
Juho Paaso

Guaranteed access over consumer-level
connections

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 3.11.2011

Thesis supervisor:

Prof. Jukka Manner

Thesis instructor:

M.Sc. (Tech.) Antti Mäkelä

A’’ Aalto University
School of Electrical
Engineering

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Juho Paaso

Title: Guaranteed access over consumer-level connections

Date: 3.11.2011 Language: English Number of pages:7+50

Department of Communications and Networking

Professorship: Networking technology Code: S-38

Supervisor: Prof. Jukka Manner

Instructor: M.Sc. (Tech.) Antti Mäkelä

The scope of this thesis was providing guaranteed access over an array of unguaran-
teed and cheap consumer-grade connections. We tested how well high-availability
access can be created with Redundant Array of Independent Internet Connections
(RAIIC). In RAIIC, multiple unreliable connections are bundled together. Cus-
tomer traffic is transferred on one connection at a time. State of the current con-
nection is constantly monitored. If connectivity deteriorates, the system switches
the traffic onto another unreliable connection. Connection switching should be
invisible to the communicating nodes.
For this study we developed a Mobile IP based implementation. We were able
to test the concept on running code. We measured how the connection switching
affects the end-user experience and the results seemed quite promising. On TCP
the switching corresponded to 1 - 1.5 second outage, which is considered to be
well tolerable. VoIP quality remained ”Fair” in Mean Opinion Score metrics.

Keywords: Networking, network programming, guaranteed access, Mobile IPv4,
IP routing, UDP tunneling, Redundant Array of Independent Inter-
net Connections (RAIIC), Service Level Agreement (SLA)

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Juho Paaso

Työn nimi: Luotettava yhteys epäluotettavien liittymien yli

Päivämäärä: 3.11.2011 Kieli: Englanti Sivumäärä:7+50

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkkotekniikka Koodi: S-38

Valvoja: Prof. Jukka Manner

Ohjaaja: DI Antti Mäkelä

Tässä opinnäytetyössä tutkitaan konseptia Redundant Array of Independent
Internet Connections (RAIIC), jossa ajatuksena on tarjota luotettava yhteys
usean halvan ja epäluotettavan liittymän yli. Yhtä epäluotettavaa liittymää
käytetään kerrallaan tämän tilaa jatkuvasti tarkkaillen. Jos yhteyden tila heikke-
nee, järjestelmä siirtää liikenteen toiselle liittymälle ilman että kommunikoivat
osapuolet huomaavat muutosta. Näin ollen voidaan tarjota virtuaalinen, luotet-
tava bittiputki halpojen yhteyksien yli.
Tutkimusta varten kehitimme Mobile IP -protokollaan pohjautuvan toteutuksen.
Tällä pääsimme testaamaan konseptia oikeassa tietoverkossa. Mittasimme, miten
liittymän vaihtaminen vaikuttaa loppukäyttäjän kokemaan palvelunlaatuun.
TCP-protokollalla liittymän vaihto vastasi palvelussa 1 - 1.5 sekunnin katkoa,
joka on vielä hyvinkin siedettävä. VoIP-palvelun laatu ei laskenut alle kohtalaisen
tason (Mean Opinion Score -asteikolla ”Fair”).

Avainsanat: Tietoverkkotekniikka, luotettava yhteys, Mobile IPv4, IP-reititys,
UDP-tunnelointi, Redundant Array of Independent Internet Con-
nections (RAIIC), Service Level Agreement (SLA)

iv

Preface

I want to thank my instructor Antti Mäkelä, supervisor Jukka Manner and co-
worker, PhD student Nuutti Varis for all the support during the development pro-
cess. It was very interesting and educational for me to work in a team with pro-
fessionals of this level. Jukka is a professor with very nice and practical approach
to research. Antti is an experienced networking expert who gave me assistance in
issues concerning networking and debugging distributed systems. Nuutti is a very
competent expert in computer science who helped me with problems concerning C
libraries and Linux configurations. I found the project very challenging and it would
have taken me twice as much time to finish it without this guidance.

I would also like to thank Elli Saarela for all the encouragement during my studies
and work, and Pekka Pyysalo, Kaisa Korhonen, Lorenzo Pansana and Florian Dupuy
for the peer support and good times at the university.

