
Application Protocol Design Considerations
for a Mobile Internet

Jörg Ott
Helsinki University of Technology

Networking Laboratory

jo@netlab.tkk.fi

ABSTRACT
The Internet protocols were designed for a primarily “fixed” and
relatively static network environment where communication links
are stable and exhibit fairly uniform communication characteris-
tics. Mobile wireless communication has fundamentally invali-
dated some of these assumptions, for (heterogeneous) wireless ac-
cess networks and even more so for mobile ad-hoc networks (MA-
NETs) formed between mobile users: from highly variable link
characteristics to temporary disconnections to non-existing end-to-
end paths. While many activities have focused on the link and net-
work layer to provide seamless and ubiquitous connectivity for mo-
bile users, thus mimicking the fixed Internet, and transport layer op-
timizations have addressed performance issues and connection per-
sistence in wireless networks, application protocols have received
rather little attention. However, the semantics of many of today’s
non-real-time applications are perfectly compatible with partly con-
nected and disruptive mobile environments, it is just the protocol
designs that are not. We identify issues with present application
protocols and discuss requirements to make them workable in chal-
lenged mobile environments, leveraging Delay-tolerant Network-
ing (DTN) as underlying communication paradigm and augment-
ing server-based operation by peer-to-peer communications.

1. INTRODUCTION
Communication in the Internet is increasingly dominated by no-

madic and mobile usage scenarios: mobile nodes attach directly to
(wireless) access networks and increasingly powerful mobile de-
vices enable mobile ad-hoc networking, for interactions between
users as well as for reaching infrastructure networks. However, the
Internet protocols have been designed for rather static (typically
fixed) networking environments with fairly stable end-to-end con-
nectivity and uniform path characteristics (low bit error rates, RTT,
and packet loss probability)—and so have been most traditional ap-
plication protocols.

Modern mobile communication environments invalidate various
of the fundamental assumptions: connectivity may appear and dis-
appear unpredictably, may be short-lived or long-lasting, link and
path characteristics may vary instantaneously, corruption-incurred

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiArch ’06 San Francisco, California, USA
Copyright 2006 ACM 1-59593-566-5/06/0012 ...$5.00.

losses may outweigh congestion losses, and not even an end-to-
end path may exist, e.g., in sparse ad-hoc networks or with two
peers experiencing alternating disconnections. For network ac-
cess, a jungle of (wireless) service providers for different cellu-
lar, WLAN, and other link layer technologies peered with diffuse
roaming agreements make obtaining connectivity technically chal-
lenging and economically risky for the user, at least, for the fore-
seeable future). Simple technical limitations (e.g., battery power)
and isolated or remote locations may further add to connectivity
loss. Finally, legal regulations or social conventions may entirely
prohibit communication for certain periods of time or certain lo-
cations so that, even if communications opportunities existed, they
could not be used.

In summary, mobile connectivity is uncertain and its quality may
vary. In the past, numerous research efforts have tackled mobility
support at virtually all layers and in-between from the link to a ses-
sion layer between transport and application. Pros and cons can
be found for mobility support at any of these layers—and they are
in fact often complementary. All approaches have in common that
they attempt to conceal the implications of mobility from the ap-
plications. However, since disconnections may be arbitrary, com-
pletely mimicking fixed Internet connectivity in the mobile domain
is bound to fail, albeit mobility support at many layers may provide
improvements.

We therefore characterize a mobile communication environment
primarily by unstable and variable links and paths, the potential
for frequent unexpected disconnections and unpredictable connec-
tion opportunities, and the potential non-existence of an end-to-end
path. In short: our concern with mobility are disconnections and
the delays that may result.1

Despite the shortcomings of mobility support only at the lower
layers (which we discuss in section 2), application layer protocols
have received only little attention. In this paper, we analyze de-
sign patterns of existing application protocols to identify which
aspects of their designs make them less suitable for mobile oper-
ation. We focus on applications that are basically workable without
permanent connectivity: this excludes interactive real-time appli-
cations (such as IP telephony and certain games) and we further re-
strict ourselves to applications that involve at least one human user.
Based upon our analysis in section 3, we derive suggestions for the
design of future mobile-enabled application protocols in section 4
and conclude this paper with a short discussion of future research
directions in section 5.

1We consider wireless characteristics of lesser importance (and
poor performance can be subsumed under disconnections). There-
fore, we do not discuss aspects of encoding efficiency on the link,
(header) compression, and related issues.

