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ABSTRACT
Abstract movement models, such as Random Waypoint, do
not capture reliably the properties of movement in the real
life scenarios. We present and analyse a movement model for
delay-tolerant network simulations that is able to produce
inter-contact time and contact time distributions that follow
closely the ones found in the traces from the real-world mea-
surement experiments. We validate the movement model
using the ONE simulator.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and
forward networks

General Terms
Design, Experimentation, Measurement, Verification

Keywords
Movement Model, Simulation, DTN, Delay-Tolerant Net-
working, Mobility Models, Routing

1. INTRODUCTION
Movement of the network nodes is essential for the per-

formance of delay-tolerant networks (DTN). A movement
model that captures the behaviour of the nodes in the real
usage scenarios is thus needed for a reliable assessment of a
new protocol.

There are two types of movement models that have been
proposed for these analyses — generic high level models that
aim to produce movement accurate enough with statisti-
cal measures, and models that describe incidental scenarios,
hoping for a more accurate depiction of single devices.

While efficient to use in simulations, the high level mod-
els, such as Random Waypoint (RWP) [9], often imply that
the scenarios for which the protocols are simulated have
huge numbers of nodes, so that the relevant protocol fea-
tures are given statistically realistic distributions of events.
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For scenarios with few nodes, the differences between differ-
ent usage scenarios become more significant. Thus, move-
ment models that depict more precisely some specific types
of movement are needed.

We present a new movement model to be used in DTN
simulations, called Working Day Movement Model. The
model presents the everyday life of average people that go to
work in the morning, spend their day at work, and commute
back to their homes at evenings. The model intuitively de-
picts the movement pattern of people, but we also verify the
model by simulating it and compare the statistical features
of the model to real-world traces.

This paper is organised as follows. Section 2 reviews re-
lated work on mobility models based upon which our model
is presented in Section 3. The simulation tool we use for
evaluation in introduced in Section 4. Section 5 shows the
evaluation results, and finally, Section 6 concludes the paper.

2. RELATED WORK
Mobility models have been under active research recently,

see [2]. Inter-contact times and contact durations are typi-
cal metrics for characterising mobility in sparsely populated
DTNs. An inter-contact time, or sometimes referred to as
an inter-meeting time, is the time interval between contacts
for a node pair. It is defined as the time interval a node pair
is not in contact with each other. The contact time or con-
tact duration is the time a contact between two mobile nodes
lasts. Inter-contact times correspond to how often nodes will
have an opportunity to send packets to each other, while the
contact durations limit the amount of data that can be sent.
Usually, inter-contact time distributions and contact time
distributions are used in comparisons.

Musolesi et al. [14] show that simple mobility models have
very different properties in terms of inter-contact time and
contact durations compared to real user traces. The dis-
tribution of inter-contact times does have practical impli-
cations. Chaintreau et al. [4] show that if the distribution
of inter-contact times is power-law distributed with expo-
nent less than one, any possible routing algorithm in a delay
tolerant network will produce an infinite average delay for
packet delivery. They also analysed four different traces of
real people moving, and concluded that the inter-contact
times are power-law distributed with the power-law expo-
nent less than one.

Karagiannis et al. [10] show that the inter-contact times
are only power-law distributed up to 12 hours, and have
an exponential cut-off after that. A possible cause for the
phenomenon is the daily routines people have.



Han Cai et al. [1] show that simple models on a boundless
area can produce a power-law distribution of inter-contact
times. Additionally, they show that the exponential cut-
off is in many cases a side-effect of the bounded area. The
motivation behind this is that nodes that would move over
the edges on an infinite area are forced to stay within the
area, thereby meeting other nodes sooner than they other-
wise would and the number of long inter-contact times will
be smaller.

Kim et al. [12] extracted various parameters such as speed
and pause time distributions from real user traces. These
parameters were then used in a synthetic mobility model.
Their model is validated based on the number of nodes
within different regions on the map at different hours. This
might not be a sufficient criterion alone to determine the
suitability of a model, since the performance of protocols
and applications in DTN is highly related to the nature of
the contacts.