Otaniemi, 3.11.2011

Juho M. S. Paaso

v

Contents

Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1

2 Guaranteed Wide Area Network access 3
2.1 Differences between consumer-grade and business-grade connections . 3
2.2 Possible technologies to implement high availability 4
2.3 Other use cases for reliable access over unreliable connections 7

3 Mobile IPv4 with extensions 8
3.1 Mobile IPv4 addressing . 8
3.2 Mobile IPv4 signaling . 9
3.3 UDP in IP tunneling . 10
3.4 Network Mobility . 11
3.5 Home Agent assisted Route Optimization 12
3.6 Authentication in Route Optimized Mobile IPv4 network 16

3.6.1 Authentication keys . 16
3.6.2 Encryption . 17
3.6.3 Keys generated during Return Routability procedure 17
3.6.4 Registration management key updating 18

3.7 Summary of technologies . 18

4 Implementation 19
4.1 From scratch or using existing code 19

4.1.1 Observing existing implementations 19
4.1.2 Dynamics as a software to build on 20
4.1.3 Drawbacks of Dynamics’ single thread design 20

4.2 Functional modifications implemented on Dynamics 21
4.2.1 Tunneling mode changed . 21
4.2.2 Foreign agent disabled . 21
4.2.3 Added support for Network Mobility and Route Optimization 22
4.2.4 Virtual Home Addresses instead of Home Network 22
4.2.5 Added two API commands to dynmn tool 22

4.3 Containers . 23
4.3.1 Home Agent’s Home Address pool 23
4.3.2 Home Agent’s Binding Table 23
4.3.3 Route Optimization Cache . 23

vi

4.3.4 Headers and packets . 24
4.4 Socket interface . 25

4.4.1 Tunneling file descriptors (tun fd) 25
4.4.2 Home Agent side connection sockets 26
4.4.3 Mobile Router side connection sockets 28

4.5 Execution states . 29
4.5.1 Initialization . 30
4.5.2 Incoming packet handling . 31
4.5.3 Timer expiration handling . 33

5 Usage and maintenance 35
5.1 Getting started with the program . 35

5.1.1 Preparation and compilation 35
5.1.2 Execution . 35

5.2 Configuration . 36
5.2.1 Command line parameters . 37
5.2.2 Configuration files . 37
5.2.3 Defined constants . 37

5.3 Debugging tools and routines . 37
5.3.1 Monitoring execution of the software with Gnome Debugger . 38
5.3.2 Checking Linux routing configuration 39
5.3.3 Monitoring packet formats with Wireshark 40
5.3.4 Testing how the node finds a working path 40

6 Performance measurements 42
6.1 Hardware . 42
6.2 Topology . 43
6.3 Test cases . 44
6.4 Measurement results . 45
6.5 Performance summary . 46

7 Summary and future work 48

References 49

vii

Abbreviations

API Application Programming Interface
AS Autonomous system
BGP Border Gateway Protocol
CN Correspondent Node
CoA Care-of Address
CoTI Care-of Test Init message
CoT Care-of Test message
CR Correspondent Router
EDGE Enhanced Data rates for Global Evolution
GPL GNU General Public License
GRE Generic Routing Encapsulation
HA Home Agent
HAaRO Home Agent assisted Route Optimization
HMAC Hash-based Message Authentication Code
HoA Home Address
HoT Home Test message
HoTI Home Test Init message
HUT Helsinki University of Technology
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
ISP Internet Service Provider
KRm Registration Management Key
MD5 Message-Digest algorithm 5
MIP Mobile Internet Protocol
MN Mobile Node
MOS Mean Opinion Score
MPLS Multi Protocol Label Switching
MR Mobile Router
NEMO Network Mobility
NAI Network Access Identifier
NAT Network Address Translation
QoS Quality of Service
RAIIC Redundant Array of Independent Internet Connections
RFC Request For Comments
RO Route Optimization
RPF Reverse Path Filtering
RR Return Routability
SHA Secure Hash Algorithm
SLA Service Level Agreement
SLS Service Level Specification
VoIP Voice over IP
VPN Virtual Private Network
WAN Wide Area Network
WLAN Wireless Local Area Network

1 Introduction

Many organizations need reliable intra-site connectivity. Connectivity guarantees
are normally provided as Service Level Agreements (SLA) by service providers.
Guaranteed access is traditionally implemented by dedicating lines with redundancy
guarantees, which is expensive. In contrast, consumer-level connections are sold to
households with low price. Even though they operate on highly overbooked lines
they still work well most of the time. However, there are no guarantees concerning
these connections.