2. RELATED WORK
Numerous research efforts have addressed providing seamless

connectivity across different link layer technologies and service
providers to keep users always best connected. They combine mo-
bile IP for persistent endpoint identification, reachability with han-
dover and roaming improvements (authentication, state transfer),
and using multiple interfaces to minimize connectivity gaps, pre-
vent packet loss, and reduce jitter. While such approaches clearly
improve connectivity they are obviously not able to address dis-
connections due to coverage gaps, missing roaming agreements, or
user policy (e.g., minimizing access charges).

Besides mitigating the impact of wireless links on end-to-end
(TCP) performance [5], numerous extensions at the transport layer
seek to shield connectivity changes from the applications to main-
tain their functioning. Such extensions may rely on mobile IP so
that TCP connections do not break [11, 2] or explicitly signal IP
address changes end-to-end [28]. Support for disconnections can
also be achieved in combination with HIP [26] or by means of a
shim (session) layer on top [25]. All of these approaches, however,
require an occasional end-to-end path and have no means to pre-
vent application protocols from timing out if, e.g., an outstanding
protocol operation does not complete due to disconnection.

Protecting applications from disconnections may also be achieved
by means of proxies—explicitly placed or transparently inserted—
between the application peers (typically client and server) as in
Fleetnet [3], Drive-thru Internet [19], and DHARMA [16], among
others. This approach may also allow relaxing the need for end-to-
end connectivity [19] as well as providing feedback to the mobile
client application to prevent timeouts and inform the user about
communication progress [8]. Again, at least an occasional “end-to-
end” path from the client to the proxy is typically required and the
interaction with application often remains cumbersome and secu-
rity issues are usually not addressed.

All three areas above have in common that they follow a bottom-
up approach mitigating one issue at a time. In all cases, they try
to provide an abstraction to the higher layers that hides the partic-
ulars of the network. This abstraction becomes leaky as soon as,
from a higher layer perspective, connectivity is lost for too long or
the necessary end-to-end communication cannot be established at
all. As a consequence, application protocols and programs need to
become aware of and actively deal with delays and disconnections.

Delay-tolerant Networking (DTN) [7, 27] follows a different com-
munication paradigm and exclusively relies on asynchronous mes-
sage exchange without the need for an end-to-end path. Assuming
appropriate routing mechanisms (such as [14]), this makes DTN
perfectly suitable for communication in (sparse) MANETs or other
challenged environments using dedicated application protocols. But
DTN can also be used for interpersonal communication in MANETs
[10, 12, 17] as well as for (mobile) Internet access [1, 21]. A pre-
requisite is that the application protocols have been designed for
or can be adapted (e.g., by means of proxies) to work in a dis-
connected environment where sometimes only occasional message
exchanges may be possible [18, 21, 15].

Surprisingly, application-specific support for nomadic and mo-
bile usage has been very limited so far. Exceptions are dedicated
application protocols developed for disconnected operation such as
distributed file systems [13], calendars, or authoring and versioning
systems (e.g., cvs or subversion) and the (limited) support for of-
fline operation in web browsers and email clients, usually requiring
manual control. Numerous web-based applications store session
state on a server and are thus able to recover from disconnections
to some degree. However, the arrival of interaction techniques such
as AJAX [4] is creating new problems here as well.

In the following, we will assess the characteristics of application
protocols commonly used in mobile environments in more detail
to identify issues in and outline requirements for mobility-suitable
application protocol design.

3. APPLICATION PROTOCOL ANATOMY
Looking at typical (mobile) usage scenarios for non-real-time

applications, we can observe that numerous popular applications
are well-suited for operation without (immediate) end-to-end con-
nectivity [18]. Sending and receiving emails is asynchronous in
the first place, the user mostly typing or reading so that connectiv-
ity is only needed during short periods of time; and in most cases
emails may well be queued prior to actual transmission or reception
(which may happen in mail servers anyway) [10, 23]. The same ap-
plies to interactions with discussion fora and newsgroups and may
also hold for (not-so-instant) messaging and personal presence ap-
plications, depending on the desired update granularity. Calendar
synchronisation is basically asynchronous (and calendar events are
often mapped to email messages). Even access to web resources
can tolerate delays provided that the user does [20, 21]: She usu-
ally alternates between reading and requesting new web pages, thus
limiting the actual need for connectivity to short periods; tabbed
browsing to request several resources in parallel (e.g., after a web
search) further supports this idea [6], retrieving content in the back-
ground whenever possible.2

In principle, from a semantics perspective, all the above applica-
tions are workable in a temporarily disconnected environment and
none of them requires an end-to-end path at any time as long as
intermediary nodes (other mobile hosts or, as in email, infrastruc-
ture components) take the responsibility of forwarding the mes-
sages from the sender to the receiver. The degree of connectivity of
a network then defines the user-perceived quality of service: how
long does mail delivery or retrieval of a web page take?