Rhee et al. [15] uses Levy Walks to generate movement
traces. The model is very similar to random walk, except
that the flight lengths and pause times are drawn from a
power law distribution. They manage to produce similar
inter-contact time distributions as many real world traces,
but the model does not capture characteristics as hetero-
geneity among nodes, repetitiveness, group mobility or any
relationships between nodes.

The community based mobility model [14] is based on the
idea that nodes favour squares with higher social attractiv-
ity. The social attractivity is based on how many friends are
in the same square. Changing friends depending on the time
of day results in periodic patterns like for example people
meeting their work colleagues in the day and their family
in the evening. This model lacks group movement and the
movement is relatively homogeneous. The paper does not
show the inter-contact time distribution behaviour for more
than up to roughly one third of a day.

The time-variant mobility model [8] is somewhat similar.
In this model, nodes move to different squares at different
times of day in a periodic manner, thereby creating some
heterogeneity in both time and space. Nodes do not move
in groups and the movement is homogeneous in the sense
that every node follows the same instructions.

Little work has been made on indoor movement, espe-
cially combined with outdoor movement. Some models and
thoughts of office scenarios can be found in [13] and [5], but
in a context not really practical for delay tolerant network
simulations.

Hsu and Helmy [7] show by studying real user traces that
nodes are very often turned on/off and only visit a small por-
tion of the WLAN access points in campus areas. Moreover,
they find that node mobility while using network is very low
and one node only meets a small portion of all other nodes in
the area. Furthermore, they reveal repetitive patterns with
a period of one day and heterogeneity among nodes. Accord-
ing to them, the biggest issue with most synthetic models is
that they are not capturing such characteristics as hetero-
geneous behaviour, switching devices on/off or relationships
between users.

Various group mobility models exist and analysis of the
impact of group mobility [6] has been made. However, to the
best of our knowledge, group mobility has never been a com-
ponent of a larger model covering many other aspects like
community, daily routines, heterogeneity, etc. The same ap-

plies to most of the ideas presented above; they only model
one aspect of mobility. Our approach is to combine these
different elements to create a new movement model.

3. WORKING DAY MOVEMENT MODEL
We have developed a new mobility model by combining

different movement model elements together. These models
are called submodels. The model consists of three different
major activities that the nodes can be doing. They are be-
ing at home, working and some evening activity with friends.
These activities are the most common and capture most of
a working day for the majority of people. More subtle varia-
tions and many other activities exist but, for now, we assume
that they are reasonably well captured by the activities we
have modeled or their overall impact is small and leave in-
troducing further diversity (by means of more submodels)
to future work.

On a more detailed level, the activities differ from each
other. These submodels repeat every day, resulting in peri-
odic repetitive movement. Their parametrisation and adding
further submodels as needed allows fine-tuning the model to
meet the needs of the target scenarios.

Communities and social relationships are formed when a
set of nodes are doing the same activity in the same location.
For example, nodes with the same home are family members,
while nodes with the same office location are colleagues from
work.

Nodes are doing the activities on a daily basis starting
from home in the morning. Each node is assigned a wakeup
time, which determines when the node should start from
home. This value is drawn from a normal distribution with
mean 0 and configurable standard deviation. The node uses
the same wakeup time every morning during the whole sim-
ulation. The variance in the wakeup time models the differ-
ences in rhythms in real life.

At the wakeup time, nodes leave their homes, and use
different transport methods to travel to work. Nodes travel
between activities either by car or by bus, which are both dif-
ferent submodels. The working time is configurable. After
the working hours, the nodes decide, by drawing, whether
they go out for the evening activity, or return home. Again,
different submodels are used for transitions between the lo-
cations. Different user groups have different locations where
the activities take place.

3.1 Home Activity Submodel
The home activity submodel is used for the evenings and

nights. Each node is initially assigned a map point as its
home location. Having reached this location, the node walks
a short distance away and stays still until the wakeup time.

We do not model any movement inside homes. Node activ-
ities at home can consist of the device lying on some table
until the next day, people watching TV, cooking, sleeping
etc., where the movements within the house are not rele-
vant.

3.2 Office Activity Submodel
The office activity submodel is a 2-dimensional model for

movement inside an office where the employee has a desk
and sometimes needs to walk to other places for meetings or
just to quickly talk to someone. Minder et al. [13] present
a model for meetings where organisation structure is taken
into account. We do not use such a model because we are



actually interested in the contacts of nodes, due to the ap-
plication to delay tolerant networking.