Redundant Array of Independent Internet Connections (RAIIC) [1] is a concept
for providing reliable and economical access by switching between several unreliable
connections. One connection is used at a time. If the state of the connection
deteriorates, the traffic is switched onto another connection. Connectivity remains
as long as all the connections are not down at the same time. With independent
connections using separate physical lines and links, the probability for a connection
breakdown is almost negligible.

In this thesis, switching between the connections is conducted with Mobile IPv4
[3] handovers. Mobile IP enables a node to move to another network without chang-
ing the address visible to other nodes (Home Address). This enables switching
between networks while maintaining the same IP address. All traffic in Mobile IP
network goes via Home Agent which is an anchor node that associates Mobile Nodes’
Home Addresses with their current locations: Care-of Addresses. Home Agent also
accepts nodes to join the Mobile IP network and authenticates nodes to each other.

Mobile IPv4 protocol has been extended with many functionalities. A Mobile
Node is able to act as Mobile Router with Network Mobility (NEMO) extension
[8]. Mobile Router can provide connectivity to a whole set of networks. Mobile
Routers are also able to create direct tunnels between each other instead of routing
all traffic via Home Agent. This extension, Home Agent assisted Route Optimization
(HAaRO) [6], enables distributing the traffic load. Also the state of a connection
can be monitored via the keepalive mechanism specified in Mobile IP Traversal of
Network Address Translation (NAT) Devices [7] extension. This mechanism enables
noticing if quality of a connection deteriorates.

Reliable access over unreliable connections can be built using these Mobile IP
features. Mobile Router provides a company site access using one consumer-level
connection. Each Mobile Router is connected to multiple service providers. State of
the connection via the current service provider is actively monitored via the keepalive
mechanism. In case of path failure, the connection is handed over to another path,
which is on another service provider’s network. With this ability to switch between
service providers, the Mobile Router is able to maintain connectivity even though
the current path fails.

In order to be able to test the concept in real world, these functionalities were
implemented following the tao of IETF [2]. This work was a part of the Future
Internet programme of TIVIT (Finnish Strategic Centre for Science, Technology
and Innovation in the field of ICT). The contribution of the author was reviewing
the HAaRO specification draft and participating in the performance measurements

2

in addition to the design and implementation of the RAIIC software.
At the time we started developing the software Mobile IPv4 specification existed

and there were implementations of the protocol available. NEMO specification also
existed but there were no open source implementations of that. HAaRO specification
was in progress and needed in order to make Mobile IPv4 a valid technology for
RAIIC. Being able to measure performance with running code verified that the
system works as well as in simulations.

The implementation was built by modifying Dynamics project (version 0.8.1)
[17]. Dynamics is an implementation of the older version of Mobile IP protocol,
described in RFC 2002 [5]. With the running implementation we measured how
much the end-user experience deteriorates when the current unreliable connection
breaks down and the system switches traffic onto another connection. Measurements
were performed with TCP and VoIP traffic. On TCP the switching corresponded
to 1 - 1.5 second outage, which is considered to be well tolerable. VoIP quality
remained ”Fair” in Mean Opinion Score metrics.

In this thesis we discuss the technologies, the implementation and the measure-
ment results. Chapter 2 clarifies what guaranteed access means, how it can be
implemented and where it can be used. Chapter 3 describes the technologies uti-
lized to achieve the required functionalities. Chapter 4 describes how Dynamics was
upgraded to implement the RAIIC-functionalities. Chapter 5 aims to help the fol-
lowing developers to get started with our implementation. Chapter 6 describes the
testing conditions, test cases and measurement results achieved with the software.

3

2 Guaranteed Wide Area Network access

This chapter gives an overview to the scope of this thesis which is building guar-
anteed access over unreliable connections. In this project we researched how well a
RAIIC-implementation based on Mobile IP would work as a business network where
long lasting outages are not prohibited and quality of such services as Voice over IP
(VoIP) should remain tolerable.

The first section of this chapter describes the differences between a business net-
work and a normal consumer-grade network. The second section discusses possible
techniques in implementing business network features. The final section considers
other possible use cases for this technology. The concept behind this technology is
described more thoroughly in article Concept for providing guaranteed service level
over an array of unguaranteed commodity connections [9].