In practice, however, the designs of most Internet application
protocols do not work without end-to-end paths as we will discuss
in the following.

3.1 Actors: Endpoints and Intermediaries
We start by looking at the actors in application protocol interac-

tions. These are the two3 endpoints of the conversation and option-
ally one or more intermediaries. Whether an entity is considered
an intermediary or an endpoint depends on the viewpoint. We take
the perspective of the intended application semantics: for example,
email messages are exchanged—end-to-end—between users, tech-
nically represented by their mail “clients”, while the mail servers
only facilitate end-to-end communication. In this sense, a mail
server is an intermediary while an HTTP origin server is not.

Transport
Network

Link

Application

L
Network

Link Link L

Transport

Network
Link

Application

L
Network

Link Link L

Transport
Network

Link

Application

Endpoint A Endpoint BIntermediary

end-to-end

hop-by-hop hop-by-hop

Application
Program

User Interface
Application
Program

User Interface
User (User)

Router Router

Figure 1: Application protocol actors and interactions

2Selected contents might also be pushed to the user’s local web
cache wheneven opportunities exists.
3We do not consider group communication in this paper.

Figure 1 depicts two endpoints communicating via one interme-
diary which may operate at and across different layers. In some
application protocols, intermediaries are mandatory (such as mail
servers), in others they are optional (such as HTTP proxies). End-
points may (have to) be aware of intermediaries and use them know-
ingly: this is the case for mail servers used as mandatory message
store, SIP servers used for rendezvous purposes (both enabling user
mobility), and may be the case for web caches and proxies used for
performance improvement and possibly content adaptation. But
endpoints may also use intermediaries unknowingly: examples are
NATs and firewalls for “security”, replicated application servers in
content distribution networks (CDNs), transparently inserted web
caches, and performance enhancing proxies.

Intermediaries enable communication, e.g., by providing well-
defined rendezvous points, decoupling transmission and reception,
and possibly even converting between different protocols and con-
tent representations. But they may also hinder communication due
to unexpected protocol manipulation or blocking communications
(firewalls, NATs, application-layer gateways) or impact the appli-
cation protocol by breaking up end-to-end connections (as with
HTTP proxies and end-to-end HTTP-over-TLS). Those meant to
enable communication by serving as mandatory rendezvous point
may also become (single) points of failure and prevent communica-
tion in challenged environments, e.g., if the peers reach one another
in an ad-hoc network but not their allegedly well-connected servers
in the fixed Internet. Intermediaries sometimes require user trust to
reduce vulnerabilities to DoS or other attacks (like SMTP servers)
and to protect user privacy (POP or IMAP servers).

Intermediaries typically cause problems with application proto-
cols if the latter do not operate end-to-end by themselves but rather
rely on reliability, security, or other support from lower layers—
which reduces end-to-end to hop-by-hop semantics (see figure 1).
This is important because intermediaries—application-specific as
mail servers or generic as DTN bundle agents—will be essential for
communication in a mobile environment where end-to-end paths do
not always exist.

3.2 Actions: Application Operations and State
We have characterized application protocols with respect to their

interaction behavior and derived their suitability for challenged en-
vironments [18]. One of the crucial observations is that, as they
assume stable connectivity and short RTTs, many protocols are
highly interactive (“chatty”). In the simplest case, a protocol may
require many transactions to complete a single semantically mean-
ingful protocol operation, such as retrieving a viewable web page
consisting of many different resources. In more complex cases, the
application may even require several interactions to perform a sin-
gle transaction with shared state being created and advanced step
by step, e.g., when logging into an IMAP or FTP server, submit-
ting an email via SMTP, or performing authentication based upon
a challenge-response mechanism like HTTP digest authentication.

In many such cases, the application protocol state is bound to the
existence of the underlying transport (typically TCP) connection:
if the transport connection disappears, the state is lost, too. If the
identification of the peer instance is tied to the transport connection,
a new transport cannot even be re-established to recover the state.
Examples include mail protocols and FTP; a nice counterexample
is the Session Initiation Protocol (SIP) that clearly separates appli-
cation transactions and state from that of the underlying transport.

