
Helsinki University of Technology
Networking Laboratory
S-38.3138 Networking Laboratory, Special Assignment

DTN-based Blogging

	 	 	 	 	 	 	 	 	 	 Made by:	 	 Lauri Peltola
	 	 	 	 	 	 	 	 	 	 	 	 	 60965R
	 	 	 	 	 	 	 	 	 	 	 	 	 lauri.peltola@tkk.fi

 Instructor: Jörg Ott
 Supervisor: Jörg Ott

	 	 	 	 	 	 	 	 	 	 Submitted:	 1.7.2007

Abstract
Network conditions in a mobile environment are often difficult from the point of view of
traditional network protocols, such as TCP. Intermittent connectivity, long delays and
nonexistent end-to-end paths hinder protocol performance or may prevent it altogether. A
delay-tolerant network (DTN) is an overlay network that tackles these problems and al-
lows communication to flow even in severe conditions. In this special assignment, we will
devise an architecture for DTN-based blogging and also implement it in a concrete appli-
cation. Traditional blogs require that a TCP connection from the user to the blog server
exists. Our application allows a mobile user to send posts to her blog without a pre-
existing end-to-end communication path. The underlying DTN takes care of delivering the
post to the receiver, on an opportunistic hop-by-hop basis if needed. The user interfaces
to the application—both for composing the posts and for reading them—are regular
HTML pages, accessible with any web browser.

2

1. Introduction 4

2. Technologies and tools 5

2.1 Delay-tolerant networks 5

2.2 DTN2 6

2.3 Ruby 6

2.4 Dtn-ruby 6

2.5 Camping 6

2.6 SQLite 7

3. Overview of the application 8

3.1 Traditional blogs 8

3.2 Blogging through DTN 8

4. Implementation 9

4.1 Basic operation 10

4.2 Message format 11

4.3 Security 12

4.4 User interfaces 12

5. Conclusion 14

6. References 15

Appendix: Installation instructions 16

3

1. Introduction
The goal of this special assignment is to build a blog application on top of a delay-
tolerant network (DTN). A DTN is an overlay network designed to operate in conditions in
which common network protocols may fail. Typically this involves mobile nodes in a net-
work where connectivity is intermittent.

The following chapters first introduce the concept of delay-tolerant networks and the
various tools that are used in building the application. An overview of blogging in general
is provided, along with a discussion on how adding DTN to the mix changes things.

Then, the actual implementation of the blog application is presented. First, we introduce
the application architecture from a higher-level perspective, and then go through the op-
eration and other aspects in more detail.

Finally, in a concluding chapter we evaluate the results of the work and discuss possible
future improvements to the application.

4

2. Technologies and tools
The following chapters briefly introduce the technologies upon which the application is
built, and the tools that are used in the implementation. The introduction to delay-tolerant
networks below is based on [1].

2.1 Delay-tolerant networks
A delay-tolerant network is an overlay on top of a number of diverse regional networks,
including the internet. Within a DTN, the regional networks may be extremely remote in
terms of delay, and may employ, for example, different wireless technologies. The DTN
overlay accommodates these varying network characteristics and provides a service that
works regardless of “difficult” conditions in the underlying networks.

The motivation for DTN is that in certain situations the protocols used in the internet sim-
ply do not work. Examples of such situations are partitioned networks, highly asymmetric
data rates, high error rates and long delays. A typical use-case for a DTN is an interplane-
tary network, e.g. a satellite orbiting Earth communicating with another satellite orbiting
Mars. Within our solar system, propagation delays are in the order of minutes, and thus
using a conversational protocol like TCP would be highly impractical.

DTN works by introducing a new protocol layer, the bundle layer, on top of the transport
layer. The transport protocols used in the underlying regional networks need not be the
same – the bundle layer is the glue that binds all the various lower layers together. The
applications in the DTN only need to communicate with the homogenous bundle layer.

Bundles are messages that consist of the bundle header, control information (provided by
the source application for the destination application) and user data. In essence, a bundle
just extends the data encapsulation hierarchy with one further level.

The bundle layer has a set of mechanisms to overcome the difficulties of intermittent,
long delay networks. The basic idea is to use store-and-forward message switching, i.e.
hold bundles in a persistent storage along the communication path until the next hop
comes available. An end-to-end path need not exist when the bundle is initially sent. Also,
the bundle layer protocol is non-conversational in the sense that the nodes communicate
between each other using simple sessions with minimal or no round-trips. Acknowledg-
ments from the receiving node are optional.