2.1 Differences between consumer-grade and business-grade
connections

Many enterprises want guarantees that there are no breakdowns in the intranet
stalling the business. Also such services as private site-to-site connectivity, good
quality VoIP and authentication of users are often needed. Service providers offer
such guarantees as Service Level Agreements (SLA). SLA is a formal contract be-
tween a service provider and a customer. It defines quality metrics and target values
for provided services.

In consumer-grade Internet connections there are no Service Level Agreements.
The service provider attempts to provide best possible service but furthermore, no
guarantees whatsoever are offered. Consumer-grade connections have theoretical
maximum bandwidths but the networking resources are typically highly overbooked
under the operator’s core network. Thus, the experienced bandwidth may occa-
sionally be a lot lower and breakdowns may occur. A commodity connection still
typically works satisfactorily most of the time.

SLA may contain one or more specifications concerning the service level. Service
Level Specifications (SLS) may include both technical and procedural metrics. Here
are some possible specifications listed:

• technical guarantees

– Redundancy specifications (for specific nodes, links, paths)

– Fault response/remediation time

– Connectivity characteristics, such as

∗ Uptime, can be expressed in percentages or expected downtimes dur-
ing a course of a specific length of time (e.g. ”maximum downtime:
15 minutes in a year”)

∗ Bandwidth

∗ Delay, jitter

4

– Traffic classification, specifying separate characteristics for different types
of traffic, e.g. Voice over IP having strict quality requirements while other
applications only have best-effort service.

– Traffic source and destination, specifying separate characteristics for dif-
ferent peers, e.g. two primary offices running mission-critical systems
having high requirements. Internet access has no SLS behind the service
provider’s network.

• procedural guarantees

– Maximum technical support response time

– Maximum time to get broken networking hardware replaced

– Possible sanctions for service provider for failing to conform to the agree-
ment, either in monetary or other terms

An SLA-covered business connection is typically about ten times more expensive
[10] than a consumer-level connection with identical capabilities in normal situations.
Adding connectivity guarantees increases the price considerably. Gartner’s report
[11] suggests that the price of a SLA specifying 99.9... % uptime increases 30 %
with each additional nine stacked to the reliability factor. The massive difference
between the prices makes it interesting to research whether it would be profitable
to build a reliable connection using several consumer-grade connections without any
SLAs. Even though each commodity connection may break down, they most likely
wont be down at the same time. By relying on this assumption we are able to offer
connectivity guarantees with a system that is able to switch to another connection
in case the state of the current one deteriorates.

2.2 Possible technologies to implement high availability

High availability can be implemented using several different technologies. These
technologies differ in quality of provided service level, price, complexity etc. A few
solutions with their pros and cons are presented in Table 1 and discussed in this
section.

Dedicated access with Service Level Agreements Traditionally high avail-
ability has been implemented with one single service provider using a Wide Area
Network (WAN) technology, such as Multiprotocol Label Switching (MPLS). SLA
guarantees are negotiated requiring the service provider to make custom configu-
rations, dedicate links and reserve extra resources to ensure the quality of service.
While the provider’s core network is normally shared between multiple customers, at
least the last-mile-links are typically dedicated for specific customers. This solution
provides very good service level and it is well established but the price is normally
very high compared to a commodity Internet access.

5

Table 1: Pros and cons of different connection technologies.

Dedicated access from one service
provider

+ Very good service level

+ Well established method

- Very expensive

Multi-homing via several providers
with own AS number

+ Cheaper than dedicated lines

+ Service provider independence

- Competence requirements

- Breakdown recovery time

NAT with multiple links, Dynamic
DNS, VPN

+ Cheap

+ Simple to deploy

- Visible to end-users in case of
outages

- Inbound traffic reaction time

- VPN requires at least one guar-
anteed connection

Redundant Array of Independent In-
ternet Connections

+ Cheap

+ Simple to deploy

+ Invisible to end-users

- Relies on uncontrollable infras-
tructure

- All connections may be down at
the same time

Multi-homing via several service providers Another possible approach is to
implement multi-homing via several service providers. In this case, there is not
necessarily any SLAs. Instead, the redundancy is implemented by connecting via
multiple service providers concurrently. In case of path failures, a routing protocol -
normally Border Gateway Protocol (BGP) - takes care of establishing the connection
via another service provider. This approach has significantly slower breakdown
recovery time; route modifications have to propagate throughout the network, and
the propagation time can grow very large. In worst cases, the propagation can last a
full hour [12]. The worst case is when the solution is used for accessing the Internet,
as routing modifications have to propagate globally.