Habetha et al. [5] used a more detailed office movement
model, where employees are moving in rooms and corridors.
The walls will have a significant effect on the path-loss. For
a simpler modelling, we do not model the signal attenuation
on walls.

The model adopted is as follows. The office is entered
from a specific map point, called a door. The office is a
square where the upper left hand corner is the door. Each
node is assigned a coordinate inside the building where the
node’s desk is located.

The movement inside the office starts immediately when
the node reaches the door; the node starts walking towards
the desk with the walking speed defined in the settings.
When it reaches its desk, it stops for an amount time, drawn
from a Pareto distribution. When the node wakes up from
the pause, it selects a new random coordinate inside the of-
fice, walks there and waits for an amount of time also drawn
from the same Pareto distribution. The movement between
the desk and randomly selected coordinates repeats until
the work day is over. The purpose of nodes moving be-
tween their desk and random coordinates is that nodes hav-
ing their desks close to each other will meet each other more
frequently and nodes with their desks located next to each
other will be in contact most of the time.

Earlier research suggests that the length of meetings at
an office follow a log-normal distribution [13]. However, the
study covers only team meetings, which does not necessarily
correlate with pause times in movement. A truncated Pareto
distribution is suggested in [15] for general movement inside
buildings. We choose the Pareto distribution for our pause
times inside the office. We also added parameters to turn off
the pausing completely and to have an infinite pause time,
in which case nodes stay at their desk for the whole workday.

Obviously, there are a variety of different jobs and build-
ings where people move accoring to different patterns. Our
model is a first level abstraction, but we are working on fur-
ther parameterizations and extensions of the submodel to
introduce broader diversity (and determine how this diver-
sity impacts the mobility metrics).

3.3 Evening Activity Submodel
The evening activity submodel models the activities that

nodes can do in the evening, i.e. after work. This activity
is done in groups. The evening activity model can be inter-
preted as shopping, walking around the streets or going to
a restaurant or a bar. Each node is in the beginning of the
simulation assigned a favourite meeting spot. Immediately
when a node ends its working day, it is assigned to a group
based on its favourite meeting spot. If all groups for a given
favourite meeting spot are full, a new one is created with a
randomly selected and uniformly distributed size with min-
imum and maximum values defined in settings. The node
then uses the transport submodel to move to the meeting
spot. The node waits at the meeting spot until all the nodes
of the group are present. Then they start moving according
to the map based movement model, which is actually a ran-
dom walk on streets. They all walk in a group along roads
a certain distance defined in settings, and then they pause
for a longer time defined in settings, and finally split up and
walk back to their homes.

3.4 Transport Submodel
Nodes move between home, office and evening activity us-

ing the transport submodel. During the initialisation, a con-
figurable percentage of nodes in each group are set to use a
car for transportation between activities. Nodes not moving
by car will use the bus or walking submodel. Nodes mov-
ing by car only use the car submodel for all transportations.
Supporting different types of transport models adds addi-
tional heterogeneity and has impact on the performance of
routing protocols, since quicker nodes, like cars for instance,
can transfer packets longer distances quickly.

• Walking submodel

Nodes that walk use streets to advance with a constant
speed towards the destination. Dijkstra’s algorithm is
used for finding the shortest path to the destination.

• Car submodel

Nodes owning a car can travel at a higher speed be-
tween different locations. Otherwise it does not differ
from walking. Within an activity submodel, car own-
ers behave as the other nodes.

• Bus submodel

Nodes without a car can use buses for travelling faster.
There are pre-defined bus routes on the city map. The
buses run these routes according to a schedule. Buses
can carry more than one node at a time.

Each node that does not own a car knows one bus route.
It can use any bus driving that route. The nodes make the
decision of taking the bus if the Euclidean distance from
the node’s location to the nearest bus stop summed with
the Euclidean distance from the destination to the nearest
bus stop is shorter than the Euclidean distance between the
node’s location and the destination. Otherwise, it walks the
whole distance. If the node decides to take the bus, it uses
the walking submodel to the closest bus stop and waits for
the bus. When the bus arrives, the node enters it and travels
until the bus comes to the bus stop nearest the destination.
Then it switches back to the walking submodel to reach the
destination.