To cope with long delays while still allowing TCP (or some other conversational protocol)
to be used as the underlying protocol in some parts of the network, the bundle layer util-
izes transport-layer termination. This means that a DTN node acts as a surrogate for a
TCP end-node, isolating the TCP connection from the bundle layer.

DTN implements node-to-node reliability by means of custody transfers. In such a trans-
fer, successive nodes in the bundle layer ensure the delivery of a bundle by means of re-
transmissions and acknowledgments. The bundle layer provides six different classes of
service for bundle transmission. The source node may choose suitable service class de-
pending on the nature of the transfer.

5

2.2 DTN2
DTN2 is a C++ implementation of the DTN bundle protocol by the Delay Tolerant Net-
working Research Group (DTNRG). [2] It is used as the basis of this work to provide the
underlying DTN infrastructure.

2.3 Ruby
Ruby is the programming language in which our application is built. The Ruby website
describes the language thusly: “Ruby is a dynamic, open source programming language
with a focus on simplicity and productivity. It has an elegant syntax that is natural to read
and easy to write.” [4]

Ruby is an interpreted, object-oriented language that has a clear and concise, highly ex-
pressive syntax. Consider the following short example that defines a function which prints
out the string “Hooray!” three times:

 def say_hooray
 3.times { puts “Hooray!“ }
 end

This piece of code demonstrates two of the many nice features in Ruby. First, in Ruby,
everything is an object, including numbers and other primitive types. Because the number
3 is an object (an instance of the Integer class), it has its own set of methods, such as
times in our example. Secondly, Ruby supports blocks (or closures) that can be attached
to any method, describing how that method should act. Ruby also has a large standard
library which has a wealth of functions for common tasks, e.g. socket programming.

2.4 Dtn-ruby
Dtn-ruby is a set of bindings to the application library of DTN2. [3] It provides an easy-to-
use Ruby interface to the DTN2 functions, allowing the programmer to create applications
that leverage DTN with minimal effort.

2.5 Camping
Camping is a tiny (less than 4 kilobytes in code) Ruby web framework that is used for
creating the web interfaces of the application. It makes it very easy to create small appli-
cations that follow the model-view-controller (MVC) paradigm by providing the necessary,
minimal infrastructure. Camping itself is very simple, but it also utilizes some external
components, such as an implementation of the ActiveRecord pattern for object-relational
mapping (ORM), and Markaby for markup creation with Ruby code. [5]

To be more specific, the following are the main features of Camping that are used in this
work.

ActiveRecord: Blog posts—which are objects in the application code—are persisted in a
SQLite database (i.e., blog post is a model, the M in MVC). ActiveRecord abstracts the
relation between Ruby objects and database rows, allowing the programmer to manipu-
late the database without writing any SQL. For example, to retrieve a blog post with the
title Sake Bomb!, one would do:

	
 post = Post.find_by_title(“Sake Bomb!”)

6

And to save a new blog post:

	
 Post.create({
	
 :title => “Cappin’ that Stat”,
	
 :body => “...text here...”
	
 }

Routing: Camping allows easy routing of URLs to the application’s internal actions. Dif-
ferent actions can be run depending on the HTTP method (GET or POST). Consider the
following:

	
 class Index < R “/”, “/home”
	
 def get
	
 	
 @posts = Post.find(:all)
	
 	
 render :index
	
 end
	
 def post
	
 	
 Post.create({:title => @input.title, :body => @input.body})
	
 	
 render :post_created
	
 end
	
 end

This piece of code defines a controller (the C in MVC), which responds to URLs / and
/home. If the URL is requested with GET, all posts are fetched and displayed to the user. If
the request is POST, a new post is created and the user is shown a corresponding mes-
sage.

Markaby: The HTML views (the V in MVC) can be written in pure Ruby code using Mark-
aby (Markup with Ruby). This approach is less verbose than plain HTML and makes it
easy to mix variables within the views. For example, this is the layout for the blog frontend
(self << yield adds view-specific content to the layout):

	
 xhtml_strict do
 head do
 title 'dtn-blog frontend'
 link :rel => 'stylesheet', :type => 'text/css', :href => '/styles.css'
 end
 body do
 div.container! do
 h1.header { a 'dtn-blog frontend', :href => R(Index) }
 div.content { self << yield }
 end
 end
 end

Alongside Camping we are using Mongrel, which is a slim and fast HTTP server for Ruby
applications. [6]

2.6 SQLite
SQLite is a very lightweight, zero-configuration SQL database engine. It stores the entire
database in a single file on the disk and supports most features of the SQL92 query lan-
guage. [7] Because of its simplicity, SQLite is a perfect match for the Camping framework.