Multi-homing solution is normally cheaper than dedicated lines. However, the

6

customer still needs business-grade connectivity with dynamic routing protocol sup-
port from multiple service providers. In addition, managing the address space within
the customer’s own Autonomous System (AS) causes additional IT costs.

Multilink Network Address Translator Less costly approaches are also avail-
able for implementing redundancy at customer sites. These solutions are imple-
mented by an overlay service over basic non-guaranteed access technologies. How-
ever, they are somewhat less flexible and less robust than the technologies described
above.

The simplest solution is to use a Network Address Translator (NAT) with multi-
ple outgoing links [13]. NAT provides redundant Internet access by sending outgoing
packets to different links. The link is chosen by using some sort of heuristics. This
system is simple to implement but it can typically accept inbound connections only
from a specific link. This way there is no redundancy to services offered towards
the Internet. Dynamic DNS [14] can be used for directing incoming traffic but in
case of connection outages, it is not able to react quickly to changes or to change
dynamic IP address assignments.

The multilink NAT approach can be combined with a Virtual Private Network
(VPN) technology, such as IP Security Architecture (IPsec), in order to form site-
to-site WAN connectivity. However, VPN normally has at least one fixed node.
Therefore, at least one guaranteed connection is needed keeping the anchor node
available. Also reconfiguration of VPN is complicated when the underlying topology
changes as connections fail or IP allocations change. Redundancy and flexibility
could be provided via multi-homing using routing protocols but service providers
don’t allow setting up BGP peering on a regular consumer-grade connection.

Redundant Array of Independent Internet Connections The approach stud-
ied in this thesis is Redundant Array of Independent Internet Connections (RAIIC).
This solution is based on low costs and it is immediately deployable on the Internet
without any changes on the end-hosts. High-quality access is provided by switching
between several low-quality connections. The access is visible to the end-hosts as a
single, high-reliability bit-pipe.

RAIIC enables connecting intranet address spaces over the Internet. It is not
possible to control routing over commodity connections so switching between paths
is enabled using tunnels. The state of the current tunnel is actively monitored and
the traffic is handed over to another tunnel in case of connectivity issues. The
handovers need to be fast enough to achieve transparent response of failures.

In this approach, the infrastructure under the connections is completely con-
trolled by external entities. The wires and links connecting the sites are maintained
by the service providers or operators so changes in connectivity are unpredictable. It
is also possible that occasionally none of the connections is operational. In this case
there is no way to offer access. Therefore, it is important to choose connections that
do not share hardware resources. Independence between the connections decreases
the possibility of all paths being non-operational at the same time.

7

2.3 Other use cases for reliable access over unreliable con-
nections

The ability to switch between connections could basically be useful in any device hav-
ing multiple networking interfaces connected to independent networks. For example
smartphones normally have 3G, EDGE (Enhanced Data rates for Global Evolution)
and WLAN antennas. A smartphone could switch between its wireless networks de-
pending on the state of the connection. Wireless connections can be very unstable
and for example switching between 3G and WLAN is usually done manually. Using
RAIIC implementation could increase the experienced service level. A user could be
using a WLAN without even knowing that a WLAN hot-spot is present. However,
the keepalive mechanism could be quite consuming for the device’s battery so the
power efficiency would require more research.

Connections are also less stable in vehicles. Quality of access could be increased
for example on a train providing Internet access to its travelers. A Mobile Router
running RAIIC-implementation could connect the LAN on the train to the Internet
by using several antennas simultaneously. Also, during a military crisis or a natural
disaster, mobile command centers could be set up using RAIIC.

8

3 Mobile IPv4 with extensions

The RAIIC implementation developed for this thesis is based on Mobile IPv4 pro-
tocol [3]. Mobile IP offers a simple signaling mechanism with fast handovers. The
protocol has also been extended with many functionalities. This chapter describes
the technology utilized in implementing guaranteed access.