3.5 The Map
All nodes move on a map. The map defines the space and

routes in which the nodes can move; it contains all the in-
formation of the locations of the houses, offices and meeting
spots, as well as the bus routes with bus stops. The design of
the map is an important part of the mobility model. Since
all the movement of the nodes is determined by activities
with specific locations, the placement of these locations de-
fine how nodes are moving on a larger scale, i.e., in which
areas of the map nodes will be doing different activities.
The positions of these locations can be node group specific,
which makes it possible to create small districts within the
map. Therefore, the map can be used to limit node move-
ment to small areas, which we refer to as increasing the
locality. On one hand, houses, offices and meeting spots can
be spread randomly on the map, thereby, having very little
locality and nodes meeting easily. On the other hand, it is
possible to restrict node movement to very small areas by
creating lots of small districts, thereby increasing the local-
ity. These may also be combined: different sized district



where some overlap others allows to have high locality but
also some movement between districts, which corresponds to
nodes coming to some district to work or meet friends, while
others are leaving their district for similar reasons. Nodes
moving between districts, not located next to each other, will
have to pass through other districts, thereby appearing as
drive through traffic in the intermediary districts. Figure 1
shows an example setup. The most suitable configuration of
districts is environment specific.

Figure 1: A map of Helsinki city’s central areas di-
vided into 4 artificial districts

4. EXPERIMENTAL SETUP
We implemented our movement model as an extension

to the Opportunistic Network Environment (ONE) simula-
tor [11]. The ONE is a highly customisable communication
network simulator for delay tolerant networking that has
several movement models implemented, from simple Ran-
dom Waypoint to more realistic Map Based Movement mod-
els that can import map data and constrain node movement
to the streets and roads of the imported data. ONE can
also visualise the imported data and node movement using
a GUI which helps on validating the model in an intuitive
way. Based on the node movement and nodes’ radio device’s
range, ONE generates contact information reports that can
be used for detailed analysis. This contact information also
feeds the simulation engine embedded in ONE which sup-
ports multiple DTN routing protocols [11].

4.1 Mobility Modelling
ONE can import mobility data from real-world traces or

other mobility generators. Movement models and report
modules are loaded dynamically based on the given configu-
ration so that the simulator can be easily extended with new
modules and the modules used in different scenarios can be
changed as needed. In a simulation setting, any number of
types of mobile nodes—referred to as a node group—may be
defined. A node group shares a common set of simulation
parameters like speed and pause time distributions, message
buffer size, and radio range, among others. Different node
groups can also use different movement model modules.

The basic version of ONE supports the Random Way-
point [9] mobility model, arbitrary mobility models by us-
ing externally generated movement data, and different map-
based movement models. All map-based movement models
obtain their configuration data using files formatted with a
subset of the Well Known Text (WKT) format. WKT files
can be edited and generated from real world map data us-
ing Geographic Information System (GIS) programs such as
OpenJUMP1. With map-based movement models, the nodes
move using roads and walkways from the map data. In ad-
dition, different node groups can be set to use only certain
parts of the map, thus allowing to distinguish between cars
and pedestrians so that the former do not drive on pedes-
trian paths or inside buildings.

The simple random Map-Based Movement model (MBM)
is a derivative of the Random Walk model, where nodes
move to randomly determined directions on the map fol-
lowing the roads as defined by the map data. The Shortest
Path Map-Based Movement model (SPMBM) is a derivative
of the Random Waypoint model, where nodes use Dijkstra’s
shortest path algorithm to calculate shortest paths from the
current location to a randomly selected destination, by using
the roads or paths.

Finally, some nodes may have pre-determined routes in
the map that they follow. This Route-Based Movement
model (RBM) uses the same map data but nodes always
select the next destination on the route they are currently
travelling. This mode of movement is useful for modelling
e.g., bus and tram routes.

4.2 Implementation
The Working Day Movement model was added to the

ONE as a combination of many mobility models. One move-
ment model implements the main model controlling the move-
ment of the nodes going to work, to their homes and meeting
their friends. The main model passes the responsibility to
lower level models handling different activities and trans-
portation. Additional information about the destination is
passed to the transportation models by the main model so
that the nodes can find the way to the right place. The main
movement model also decides whether to travel by bus or by
walking between activities, and whether to do some evening
activity or not.