Timeouts in application protocols are generally an issue because
they have to strike the balance between trying to complete opera-
tions on one hand and preventing state explosion in servers as well
as considering user patience on the other. The timeouts are defined

by the specification or the programmer and are often independent of
the networking environment, making the optimistic assumption of
sufficiently small path RTTs to allow their interactions to complete.
This is in contrast to, e.g., transport protocols that dynamically ad-
just timeout values to the observed path characteristics. But even if
(exponential) backoff mechanisms and dynamic RTT calculations
are applied (such as for retransmissions in SIP) they usually scale
only to a limited extent (e.g., tolerating delays in the order of sec-
onds to minutes and declaring failure afterwards).4

Application protocols legitimately rely on transport layer relia-
bility and expect immediate positive or negative acknowledgements
from their peers. This does no longer work as soon as intermedi-
aries are involved which can usually provide only preliminary con-
firmations. For example, mail servers perform an immediate accep-
tance check for an incoming email and may instantly refuse it. If
a server accepts a mail this has no meaning whatsoever concerning
the ultimate success or failure of the mail delivery. There is no up-
per bound (timeout) for a positive confirmation but, at least, email
supports end-to-end failure and delivery notifications.

Finally, application protocols use different mechanisms for state
synchronization. Soft state protocols relying on regular state re-
freshes may suffer in environments where delivery delays cannot be
estimated. But also hard state approaches may not work well if the
application state of both endpoints needs to be closely coupled—
and hard state may be left over after an application peer has long
since disappeared. In either case, it may be impossible to differen-
tiate permanent failure from temporary disruption. As many appli-
cation protocol operations are not idempotent (exceptions include,
e.g., some operations of NFS and HTTP), repeated invocation will
cause repeated action (such as repeated delivery of an email). This
has not been an issue with protocols operating well synchronized
and being able to rely on actions being immediately confirmed or
rejected—but this property may be lost in mobile environments.

3.3 Security
The previous considerations on end-to-end semantics also ap-

ply to security: as secure protocol design is almost a discipline
of its own, many application protocols avoid the pitfalls by rely-
ing on security mechanisms readily available, typically by under-
lying protocols such as IPsec, SSH tunneling, and transport layer
security (TLS). However, these only provide security for a single
transport layer “hop” and are thus only useful in the absence of
intermediaries (as with HTTPS) or if all intermediaries are trusted
(as in some SIP scenarios). Since we require intermediaries but do
not want to create single points of failure, we cannot depend on
selected trusted intermediaries. Moreover, other users’ mobile de-
vices (which are generally not trustworthy) are also used for data
forwarding so that hop-by-hop protection is clearly insufficient.5

Security mechanisms of application protocols (particularly those
not defining intermediaries) will require careful consideration.

Furthermore, present security protocols often require multiple
message exchanges, e.g., for authentication, capability negotiation,
and session key establishment. A simple example are challenge-
response schemes (as in HTTP digest authentication that requires a
four-way handshake for authentication only); a more complex one
is the startup protocol of a TLS connection. The result is that mes-
sages cannot be sent asynchronously and processed without further

4Similarly, timeouts may be triggered in well-connected environ-
ments if current server (over)load delays processing requests and
generating responses.
5A related issue arises with security mechanisms that assume
that no man-in-the-middle can alter data in flight, such as Diffie-
Hellman-based session key generation.

interaction between the peers. Limiting the number of exchanges to
minimize the impact of delays also means that some security prop-
erties, such as perfect forward secrecy, are much harder to attain.

End-to-end security mechanisms such as S/MIME with public
key cryptography would allow for such self-contained message pro-
tection by providing all the necessary credentials as part of a mes-
sage. However, besides lacking global deployment, security mech-
anisms for validating an identity, e.g., when using a PKI to check
a certificate, may require additional interactions with infrastructure
components which may not be instantaneously possible.

3.4 Naming and Addressing
Applications use names and addresses for rendezvous and com-

munication purposes and to identify their peers. The duality of IP
addresses being both identifiers and locators and the associated is-
sue that IP addresses may change due to mobility are well-known.
More recent applications already rely on stable application layer
identifiers instead (such as URIs) or use support from lower layer
mechanisms such as HIP.

Service protocols such as DNS resolve names into IP addresses.
Clients contact DNS infrastructure servers, possibly in multiple it-
erations. While the servers are important for rendezvous purposes,
they may inhibit communication if they are not reachable. Fur-
thermore, DNS maintains static address bindings and is thus only
useful for fixed servers.