Mobile IP enables a node to move to another network without changing the ad-
dress visible to the nodes it is communicating with. Nodes communicating with a
Mobile Node are called Correspondent Nodes. Mobile IPv4 addressing is explained
in Section 3.1. When moving to a new network a handover is required. Mobile IP
has a very simple signaling mechanism based on requests and responses. The sig-
naling mechanism is illustrated in Section 3.2. Mobile IP includes a UDP tunneling
extension, which is discussed in Section 3.3. This extension also contains connection
monitoring mechanism. Network Mobility extension, explained in Section 3.4, turns
Mobile Node into Mobile Router able to provide access to a whole set of networks.
Home Agent assisted Route Optimization extension helps distributing traffic load
more equally on Mobile IP network. This extension is described in Section 3.5.
Authentication in direct tunneling is discussed in Section 3.6.

3.1 Mobile IPv4 addressing

Mobile IP enables a node to switch between networks without changing the IP
address visible outside the network: the Home Address (HoA). A Mobile Node is
always available via its Home Address which points to the node’s Home Network
(HN). If a Mobile Node moves away from its Home Network, it informs its Home
Agent about its current location: the Care-of Address. Home Agent is a router
which keeps track of the Mobile Nodes’ locations. If a Mobile Node is away from
its Home Network, all traffic it sends or receives goes via the Home Agent which
forwards packets to the node’s Care-of Address.

Mobile Node’s Care-of Address may be represented by the node itself or by a
Foreign Agent. The former mode is called co-located Care-of Addressing. In this
case, the Care-of Address is the IP-address of the node on the current Foreign
Network. In the latter addressing mode the node’s Care-of Address is the address
of a Foreign Agent. Foreign Agent is a router on a Foreign Network that takes care
of tunneling the traffic of the Mobile Nodes connected to its network. Traffic is
tunneled to the Home Agent which forwards it to the Correspondent Nodes. In our
case, co-located Care-of Addressing was used so only this mode is discussed in this
thesis.

Care-of Address is only used as the tunnel end-point between the Mobile Node
and the Home Agent. Correspondent Nodes are never aware of the Care-of Ad-
dresses. They communicate using Home Addresses, which point to the nodes’ Home
Network and end up to the Home Agent in case the node’s are away. Home Agent
identifies Mobile Nodes by the Home Address so two nodes never have equal Home
Addresses. Home Agent maintains information about the nodes’ current locations
in a Binding Table. Binding Table associates Mobile Nodes’ Home Addresses with

9

their current Care-of Addresses.
Home Network may also be virtual. This means that a Mobile Node is never on its

Home Network. Home Agent allocates Home Addresses from a virtual address pool.
All addresses in the pool point to the Home Agent so all traffic is still forwarded
by the Home Agent. In this thesis we only discuss the scenario of virtual Home
Network so the Mobile Nodes never visit their Home Network.

3.2 Mobile IPv4 signaling

Mobile IP has a very simple signaling mechanism based on requests and responses. If
a Mobile Node moves to another network, it sends a Registration Request (RegReq)
to its Home Agent informing of its new IP address. Home Agent accepts or rejects
the Registration Request with a Registration Reply (RegRep). For example, when
a Mobile Node with Home Address 10.10.10.10 moves to another network and its
Care-of Address changes from 80.80.70.70 to 80.80.80.80, it sends its Home Agent
Registration Request having the information ”Me, Home Address 10.10.10.10, can
now be reached via Care-of Address 80.80.80.80”. If the request is accepted, the
Home Agent sends the Mobile Node Registration Reply with accepting code and
modifies its Binding Table to contain the node’s current location.

Figure 1: Mobile node handover.

Mobile IP handover process is illustrated in Figure 1. In the figure a Mobile
Node moves to another network, informs its Home Agent of its new Care-of Address
and the Home Agent updates its binding table. Here is the handover of the figure
in detail:

1. Mobile Node MN a with Home Address HoA a moves from network nw1 to
network nw2, and its Care-of Address changes to new CoA.

2. MN a informs the new Care-of Address to its Home Agent, HA.

3. The Home Agent updates the entry of HoA a in its Binding Table to contain
the new Care-of Address new CoA.

Each HoA-CoA binding has a lifetime. If a Mobile Node is connected to the
same Foreign Network long enough, it is required to send Registration Request
to its Home Agent in order to maintain the binding. Registration Request with

10

unchanged Care-of Address is called Reregistration. If no Reregistration is received
during the expiration interval, Home Agent removes the node from its Binding
Table. If a Mobile Node wishes to leave the Mobile IP network (or returns to its
Home Network), it sends its Home Agent Registration Request with lifetime field
set to 0. This packet is called Deregistration.