7

3. Overview of the application
The application that built for this special assignment is a blog. A blog is a website which
displays posts written by the author in chronological order, often also allowing the viewers
to add their own comments. Blogs usually focus on one subject which can be virtually
anything that people can be interested in: technology, music, photography, wine, and so
on. Some blogs are the author’s personal diaries, used for keeping up with friends and
family, or just for the pleasure of writing and sharing.

The power of blogs has also been noticed in the mainstream – large newspapers have
blogs on their websites as a complementary service, and many companies use blogs for
corporate PR.

3.1 Traditional blogs
The usual blog setup is such that the application is hosted on a web server along with a
database that holds the content. The author uses a web browser to connect to the server
over HTTP and typically authenticates with a username/password combination. After that,
an HTML form interface is used to compose the content, which is then sent over HTTP to
the server and saved to the database. The blog can be read by anyone with a web
browser. 1

Because of the reliance on HTTP, all this assumes that TCP connectivity is available. If
this is not the case, the blog cannot be used. A person trying to create an entry to her
blog while on the move with a mobile device would have to save a local copy of the post
and wait until the network conditions allow an HTTP connection to the web server.

3.2 Blogging through DTN
Our blog application differs from the traditional blog in the way in which new entries are
posted on the blog. The back-end side of things is the same: a web server hosts the blog
application and the content database. The difference is that in our architecture, the author
does not use HTTP to connect to the server whenever she wishes to create an entry – the
interface for composing posts exists on the (mobile) device she is using. The post is
composed locally and formatted into a bundle, which is then sent through DTN to the
back-end server.

This means that TCP connectivity is not required. Only an arbitrary DTN infrastructure,
somehow connecting the mobile device with the web server, must exist.

8

1 It is common that blogs also offer RSS/Atom feeds, which allow reading the content without actually using
a web browser to navigate to the site. Nevertheless, the mechanism for retrieving the content is the same:
an HTTP GET request.

4. Implementation
Figure 1 below depicts the architecture of the application. The main parts are the blog
front-end, the blog back-end and the blog daemon.

Figure 1: The architecture of the application concept.

The blog front-end is the part of the application that runs on the mobile node and is used
to compose the blog posts. The front-end also has persistent storage (a database) in
which information about sent posts is saved.

The blog back-end is where the posts end up after being delivered through the DTN. It
runs on a web server and can be accessed via HTTP by anyone who wishes to read the
blog. The back-end also needs database in which to store the blog posts.

The blog daemon (Blogd in figure 1) is an entity that exists on both the front-end and
back-end sides of the blog. On the back-end side it listens to incoming bundles from the
DTN, forwards them as HTTP requests to the blog and sends acknowledgment bundles
back to the front-end.

On the front-end side the daemon listens to incoming HTTP requests from the mobile
node, formats them into bundles and sends them through the DTN. The daemon also re-
ceives acknowledgment bundles and forwards these as HTTP requests to the mobile
node.

The blog daemons may be co-located with the front-end and back-end nodes, but that
need not be the case. Since the communication between the daemons and the end-
nodes is standard HTTP, it may go through an arbitrary path.

9

In our implementation, both the front-end and back-end are web applications built on the
Camping framework. Thus, composing blog posts is done the traditional way, with a web
browser using HTML forms. It is not a requirement that the front-end is a browser-
accessible web application, it might as well be a native application on, for example, a
Symbian mobile device.

The blog daemons are not separate physical entities on either end – they are running on
the same system as the Camping applications. SQLite databases are used for persistent
storage.

4.1 Basic operation
Figure 2 shows a more detailed view of the architecture as it is realized in our implemen-
tation. The addresses for the different interfaces are shown. As mentioned above, the
blog daemons are not separate entities, which means that the HTTP traffic confined
within the end-systems. Only the DTN traffic flows between the systems, through some
transit network. 2

Figure 2: The architecture of our implementation.

The following example illustrates the operation of the application step-by-step:

1. The user of the mobile node (e.g., a laptop computer) fires up a web browser and
opens the blog front-end page. She is presented with an familiar looking HTML form
found in all web based blogs. She types in the title of the post, the actual text and at-
taches an image file.

10

2 Actually, in our development setup, all the entities are within a single computer and no traffic flows
through any network. However, if this system were deployed, it would work as described in the text.

2. The blog front-end application formats the post into a S/MIME multipart message and
sends it as an HTTP POST request to the blog daemon at http://localhost:3302.
Also, an entry for this post is saved to the local database.

