Size-aware MDP approach to dispatching problems

Esa Hyytiä & Samuli Aalto
Aalto University, Finland

XXVI EURO-INFORMS
1–4 July 2013
Rome, Italy
Part I
Dispatching
Dispatching problem

- Dispatching = Task assignment = Routing
 - random customer arrivals with random service requirements
 - dispatching decision made upon the arrival
 - no jockeying among the queues allowed
 - minimize e.g. the mean delay (i.e. latency, sojourn time)
 - ICT applications: web server farms, supercomputer grids, etc.
Static dispatching policies

- **RND = Bernoulli splitting**
 - choose the queue randomly (according to the given distribution)
 - no state or size information needed

- **SITA = Size Interval Task Assignment**
 - choose the queue with similar customers (according to the given service time thresholds)
 - based on the service time of the arriving customer, no state information needed
 - SITA-E uses thresholds that balance the load in each server
 - Harchol-Balter et al. (1999), Feng et al. (2005)
Dynamic dispatching policies

• JSQ = Join the Shortest Queue
 – choose the queue with the smallest number of customers
 – state information needed
 – Haight (1958), Winston (1977)

• LWL = Least Work Left
 – choose the queue with the smallest workload
 – more detailed state information needed
 – Harchol-Balter et al. (1999)
Scheduling policies

- **Scheduling policy = service policy = queueing discipline**
 - applied in each queue separately

- **FCFS = First Come First Served**
 - serve the customer who arrived first ("ordinary queue")
 - vulnerable to very long service times
 - e.g. supercomputing settings with non-preemptible jobs

- **PS = Processor Sharing**
 - serve customers parallelly with equal shares ("fair queue")
 - insensitive to the service time distribution
 - e.g. web server farms with time-sharing servers

- **SRPT = Shortest Remaining Processing Time**
 - serve the customer who has the shortest remaining service time
 - minimizes the queue length at any time in each sample path
Optimality results

- **JSQ** optimal for any arrival process, homogeneous servers, and exponential (or IFR) service times
- **LWL** optimal for Poisson arrivals, homogeneous FCFS [PS] servers, and deterministic service times (= JSQ!)
 - Hyytiä et al. (2011a)
- **SITA** optimal for Poisson arrivals and homogeneous FCFS servers
 - Feng et al. (2005)
- **RND** optimal for Poisson arrivals and homogeneous PS servers
 - Altman et al. (2011)
References until now

- Haight (1958)
 Two Queues in Parallel, *Biometrika*
- Winston (1977)
 Optimality of the shortest line discipline, *JAP*
- Weber (1978)
 On the optimal assignment of customers to parallel servers, *JAP*
- Ephremides, Varaiya & Walrand (1980)
 A simple dynamic routing problem, *IEEE TAC*
- Harchol-Balter, Crovella & Murta (1999)
 On choosing a task assignment policy for a distributed server system, *JPDC*
- Feng, Misra & Rubenstein (2005)
 Optimal state-free, size-aware dispatching for heterogeneous M/G/-type systems, *PEVA*
- Altman, Ayesta & Prabhu (2011)
 Load balancing in processor sharing systems, *TS*
Part II
MDP approach
MDP approach

• Assume Poisson arrivals
• Any static policy (RND, SITA) results in parallel M/G/1 queues – due to the splitting property of the Poisson process
• Fix the static policy and determine the relative values for all these parallel M/G/1 queues starting in any initial state
• Evaluate the decision to dispatch an arriving customer to a queue in a given state by utilizing these relative values
• Dispatch an arriving customer to the queue that minimizes the mean additional costs
• As the result, you get a better dynamic policy
• This is called First Policy Iteration (FPI) in the MDP theory
Value function

- Fix the policy and cost structure
- Assume a stable system
- \(Z(t) \) = state of the system at time \(t \)
- \(C(t) \) = cost rate at time \(t \)
- \(V(t) \) = cumulative cost at time \(t \)

\[
V(t) = \int_{0}^{t} C(u) \, du
\]
Value function

• **Definition:** For a fixed policy resulting in a stable system, the value function v_z gives the expected difference in the infinite horizon cumulative costs between
 – the system initially in state z, and
 – the system initially in equilibrium,

\[
v_z = \lim_{t \to \infty} E[V(t) - rt \mid Z(0) = z]
\]

• Here r = average cost rate (in the long run)
Relative value

- **Definition:** For a fixed policy resulting in a stable system, the relative value $v_z - v_0$ gives the expected difference in the infinite horizon cumulative costs between
 - the system initially in state z, and
 - the system initially in state 0,

\[
v_z - v_0 = \lim_{t \to \infty} (E[V(t) \mid Z(0) = z] - E[V(t) \mid Z(0) = 0])
\]
Part III

Size-awareness
M/G/1 queue

- Poisson arrivals with rate λ
- General IID service times with mean $E[S] = 1/\nu$
- Single server with load $\rho = \lambda E[S]$
Size-aware M/G/1-FCFS queue

- Poisson arrivals with rate λ
- General IID service times with mean $E[S] = 1/\nu$
- Single server with load $\rho = \lambda E[S]$
- FCFS scheduling discipline
- State description:

$$z = (\Delta_1, \ldots, \Delta_n)$$

- Δ_i = (remaining) service time of customer i
- n = customer in service (i.e., the ”oldest” one)
Size-aware value function for M/G/1-FCFS