Buses are an extension of the Route-Based Movement
model, using bus routes defined in WKT files. Buses in-
teract with passengers through a bus control system. The
bus control system acts as a mediator between buses and
passengers, informing passengers when the bus stops and
buses when passengers enter them. Each bus control sys-
tem has a unique ID, which is used to link bus node groups
together with normal node groups in the settings file.

The evening activity makes use of a similar control system,
defined in the settings for each node group, to facilitate the
group movement. The locations of offices, meeting spots and
homes are listed in WKT files defined in settings for each
group, or randomly selected by ONE if no WKT files are
provided.

4.3 Measurements in ONE
Creation of reports for various events with the ONE is

implemented with the help of different event listeners. The
default package of the ONE contains some commonly used

1http://openjump.org/



reporting tools and some new ones were developed. In the
case of inter-contact times and contact times, the ONE gives
as output a list with event lengths and observation counts,
from which it is easy to calculate a CCDF. We have imple-
mented a contacts per hour report generator, which counts
the number of contacts happening each hour. Finally, we
have implemented two different reporting tools to measure
encounters. The first one counts the number of other nodes
a node has encountered (unique encounters), and provides
a distribution for the fraction of user population nodes have
encountered. The second one counts the number of total
encounters and the number of unique encounters for each
node separately, and provides a list with all the nodes and
their measurements.

5. SIMULATION
We validated our model by comparing it to real user traces

in terms of inter-contact times, contact durations and con-
tacts per hour. The inter-contact times and contact dura-
tions are commonly used in the literature for characterizing
connectivity in DTNs, while the contacts per hour metric
has been used to measure activity at different hours of the
day. Data from real world measurements is available for all
three metrics, thus allowing us to validate our model.

We had over 1000 nodes moving on a map of the Helsinki
centre area with the surrounding districts with the size of
roughly 7000×8500m2 . The area was divided into 4 main
districts, see Figure 1. Additionally, 3 overlapping districts
were created to simulate movements between the centre and
other districts, and one district to cover the whole simulation
area. See Table 1 for details about the assignments of nodes,
offices and meeting spots. Every district, except the one
covering the whole map, was assigned its own bus route and
2 buses. The district covering the whole map has 4 buses
driving on one route.

Table 1: The assignment of nodes, offices and meet-
ing spots to the different districts

District Nodes Offices Meeting spots
A 150 30 4
B 50 10 1
C 100 20 2
D 100 20 2
E (A and B) 100 20 2
F (A and C) 150 30 4
G (A and D) 150 30 4
H (Whole map) 200 40 5

Half of all the nodes were set to travel by car. The walking
speed for nodes was set to 0.8–1.4m/s and for buses 7–10m/s
with a 10–30s waiting at each stop. The probability to do
some evening activity after work was set to 0.5 with the
group size 1–3. The working day length was 28800s and the
pause times inside the office were drawn from a Pareto dis-
tribution with coefficient 0.5 and minimum value 10s. The
office size was set to a 100m×100m square. The size of the
office was chosen so that it would compensate for the lack
of floors, walls, etc. The differences in schedules of nodes
were drawn from a normal distribution with a standard de-
viation of 7200s. We also added 10 nodes moving according
to the SPMBM model in the background to simulate taxis,
delivery of goods, etc.

The transmit range of all nodes was set to 10m. The nodes
were considered to be in contact when they were closer to
each other than the transmit range. In other words, imme-
diately when two nodes were in reach of each other, a con-
nection was established. In the real world, there is usually
a connection setup delay and the frequency of scanning for
other devices is usually limited to keep energy consumption
low (leading to a detection delay). It is worth noting that
this phenomenon has probably affected real world contact
traces used for comparison. A study about optimal prob-
ing of contacts can be found in [18]. Considering scanning
intervals is subject to ongoing work.

We used a warmup period of half a day, which is sufficient
due to the periodic nature of the mobility model.

For comparison, we simulated a RWP scenario on a same
sized simulation area with 1000 nodes, moving with speed
0.5–5m/s and pause time 1–3600s, both uniformly distributed.