For direct communication between mobile users, other (applica-
tion-specific) mechanisms are applied to update a mobile node’s
address frequently (such as dynamic DNS or SIP registrations).
Again, temporary non-reachability may limit the usefulness of these
protocols in mobile environments as long as fixed infrastructure
is required. Distributed location protocols (e.g., server-less reg-
istrations in peer-to-peer SIP using DHTs) may eliminate the need
for an infrastructure, however, their applicability to highly dynamic
and disconnected environments remains to be proven.

3.5 Application Programs and User Interfaces
Application protocols provide services to users; the application

offering a service abstracts from the underlying communication
processes. As discussed for transport protocols above, this abstrac-
tion becomes leaky as soon as communication does not proceed as
expected. This expectation is governed by application timeouts and
ultimately by the user’s patience to wait for an operation to com-
plete. Application timeouts may try to estimate user patience, but
in particular they are used to determine whether a requested ser-
vice is unavailable. With mobility, unavailability becomes hard to
distinguish from temporary unreachability—and while a user may
want an immediate notification that a request will definitely fail be-
cause of a broken peer application, she may be more delay-tolerant
knowing that the result will finally be delivered (rather than hav-
ing to manually poll the service by issuing the same request over
and over again). Internet applications and their user interfaces of-
ten deal badly with temporary failures; they quickly generate error
messages to the user, even if it would be possible to keep trying.
Better distinction between different types of failures is missing and
user controls rarely exist. Mail clients at least support regularly
polling their servers and do not give up if they do not succeed; web
browsers may become tolerable when proxies are involved. But
these are rather exceptions and they still provide little feedback.

4. PROTOCOL REQUIREMENTS FOR
MOBILE OPERATION

We assume that applications can and shall operate under vari-
ous fixed and mobile conditions using wired and wireless links,

with infrastructure-based connectivity and in ad-hoc environments.
We propose using DTN with asynchronous message passing as the
most flexible communication substrate to deal with the aforemen-
tioned challenges of mobility—after all, disconnections and delays
may render mobile communication asynchronous from an applica-
tion perspective anyway.

In the following subsections, based upon the shortcomings iden-
tified above, we present first a number of technical suggestions for
application protocol design and finally discuss some soft factors
that deserve attention. Such general considerations are obviously
difficult—and incomplete—by nature, details may differ between
applications, and we are not able to present satisfactory solutions
to realize all the suggestions. Yet they provide a set of data points
in the design space of future mobile application protocols from one
particular viewpoint.

4.1 The Role of Intermediaries
Intermediaries will play a crucial role in establishing connec-

tivity by means of asynchronous message forwarding. To avoid
adding single point(s) of failure, one set of intermediaries—i.e.,
DTN routers located in mobile nodes and infrastructure compo-
nents —should operate independent of particular applications and
focus on message forwarding.

Further application-specific intermediaries may exist, e.g., for
gatewaying purposes or as a message store. However, an applica-
tion protocol should not depend on them in message exchanges to
avoid that, e.g, remote fixed components (that may be temporar-
ily unreachable) inhibit communication between colocated mobile
peers. Instead, application protocols should be designed for direct
end-to-end operation, e.g., avoiding asymmetric protocols as used
for email transmission and access. Rendezvous mechanisms and
decoupling of sending and receiving actions—the most common
uses for intermediaries—can already be provided by the distributed
DTN substrate and need not be delegated to a dedicated compo-
nent. Application-specific intermediaries (such as mail “servers”)
may still provide valuable services (e.g., as message store) and col-
lect (backup) copies of messages for later synchronization; but they
should not be in the critical path of message delivery.

Application protocols should explicitly support controlled inter-
action with known or unknown intermediaries by providing protocol-
independent hints about their intentions (e.g., the requested resource)
so that supportive functions (e.g., caching) can be implemented
in arbitrary nodes, in a generic fashion as well as by means of
application-specific modules where available [22]. This also re-
quires a clear separation of the communication transaction portion
(e.g., an HTTP GET response) of a protocol message from the sub-
stance portion (e.g., the resource carried in the response) conveyed
as part of a transaction so that the origins of the message and the
contents may be different and may be operated on (e.g., cached) and
secured (e.g., authenticated, integrity protected) independently.6