3. The blog daemon receives the post over HTTP, takes the body of the request and puts
it into a bundle, and sends the bundle to dtn://blog.dtn/back.

4. The bundle travels through the DTN to the other end, where the back-end blog dae-
mon receives it. It puts the bundle payload into an HTTP POST request and sends it to
the blog back-end at http://localhost:3301.

5. The blog back-end application receives the HTTP request, parses the S/MIME mes-
sage, saves a new post to the database and returns 200 OK. If the verification of the
digital signature in the post fails, 403 Forbidden is returned.

6. The blog daemon sends back an acknowledgment bundle containing the 200 OK re-
sponse code.

7. The front-end daemon receives the acknowledgment bundle and forwards it as an
HTTP request to the front-end application.

8. The blog front-end receives the response code and knows that the post was success-
fully delivered. It updates the local database entry for the post, after which the user
can see on the web interface that the post has gone through.

4.2 Message format
The posts are formatted nested S/MIME multipart messages. The “outer” message con-
tains two parts: user data and a digital signature (explained further in the following chap-
ter). The user data itself is a MIME multipart message.

In the user data part, the Message-ID header is used for uniquely identifying the posts.
The message has two mandatory parts, post title and post body, always in the this order.
A fourth optional part may exist, containing an image file attachment (encoded in base64
format). The following is an example of the S/MIME post format:

MIME-Version: 1.0
Content-Type: multipart/signed; protocol="application/x-pkcs7-signature"; mi-
calg=sha1; boundary="----E87A703893D676294B5733282BE4AFC7"

This is an S/MIME signed message

------E87A703893D676294B5733282BE4AFC7
Message-ID: 30
Content-Type: multipart/mixed; boundary="=-1181845538-996536-14870-1398-1-="
MIME-Version: 1.0

--=-1181845538-996536-14870-1398-1-=
Content-type: text/plain; charset="utf-8"

This is the title of the post.
--=-1181845538-996536-14870-1398-1-=
Content-type: text/plain; charset="utf-8"

11

And this is the body.
--=-1181845538-996536-14870-1398-1-=
Content-type: image/jpg
Content-transfer-encoding: base64

[FILE DATA]
--=-1181845538-996536-14870-1398-1-=--

------E87A703893D676294B5733282BE4AFC7
Content-Type: application/x-pkcs7-signature; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7s"

[SIGNATURE]
------E87A703893D676294B5733282BE4AFC7--

4.3 Security
Blog posts are, by definition, meant to be seen by the public. Thus, there is no reason to
protect the confidentiality of the posts by means of encryption. However, authentication
and data integrity must be ensured, i.e. the back-end server must be able to verify the
identity of the sender, and that the content of the post has not been tampered with along
the way.

For this purpose, S/MIME digital signatures are used. When sending a post, the front-end
signs the message with a certificate and 2048-bit private key. The back-end server veri-
fies the signature before accepting the post. If the verification fails, the server responds
with HTTP status 403 Forbidden. This allows the blog daemon to report the error back to
the sender.

The certificate and private key are stored within the front-end in PEM-format.

4.4 User interfaces
There are two user interfaces for the blog: one for composing the posts and another for
reading them. These are regular HTML pages, generated by the Camping applications
and served by the Mongrel web server. Not much effort has been put into designing the
looks of these interfaces, as that is not the point of this work.

Figure 3 shows the public interface of the blog, which anyone can access. It is no more
than a list of posts, with each post having a title, a date of publication, a body text and an
optional image attachment. The figure also shows a link that can be clicked to delete the
post, which, of course, wouldn’t be available for the public.

Figure 4 shows the interface that is used for composing posts. It is a normal HTML form
with fields for the title, body and image attachment. There is also a list of previously sent
posts and their statuses. The status of a post can be one of the following:

• Sent – Post was sent, no response has been received.

• Delivered – Post has been acknowledged.

• Unauthorized – Post was received but signature validation failed.

• Failed – Post was received but could not be parsed.

12

Figure 3: The public interface for reading posts.

Figure 4: The interface for composing posts on the mobile node.

13

5. Conclusion
During the course of this special assignment, the concept of blogging through the DTN
has proven to be an idea to pursue. DTN mitigates the issues that are related to network
connectivity of mobile nodes, especially the problems that hinder the performance of
TCP, thus making web access difficult. Using the DTN infrastructure, the application can
overcome the typical problems associated with mobility: intermittent connectivity, long
delays, high error rates and such.

The blog application we built is a functional demonstration of the concept. The applica-
tion works as such, and could be used if a DTN infrastructure were available, although for
real-world usage the installation procedure (described in the appendix) should be
slimmed down to produce an easy-to-use software package.