Mobile IP protocol has been extended new functionalities. The extensions are
included in the registration messages. For example, if a Mobile Node needs to inform
the Home Agent of its Network Access Identifier (NAI), it adds Mobile Node NAI
Extension [15] into its Registration Request. Home Agent acknowledges extensions
in Registration Reply by adding a replying extension or by setting the reply code
to a corresponding value.

3.3 UDP in IP tunneling

The original Mobile IP specification [3] defines two different tunneling mechanisms:
IP-in-IP and Generic Routing Encapsulation (GRE). Both of them are based on en-
capsulating packets with new IP packets with the tunnel endpoint as the destination
address. In Mobile IP, traffic is tunneled between the Mobile Node and the Home
Agent. In order to forward packets to a Mobile Node, Home Agent adds an extra
layer of encapsulation pointed to the Mobile Node’s Care-of Address. Also Mobile
Node adds an IP packet destined for the Home Agent outside each outgoing packet.
This way all traffic to any Correspondent gets transferred via the Home Agent.

Figure 2: MN behind a NAT sending a HTTP GET message via Home Agent to
www.funet.fi.

While this kind of tunneling works in networks with full end-to-end connectivity,
commonly IP-networks are surrounded by Network Address Translators (NAT) and
firewalls. Some firewalls discard all traffic that is not TCP or UDP. In order to

11

enable tunneling in the modern Internet, a new tunneling scheme was introduced to
Mobile IPv4. This extension is Mobile IP Traversal of Network Address Translation
(NAT) Devices [7].

A Mobile Node supporting UDP tunneling registers with a UDP Tunnel Request
extension in its Registration Request. If the Home Agent replies with a UDP Tunnel
Reply extension having an accepting code, the Mobile Node starts sending tunnel
keepalive packets to the Home Agent’s Mobile IP port (434). The tunnel keepalive
packets are ICMP Echo Requests. Keepalives are sent to ensure that the Home
Agent is able to send packets to the Mobile Node’s even though the Mobile Node
is currently behind a NAT or a firewall. When there is constantly traffic from the
Mobile Node, NAT does not remove the session from its Session Mapping Table and
close the connectivity from outside the network. The UDP tunnel remains open.

The keepalive mechanism can also be utilized when monitoring the state of the
connection. If ICMP Echo Reply packets come with increased delay or if they are
never received, we can conclude that the connectivity has deteriorated. In this case
we perform a handover so that the traffic is switched onto another connection.

The NAT Traversal extension introduces a new message type to the Mobile IPv4
protocol. In addition to the signaling messages (Registration Requests and Replies)
there is a third MIP message type for the data transfer: MIP Tunnel Data Message.
This header is added on the outer UDP header (see Figure 2) to indicate that the
tunneled UDP traffic is MIP Tunnel Data traffic. When sending a packet to the
Home Agent, Mobile Router encapsulates it with MIP Tunnel Data Message header
and sends it as UDP to the Home Agent’s Mobile IP port.

Protocol stack used in UDP in IP tunneling is illustrated in Figure 2. The Mobile
Node ”MN” sends HTTP GET to a node outside the Mobile IPv4 network. The IP
datagram is first tunneled to the Home Agent by encapsulating it with MIP Tunnel
Data Message header and sending the MIP packet on UDP from the Mobile Node’s
Care-of Address to the Home Agent’s MIP signaling port. When receiving UDP
packet containing MIP Tunnel Data Message, the Home Agent removes the MIP in
UDP in IP stack and forwards the remaining IP packet to the Correspondent Node
”CN”.

The Correspondent replies to the Mobile Node’s Home Address, which is routed
to the Home Agent. The Home Agent has the Care-of Address corresponding to the
Home Address in its Binding Table, so it is able to forward the packet to the Mobile
Node’s current network. The Home Agent adds MIP Tunnel Data Message header to
the packet and sends it on UDP from its MIP signaling port to the port the Mobile
Node registered from. When receiving the UDP packet, the Mobile Node removes
the MIP Tunnel Data Message header and forwards the remaining IP packet to the
corresponding process.