We estimated the inter-contact and contact time distri-
butions by sampling them from simulation runs of length
T = 5 · 105s. Due to the finite simulation time, the longer
events are less likely to get observed. This is because a larger
fraction of them has the beginning or end outside the sim-
ulation time. This leads to a systematic error so that it is
not easy to say whether there is an exponential decay in an
empirical distribution or just this systematic error. To avoid
this uncertainty, we adjust the experimental distributions as
follows.

We assume that the events are uniformly distributed over
a longer period of time. Then, consider the probability of
an event of length x, p(x). Only events that begin during
the time interval [0, T −x] will get recorded. To compensate
this, the estimated probability density function p̂(x) is

p̂(x) =
T

T − x
p
′(x),

where p′(x) denotes the measured density. We use p̂(x) for
creating the Complementary Cumulative Density Functions
(CCDF, P[X > x]). The same method was used also on
the experimental data used as a reference. This removes the
effect caused by different length of the measurement period
between different measurements.

We ran the simulation with the settings described above
and measured inter-contact times, contact durations, con-
tacts per hour and unique encounters compared to total en-
counters for each node plotted on a scatter diagram.

Figure 2 shows that the distribution of inter-contact times
is similar to the one from the iMote traces [16]. We have a
power-law distribution up to roughly half a day, after which
an exponential decay follows.

Our model has not been configured to produce a power-
law with the exact same exponent as the one in the iMote
traces, since the coefficient can vary between environemnts.
Power-law exponents were calculated for different traces in
[4], and the exponents ranged from 0.4 to 0.9 when no correc-
tion procedures like we used had been applied to the results.
In our model, it is possible to vary the power-law exponent
by altering different parameters to better match a specific
environment.

From Figure 3 we see that the contact durations follow
a similar curve as the one from the iMote trace [3] experi-
ments. Our contacts per hour graph (Figure 4) is similar to
what Song et al. [17] obtained from the Dartmouth traces.
Additionally we see from the scatter diagram (Figure 5),



how much heterogeneity the model has compared to RWP.
A dot indicates how many total encounters and unique en-
counters a node has. If nodes move according to different
patterns and speeds within different sized areas, nodes will
meet different amounts of other nodes. Additionally, a node
restricted to a small area will keep meeting the same nodes
over and over again, while a scout node exploring the whole
simulation area will mostly meet new nodes. Therefore, the
scatter diagram can be used to measure heterogeneity.
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Figure 3: Contact durations for RWP (−·−), Work-
ing Day Movement (−) and iMote trace ( )

We experimented with three scenarios with different num-
bers of background SPMBM nodes, to better understand
how mixing different movement models affects the inter-
contact time distribution. Figure 6 shows that more SPMBM
nodes smoothen the inter-contact times distribution and the
exponential cutoff gets less sharp. This is due to the expo-
nential nature of the SPMBM movement.

To investigate the effect of the evening activity, we con-
ducted two experiments with different values for the evening
activity probability; one where nodes always do evening ac-
tivity and one where nodes never do. The first scenario
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(b) RWP

Figure 5: Total- vs. unique encounters for each node
plotted as a dot

created a peak in the contacts per hour graph at the time
when most nodes were doing their evening activity, while
the second scenario lowered the activity graph to almost the
same state as during night. We concluded that the proba-
bility of evening activity parameter can be used to adjust
the model to different environments where there is more or
less night-life.

To determine whether the way nodes move between dif-
ferent activities makes a difference, we experimented with
two scenarios: one where the all the nodes move by car and
another where all use the bus. A high percentage of nodes
travelling by car seems to reduce significantly the fraction
of the population a node has encountered. Cars move fast
and always along the shortest path, therefore the probability
of meeting new nodes gets smaller. The bus travels longer
routes and nodes have much more opportunities to meet oth-
ers at bus stops or in the bus. We also get slightly longer
contact durations with buses, but it seems as if most of the
contact durations originate from other things.

To understand the impact of the map, we created a Man-
hattan like map where one block is a square with the side
180m. We compared the results to the results from the
Helsinki map, and surprisingly, there were not many differ-
ences. To make the comparison easier we decided to remove
the districts and randomly select the locations of the homes,
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Figure 6: Inter-contact times for 0 (−), 100 (− · −)
and 500 (· · · ) SPMBM nodes compared to the iMote
trace ( )

offices and meeting spots. We found that there was no im-
pact on the inter-contact times. The contact durations and
fraction of nodes encountered were slightly affected. That
is probably due to the fact that the bus routes were differ-
ent, which affects the time travelled inside the bus and the
amount of nodes encountered.

