algorithm (4)

)]([)(nn tsj πππ ⊗=

j
s

t• Key result:
– If link j has two downstream neighbouring links (s,t), then

– In other words,

– Proved by a “sampling without replacement” argument!

17

Algorithm (5)

• Recursion 2 to calculate QJ
ui(n) :

– where πu
(i)(n) = P{ Nu

(i) = n} depend on the chosen user
population model

• Truncation operator 2:
– Let f be any real-valued defined on {0,1,…,I}
– Then define

()






∈⋅
=

= ⊗
∈

}{\),]([

),]([

'
\'

)(

)(

uRjQQT

ujT
Q

uj
RNj

ui
jDj

i
uu

ui
j

uj
u

n

n
n �

� π

() }1{1)(][1 −≤++⋅= jKj CnnffT �

� nn

18

Algorithm (6)

• Definition of operator ⋅ :

– Let f and g be any real-valued function defined on S. Then define

• where

()

)]()()1)[((

),|(

),|(][

)(
1

0
)(

0 111
)(

1

)(

)(

)(

)(

1
1

1
111

ikI

m

I

m

n
l

n
lnm KKK

i
K

n
l

n
lnm

i

ggf

mlns

mlnsgf

ik

ik

ik

ik

K
K

K
KKK

emml

n

++−×

=⋅

+
= −=

= −=

∑ ∑

∑ ∑ �























−
−







−+
=

},min{

},max{

},max{},max{

)(
)(

)(

),|(

ml

I

mln

mlI
nml

ml

i
k i

k

i
k

mlns

18

19

Algorithm (7)

• Key result:
– If link j has two downstream neighbouring links (s,t), and

link s belongs to the interesting route, i.e. s = Du(j), then

– In other words,

– Proved by a “sampling without replacement” argument!

)]([)()()(nn t
i

s
i
j πππ ⋅=

j
s

t

}]{}{)1}[({

),|(

),|(}{

)(
1

0
)(

0 111
)(

1

)(

)(

)(

)(

1
1

1
111

iktI

m
tI

m
s

n
l

n
lnm KKK

i
K

n
l

n
lnm

i
j

PPP

mlns

mlnsP

ik

ik

ik

ik

K
K

K
KKK

emNmNlN

nN

+=+=−=×

==

+
= −=

= −=

∑ ∑

∑ ∑ �

20

THE END