• When the objective is to minimize the mean delay, the cost rate $C(t)$ equals the queue length $N(t)$ so that

$$v_z = \lim_{t \to \infty} \int_0^t (E[N(u) \mid Z(0) = z] - E[N]) du$$

• Here by the Pollaczek-Khintchin formula,

$$E[N] = \lambda \left(E[S] + \frac{\lambda E[S^2]}{2(1-\rho)} \right)$$
Size-aware value function for M/G/1-FCFS

• Example: Initial state $z = (1, 3)$
 - customer in service with remaining service time 3
 - one waiting customer with service time 1
Size-aware relative value for M/G/1-FCFS

• Proposition [Hyytiä et al. (2012a)]:

\[v_z - v_0 = \sum_{i=1}^{n} i \Delta_i + \frac{\lambda u_z^2}{2(1-\rho)} \]

– where

\[z = (\Delta_1, \ldots, \Delta_n), \quad u_z = \sum_{i=1}^{n} \Delta_i, \quad \rho = \lambda E[S] < 1 \]

– \(u_z \) = initial workload

• Note: Relative value insensitive to service time distribution
Size-aware MDP approach

• **Example:** Dispatching problem with
 – Poisson arrivals (M),
 – general service times (G) and
 – homogeneous FCFS servers

• Mean additional cost to dispatch the arriving customer with service time Δ to queue k:

\[
v_{z_k} \oplus \Delta - v_{z_k} = u_{z_k} + \Delta + \frac{\lambda_k \Delta (2u_{z_k} + \Delta)}{2(1 - \rho_k)}
\]

• Optimal RND policy dispatches with equal probabilities. Thus, $\lambda_k \equiv \lambda$, $\rho_k \equiv \rho$, and FPI-RND = LWL
Numerical results (Exp service times)

Two identical FCFS servers

\(X \sim \text{Exp}(1) \)
Numerical results (Pareto service times)

- Two identical FCFS servers
- $X \sim \text{Pareto}(1)$
Size-aware M/D/1-PS queue

- Poisson arrivals with rate λ
- Deterministic service times s
- Single server with load $\rho = \lambda s$
- PS scheduling discipline
- State description:

$$ z = (\Delta_1, \ldots, \Delta_n) $$

- Δ_i = (remaining) service time of customer i
- n = next leaving customer (i.e., the ”oldest” one)
Size-aware relative value for M/D/1-PS

- Proposition [Hyytiä et al. (2011a)]:

\[v_z - v_0 = \sum_{i=1}^{n} (2i - 1) \Delta_i + \frac{\lambda u_z^2}{1 - \rho} \]

- where

\[z = (\Delta_1, \ldots, \Delta_n), \quad u_z = \sum_{i=1}^{n} \Delta_i, \quad \rho = \lambda s < 1 \]

- \(u_z \) = initial workload

- Note: \([v_z - v_0]_{PS} = 2 \cdot [v_z - v_0]_{FCFS} - u_z\)
Size-aware MDP approach

- **Example:** Dispatching problem with
 - Poisson arrivals (M),
 - deterministic service times (D) and
 - homogeneous PS servers

- Mean additional cost to dispatch the arriving customer with service time Δ to queue k:

\[
v_{z_k} + \Delta - v_{z_k} = \frac{2u_{z_k} + \Delta}{1 - \rho_k}
\]

- Optimal RND policy dispatches with equal probabilities. Thus, $\rho_k \equiv \rho$ and FPI-RND = LWL = OPT!
Generalizations

- Hyytiä et al. (2012a): Size-aware relative values for
 - M/G/1-FCFS, M/G/1-LCFS, M/G/1-SRPT, M/G/1-SPT
- Hyytiä et al. (2011a): Size-aware relative values for
 - M/D/1-PS
- Hyytiä et al. (2011b): Size-aware relative values for
 - M/M/1-PS
- Penttinen et al. (2011): Size and energy-aware relative values for
 - M/G/1-FCFS, M/G/1-LCFS
- Hyytiä et al. (2012b): Size-aware relative values for
 - M/G/1-SPTP (when minimizing the mean slowdown)
- Hyytiä et al. (2012c): Size-aware relative values for
 - M/G/1-FCFS, M/G/1-LCFS with general holding costs
- Hyytiä & Aalto (2013): Size-aware relative values for
 - M^X/G/1-FCFS with batch arrivals
Own references

- Hyytiä, Penttinen & Aalto (2012a)
 Size- and state-aware dispatching problem with queue-specific job sizes, *EJOR*
- Hyytiä, Penttinen, Aalto & Virtamo (2011a)
 Dispatching problem with fixed size jobs and processor sharing discipline, in *ITC*
- Hyytiä, Virtamo, Aalto & Penttinen (2011b)
 M/M/1-PS queue and size-aware task assignment, *PEVA*
- Penttinen, Hyytiä & S. Aalto (2011c)
 Energy-aware dispatching in parallel queues with on-off energy consumption, in *IEEE IPCCC*
- Hyytiä, Aalto & Penttinen (2012b)
 Minimizing slowdown in heterogeneous size-aware dispatching systems, in *ACM SIGMETRICS/PERFORMANCE*
- Hyytiä, Aalto, Penttinen & Virtamo (2012c)
 On the value function of the M/G/1 FCFS and LCFS queues, *JAP*
- Hyytiä & Aalto (2013)
 To split or not to split: Selecting the right server with batch arrivals, *ORL*
The End