We also ran a simulation where no districts were used.
The homes, offices and meeting spots were uniformly dis-
tributed on the whole map. Figure 7 shows that districts
reduce the fraction of the user population encountered by
nodes, and are therefore a good mechanism to further in-
crease locality.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

PSfrag replacements

Fraction of user population [%]

P
[X

>
x
]

Figure 7: Fraction of user population encountered
with districts (− · −) and without (−)

We also varied the movement inside offices. In the first
scenario we let the nodes constantly move inside the office
without pausing at all and in the second scenario nodes
were not moving at all (infinite pause time). Figure 8 il-
lustrates how this changed the power-law exponent of the
inter-contact time distribution.
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Figure 8: Inter-contact times when nodes constantly
move (− · −), do not move (· · · ) inside offices com-
pared to default settings (−) and iMote trace ( )

5.1 Addressing Modelling Complexity
A model capturing movement of nodes at level of detail

like ours comes with a certain degree of complexity in terms
of configuration. Specifying where thousands of nodes live
and work is not feasible to do manually. Even more chal-
lenging is the process of obtaining reliable data for all the
different parameters like people’s schedules, where they work
and which buses they use. Therefore, we advise users of the
model to create settings and other data files with the help
of scripts, taking as input data that is crucial for the exper-
iments and available to the user.

A model capturing movement of nodes at a detailed level
must make a tradeoff between configurability and ease of
use. Scripts taking as input only a few parameters from
which the parameters of the real model can be derived from
are easier to work with and thus more practical. Some sta-
tistical data, like residential density within different areas of
a city, might be available to researchers; hence, a script can
place homes and offices accordingly while randomizing the
rest. Currently, if homes, offices, or meeting spots are not
configured by the user, they are all uniformly distributed
across the map. We are planning to provide a configuration
template for Helsinki based upon real-world data as a start-
ing point; similar ones can be developed for other cities and
shared as a basis for reproducable results.

5.2 Limitations of the Model
Like every model, we need to provide an abstraction of

reality to maintain the complexity at an acceptable level.
All of the activities are modelled at a high level with sim-
ple abstractions on a two dimensional plane. Floors, walls
and different obstacles affect mobility and especially the con-
tacts between nodes, but are not covered in our model. A
real working day exhibits more subtleties than we currently
cover, including, e.g., lunch breaks and shopping activities.
Furthermore, in our experiments, devices are always turned
on. Even though modelling of attenuation and on/off times
is not a responsibility of the mobility model, it is worth
noting that measurements from real user traces, typically
used for validation of mobility models, have been affected by



these details. While not included in our current model and
implementation, further submodels can be added for more
fine-grained capturing daily activities and parameterisation
allows further fine-tuning. Similarly, on/off periods can be
added by revising the corresponding mechanisms available
in the ONE.

Finally, we currently do not model traffic in the sense of
queues, traffic lights, or speed limits. Neither do the roads
have any width so all nodes are moving along the same path
and car/bus frames do not attenuate signals.

6. CONCLUSION
We have developed a new mobility model capturing sev-

eral different mobility characteristics at a lower level of ab-
straction than many other models have. We have shown that
the model is heterogeneous in both time and space and pro-
duces similar distributions of inter-contact times and contact
durations as real user traces. Additionally, we have explored
how different parameters affect mobility and revealed that
the geometry of the map has a small impact on the outcome
compared to many other configurable properties. Therefore,
when modelling a specific environment with our model, re-
searchers should concentrate more on other characteristics
of the environment than the road net.

Next steps will include implementing additional submod-
els and developing the old ones further. Modelling of traffic
at a more detailed level is also on the roadmap. Further-
more, we are developing scripts and tools to better handle
the complexity while we are also conducting experiments to
explore the parameter space in hope of eliminating redun-
dant parameters. Finally, we have plans to improve contact
scanning and to develop trace recording mechanisms using
the same procedures as the real world experiments to im-
prove validation of mobility models.
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