4.2 True End-to-End Semantics
The end-to-end principle suggests that protocol functions can be

best (if not only) provided where the necessary context information
is, i.e., in the applications [24]. This applies particularly to appli-
cations in mobile communication environments where end-to-end
paths may not exist so that intermediaries are needed. This calls for
applications maintaining state entirely independently of lower lay-
ers and also modifying state alone by explicit end-to-end operations
within the application protocol, using explicit positive and negative
6Unlike HTTP, where attributes about a contained resource are car-
ried in HTTP headers making caching of resources authenticated in
their entirety difficult.

confirmations where appropriate to achieve end-to-end reliability.
This also requires end-to-end security mechanisms at the appli-

cation layer which must be robust against untrusted entities on the
path capable of inserting, modifying, and deleting messages at ran-
dom. With the presence of random intermediaries, message con-
tents needs to self-protecting end-to-end as well, i.e., any private
information needs to be encrypted within a message and not rely
on lower layer mechanisms.

4.3 Aspects of Protocol Operation
Application protocols must be prepared to operate asynchronously

and to deal with RTTs in the order of minutes or more. There-
fore, they must not depend on frequent interactions but use self-
contained messages that carry all the necessary information for
processing—by their remote peers as well as in intermediaries.7

For all interactions, protocol timers should be flexible to deal with
highly variable RTTs.

Since messages may be replicated and several copies may ar-
rive at the destination (possibly with minutes or hours in between),
protocol operations should ideally be idempotent and, if necessary,
explicitly indicate the initial state they wish to act upon as some
precondition so that the recipient can filter out outdated ones. To
minimize the need for end-to-end interactions, the concept of state
predicates may be expanded to more complex operation flows de-
scribed by metadata (as minimally present in conditional opera-
tions in HTTP) and even to mobile code. This would allow, e.g.,
messages to include alternative request treatments in the order of
preference or even numerous operations and alternative processing
paths for later operations depending on the outcome of earlier ones.
In effect, this would support maximizing independent message han-
dling, applicable to endpoints as well as intermediaries [6].

Applications should not use potentially ephemeral lower layer
(e.g., IP) addresses to identify endpoints or intermediaries but rather
persistent identifiers (such as URIs) and also allow distinguish-
ing between different application instances. To avoid relying on
a (potentially unreachable) address resolution infrastructure, the
identifier-based routing capabilities of DTN with late binding should
be exploited so that the address resolution can be deferred by the
mobile node to the routing substrate. Where translations between
names, addresses, and identifiers or other location functions are
needed, infrastructureless operation (which may be application- spe-
cific) may be preferable—which may leave trust issues to be solved.

4.4 Some Security Considerations
As noted above, end-to-end security mechanisms are needed and

transaction and content (“substance”) protection should be inde-
pendent. Furthermore, the limited interactivity implies that challenge-
response mechanisms for authentication or n-way handshakes to
prevent DoS attacks may not be as easily applicable. Instead, some
variant of public key cryptography may be needed to authenticate
the device (e.g., based upon cryptographic host identities as in HIP)
and/or the user (e.g., using certificates). However, it may not be
possible to instantaneously validate newly received certificates so
that additional plausibility checks may need to be performed by the
application, paired with caching of self-signed certificates (ideally,
after an initial contact in a trustworthy environment).8 Depending
on the level of authentication achieved, the amount of resources al-
located to process a message may vary (and, e.g, grow over time as
trust increases over repeated contacts). End-to-end encryption may
benefit from HIP as well as from identity-based cryptography.
7With the capability of DTNs to convey messages of arbitrary size,
MTU size limitations are no longer an issue.
8Certificate revocation will also need to be addressed.

Finally, an important design consideration (not just for applica-
tion protocols) are denial-of-service and other attacks. With fewer
interactions, the computational complexity of operations to vali-
date a single message may increase. Furthermore, when variants of
flooding or probabilistic routing are used—not unusual for mobile
ad-hoc networks—messages may be disseminated widely so that
some “on-path” attacks become easier: malicious nodes may eas-
ily learn about potential targets from observing other messages and
then flood the victim.

4.5 Soft Factors
Designing application protocols for challenged mobile environ-

ments implies increased robustness to all kinds of failures which
may also be advantageous in usually well-connected environments.
The downside of an asynchronous design, however, may be a lack
of (perceived) responsiveness or performance while connected (com-
pared to traditional protocols fulfilling the same function). Since a
user must not be required to know (or even configure) whether she
is well connected or not, any application protocol designed for a
mobile environment should not perform noticeably worse in a con-
nected environment compared to its predecessor. From the user
interface perspective, this may imply preserving the basic look and
feel and the basic interaction paradigms for the user and gradu-
ally adding further means for user awareness about disconnections
and operations in progress as well as, ultimately, features to control
delay-tolerant operation.