One should also note, that it is not necessary to build a custom back-end application for
the blog, as we have done. It would certainly be possible to use one of the popular, freely
available blogging engines as the back-end. Only the blog daemon that translates bun-
dles to HTTP, and vice versa, would have to be changed to accommodate the blogging
engine’s internal HTTP interface. Developing such a “plugin” would surely be a feasible
task.

Presently, DTN is used only for sending the posts to the blog. To read the blog, a plain old
well connected web browser is still needed. Developing functionality to allow the blog
also be read through DTN would the obvious next step. A blog is, in a hierarchical sense,
a rather simple structure. Thus, bundling a blog (or a part of it) and sending it through
DTN should not be too difficult. However, this problem can be augmented to the general
case of sending arbitrary web content over DTN, which is a whole subject of its own.

14

6. References
[1] Forrest Warthman: Delay-Tolerant Networks (DTNs): A Tutorial (2003)

[2] Delay Tolerant Networking Research Group (www.dtnrg.org)

[3] Dtn-ruby (prj.tzi.org/cgi-bin/trac.cgi/wiki/Dtn-ruby)

[4] Ruby language (http://www.ruby-lang.org/en/)

[5] Camping (http://code.whytheluckystiff.net/camping/)

[6] Mongrel (http://mongrel.rubyforge.org/)

[7] SQLite (http://www.sqlite.org/)

15

Appendix: Installation and usage instructions
Installation
The following steps will guide you through installing the software that is required to run
the blog application on UNIX-based environments. Note that DTN2, Ruby and Dtn-ruby
have additional prerequisites that—depending on your operating system—might or might
not be installed already. You will need to install these dependencies first if they are not
present. If necessary, consult Google for help.

1. DTN2 – Follow the installation instructions found on the DTNRG website
(http://www.dtnrg.org/docs/code/DTN2/doc/manual/compiling.html) to obtain and
compile DTN2.

2. Ruby – Download the latest Ruby source code from http://www.ruby-lang.org. GNU-
readline is needed for the Ruby console (irb), but you may also compile without read-
line support. Untar the file, configure and compile as per usual:

./configure --prefix=[/your/path/of/choice] --enable-pthread
	
 	
 --with-readline-dir=[/path/to/readline] --enable-shared
make
make install

3. Rubygems – Rubygems is a package manager for Ruby. It will be used to install the
various components (gems) used by the application. Obtain the latest source from
http://rubyforge.org/frs/?group_id=126, untar, and install by running setup.rb:

ruby setup.rb

4. Gems – Installing gems is a simple one-line task. The required gems are Mongrel,
Camping and Rubymail. To install, do the following (and select the latest Ruby version
of each gem):

gem install mongrel --include-dependencies
gem install camping --include-dependencies
gem install rmail

5. Dtn-ruby – Installation instructions for dtn-ruby can be found on the project website
(https://prj.tzi.org/cgi-bin/trac.cgi/wiki/Dtn-ruby). The source code is only
available as a Subversion checkout, so you will need the svn command line tool.

6. The blog application – Now you have the necessary infrastructure installed. You will
also need a certificate and a private key for signing the S/MIME messages. You can
use the ones included in the tarball or create your own with a suitable application. The
certificate and key must be in PEM format, and the key must use the RSA algorithm.
Finally, untar the blog application to an appropriate location and you are set.

16

Usage
You may run the front-end and back-end applications on the same computer or on two
separate computers. In the latter case, you have to set up DTN routing between the two
systems. These instructions assume that you are using just one computer for both ends
of the application. However, using two computers is no different, just run the necessary
commands on both systems.

1. Start the DTN daemon.

dtnd

2. Start the Camping applications.

camping blog_* -d blog.db

This will mount the applications to http://localhost:3301/blog_backend and
http://localhost:3301/blog_frontend.

3. Start the back-end blog daemon, specifying the local DTN endpoint id for the back-
end, and the HTTP address to which the posts are forwarded.

ruby blogd.rb dtn://blog.dtn/backend http://localhost:3301/blog_backend/add

4. Start the front-end blog daemon, specifying the local DTN endpoint id for the front-
end, the HTTP address to which the acknowledgments are forwarded, and the remote
DTN endpoint id of the back-end.

ruby blogd.rb dtn://blogger.dtn/post …
… http://localhost:3301/blog_frontend/acknowledge dtn://blog.dtn/backend

5. Point your web browser to http://localhost:3301/blog_frontend and make a test
post. Go to http://localhost:3301/blog_frontend and see if it worked.

17