Furthermore, the deployment barrier for individuals must be low.
Usage incentives (i.e., personal gain) should not be depend on an
already large adoption. Basically, the capability of DTNs to op-
erate in sparse environments may support communication even in
a small user community. Additionally, any new application pro-
tocol design must also offer a migration path for user applications
(clients, servers, peers) and intermediaries that allows for gradual
introduction. With proper intermediary support built into a proto-
col, designing appropriate gateway functions to support the transi-
tion should be straightforward (even if many gateways may have to
be trusted to translate, e.g., authentication functions, so that some
points of failure will remain).

Finally, as deployment also implies at least some support by
users, vendors, operators, and various other stakeholders, the rel-
evant economic and political aspects need to be considered [9]. For
example, with ad-hoc networking, users may be concerned about
others intruding their mobile devices (which carry lots of important
personal data today) and may wonder why they should share their
CPU, memory, and battery capacity with others so that incentives
are needed (e.g., based upon reciprocity). Also, service providers
should see an opportunity (rather than just a threat) for their oper-
ations which, in turn, may influence the willingness of device ven-
dors to support these new applications—in addition to the latter’s
motivation of providing richer functionality in their handsets.9

5. CONCLUSION
In this paper, we have discussed protocol design aspects for mo-

bility support exclusively based upon asynchronous communica-
tion. To a certain extent, these are mostly about robust application
protocol design where mobility essentially may increase the fail-
ure probability significantly and allows for shortcuts (e.g., peer-to-
peer) that were not needed before.

DTN-based mobility raises one major question: will the per-
formance of purely asynchronous operation be acceptable in (mo-

9For example, we observe a slowly increasing support for IEEE
802.11 WLAN in mobile phones.

bile and) well-connected environments. Given that today’s proto-
cols are quite inefficient in their interaction behavior and in the
use of network resources (and that some 20+ years of experience
have gone into the development of today’s Internet protocol stacks),
there is no reason why well-tuned asynchronous protocol imple-
mentations should not achieve similar performance. Nevertheless,
some application protocols may exhibit different behavior to the
user: for example, with bundled transmission of web pages, their
content may no longer be displayed incrementally as the individ-
ual resources arrive but rather all-at-once. In effect, the user loses
the option to take the next action while retrieval is still in progress
(such as selecting the next link to follow or aborting retrieval). To
maintain this user experience, optimizations such as some form of
incremental delivery may be worth considering (when the user is
seemingly well-connected).

This highlights one aspect of the general issue of redesigning ap-
plication protocols: entities need to be more proactive and clearly
communicate all of their intentions at once rather than iteratively
interacting with a peer. This may lead to increased complexity in
application protocols—which may employ metadata or even mo-
bile code to express themselves—so care must be taken to avoid
overengineering.

Relying on a DTN substrate also means further assessing its abil-
ity to efficiently deal with user mobility and its “reliability” of mes-
sage delivery—which may influence design choices for application
protocols. In particular, the behavior of DTNs under stress (“con-
gestion”) is also yet to be investigated as are suitable “feedback
loops” for applications. The aforementioned explicit signaling in
application protocols may also cover their interaction with a DTN
layer, e.g., by means of routing and message handling hints.

Finally, security—particularly authentication of other nodes and
authorization of local resource utilization—to prevent DoS attacks,
spamming, and other security threats, will be crucial for large scale
deployment. Mechanisms need to be designed that can operate
without frequent end-to-end interactions and without an always avail-
able infrastructure.

6. REFERENCES
[1] Mindstream project. http://mindstream.watsmore.net/, 2006.
[2] A. Baig, M. Hassan, and L. Libman. Prediction-based

Recovery from Link Outages in On-Board Mobile
Communication Networks. In Proceeding of IEEE Globecom
2004, December 2004.

[3] M. Bechler, W. J. Franz, and L. Wolf. Mobile Internet Access
in FleetNet. In 13. Fachtagung Kommunikation in verteilten
Systemen, Leipzig, Germany, April 2003.

[4] O. Bergmann and C. Bormann. AJAX: Frische Ansätze für
das Web-Design. SPC TEIA Lehrbuch Verlag, 2005.

[5] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby.
Performance Enhancing Proxies Intended to Mitigate
Link-Related Degradations. RFC 3135, June 2001.

[6] C. Bormann, D. Kutscher, and J. Ott. Disruption Tolerance:
The Near End. Presentation at the Dagstuhl Seminar on
Disruption Tolerant Networking, April 2005.

[7] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst,
K. Scott, K. Fall, and H.Weiss. Delay-Tolerant Network
Architecture. Internet Draft draft-irtf-dtnrg-arch-05, Work in
progress, March 2006.

[8] H. Chang, C. Tait, N. Cohen, M. Shapiro, S. Mastrianni,
R. Floyd, B. Housel, and D. Lindquist. Web Browsing in a
Wireless Environment: Disconnected and Asynchronous
Operation in ARTour Web Express. In Proceedings of ACM

Mobicom 97, Budapest, Hungary, pages 260–269, 1997.
[9] D. D. Clark, K. R. Sollins, J. Wroclawksi, and R. Braden.

Tussle in Cyberspace: Defining Tomorrow’s Internet. In
Proceedings of ACM SIGCOMM, August 2002.

[10] A. Doria, M. Uden, and D. P. Pandey. Providing connectivity
to the saami nomadic community. In Proceedings of the 2nd
International Conference on Open Collaborative Design for
Sustainable Development, Bangalore, India, December 2002.

[11] T. Goff, J. Moronski, and D. Phatak. Freeze-TCP: A True
End-to-end TCP Enhancement Mechanism for Mobile
Environments. In Proceedings of IEEE Infocom, 2000.

[12] Haggle project website. http://www.haggleproject.org/, 2006.
[13] J. J. Kistler and M. Satyanarayanan. Disconncted Operation

in the Coda File System. In ACM Transactions on Computer
Systems, volume 10, February 1992.

[14] A. Lindgren and A. Doria. Probabilistic Routing Protocol for
Intermittently Connected Networks. Internet Draft draft-
lindgren-dtnrg-prophet-02, Work in Progress, March 2006.

[15] M. Lukac, L. Girod, and D. Estrin. Disruption Tolerant Shell.
In ACM SIGCOMM Workshop on Challenged Networks
(CHANTS), September 2006.

[16] Y. Mao, B. Knutsson, H. Lu, and J. Smith. DHARMA:
Distributed Home Agent for Robust Mobile Access. In
Proceedings of the IEEE Infocom, Miami, March 2005.

[17] O. Mukhtar and J. Ott. Backup and Bypass: Introducing
DTN-based Ad-hoc Networking to Mobile Phones. In
Proceedings of RealMAN 2006, May 2006.

[18] J. Ott and D. Kutscher. Why Seamless? Towards Exploiting
WLAN-based Intermittent Connectivity on the Road. In
Proceedings of the TERENA Networking Conference, TNC
2004, Rhodes, June 2004.

[19] J. Ott and D. Kutscher. A Disconnection-Tolerant Transport
for Drive-thru Internet Environments. In Proceedings of
IEEE Infocom, Miami, March 2005.

[20] J. Ott and D. Kutscher. Applying DTN to Mobile Internet
Access: An Experiment with HTTP. Technical Report
TR-TZI-050701, Universität Bremen, July 2005.

[21] J. Ott and D. Kutscher. Bundling the Web: HTTP over DTN.
In Proceedings of WNEPT 2006, August 2006.

[22] J. Ott and M. J. Pitkänen. Application-aware DTN Routing.
Submitted for publication, 2006.

[23] A. Pentland, R. Fletcher, and A. Hasson. DakNet:
Rethinking Connectivity in Developing Nations. IEEE
Computer, 37(1):78–83, January 2004.

[24] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End
Arguments in System Design. ACM Transactions on
Computer Systems, 2(4):277–288, November 1984.

[25] J. Salz, A. C. Snoeren, and H. Balakrishnan. TESLA: A
Transparent, Extensible Session Layer Architecture for
End-to-end Network Services. In 4th Usenix Symposium on
Internet Technologies and Systems, March 2003.

[26] S. Schütz, L. Eggert, S. Schmid, and M. Brunner. Protocol
enhancements for intermittently connected hosts. ACM
Computer Communications Review, 35(3):5–18, July 2005.

[27] K. Scott and S. Burleigh. Bundle Protocol Specification.
Internet Draft draft-irtf-dtnrg-bundle-spec-05, Work in
progress, May 2006.

[28] A. C. Snoeren and H. Balakrishnan. An End-to-End
Approach to Host Mobility. In Proceedings of Mobicom,
2000.