3.4 Network Mobility

Network Mobility (NEMO) extension turns the Mobile Node into a Mobile Router
which is able to make a whole set of networks mobile. The nodes on these networks
are not aware of the mobility of the router. All traffic from hosts in the Mobile

12

Networks end up to the Mobile Router which tunnels it to its Home Agent. The
Home Agent forwards the traffic just like in the regular Mobile IP.

Mobile Router registers a network to the Home Agent with Mobile Network
Request extension. One Mobile Network Request extension per network is added to
the Registration Request. Home Agent accepts or rejects these networks by adding
a Mobile Network Acknowledgement extension for each Mobile Network Request
extension. The acknowledgement has a code that informs if the Mobile Network
was accepted or not.

Figure 3: HTTP packet sent by a host in the Mobile Network.

The Home Agent keeps track of the Mobile Routers and the networks they rep-
resent in the Binding Table. Home Agent won’t allow several routers to represent
networks with the same address. Correspondents communicate using the addresses
of the hosts inside the Mobile Networks so all the Mobile Networks have to have
distinct addresses. The IP address inside Mobile IP the tunnel is not anymore the
Mobile Router’s Home Address but the address of the host currently communicating
via the Mobile Router. Therefore the Mobile Network addresses can not overlap.

Figure 3 illustrates the protocol stack of NEMO traffic. A packet is sent by a host
in a Mobile Network of a Mobile Router (”MR”). The packet is a HTTP message
sent to some Correspondent Node (CN) on the Internet. All traffic from any host
in the Mobile Network ends up to the network’s Mobile Router which tunnels it as
UDP towards the Home Agent (HA). The address of the host has replaced the HoA
of the Mobile Router inside the tunnel.

3.5 Home Agent assisted Route Optimization

Home Agent assisted Route Optimization (HAaRO) extension enables Mobile Routers
to create direct tunnels between each other. Instead of sending all traffic via the

13

Home Agent, Mobile Routers can communicate with each other directly. Home
Agent is the trusted signaling anchor that coordinates the connecting and authen-
ticates the Mobile Routers to each other. Mobile Routers create direct tunnels by
sending Registration Requests to each other just like in the Home Agent’s case.
Registraion is optionally preceded by Return Routability procedure which is used
for calculating an authentication key for the session: Registration Management Key
(KRm).

Only the Home Agent has a list of all the Mobile Nodes on the Mobile IP network.
If a Mobile Router receives an inter Mobile Router Registration Request (direct
tunneling request) from an unknown Mobile Router, it has to verify the existence of
the router from the Home Agent. Without this solicitation basically anyone could
request traffic from the Mobile Networks of the router. The Home Agent grants the
authorization if it finds the solicited Mobile Router from its Binding Table. Mobile
Router maintains its own Route Optimization (RO) Cache which is similar to the
Binding Table of the Home Agent. Correspondents that are verified are stored in
the RO Cache so the solicitation needs to be done only once per Correspondent.

This chapter describes step-by-step how Route Optimization is initiated in Mo-
bile IP network. Mobile Routers register to each other like they register to the Home
Agent. Only some extra procedures are performed in order to verify the routers and
test the connectivity. Packets used to set up a direct HAaRO-connection are illus-
trated in Figure 4.

Advertising HAaRO-support

A Mobile Router supporting HAaRO adds RO Capability extension to the Regis-
tration Request when registering to its Home Agent. Home Agent acknowledges
the RO Capability extension with RO Reply. Home Agent also advertises (with
RO Prefix Advertisement extension) all the other Mobile Routers in the Mobile IP
network that support HAaRO. Also these routers’ Mobile Networks behind them
are advertised. The Mobile Router adds these Correspondent Routers into its RO
Cache. Direct tunnel initialization begins with Return Routability process towards
the Correspondent Router in order to create Registration Management Key (KRm).
This signaling is illustrated in Figure 4, stages 1 - 3.

Return Routability procedure

A Mobile Router tests connectivity towards a Correspondent Router by sending two
initialization messages: Home-Test Init (HoTI) and Care-of-Test Init (CoTI). HoTI
is sent from the Mobile Router’s Home Address. CoTI is sent from the Care-of
Address which is to be the source address of the direct tunnel. Both initializa-
tion messages are sent to the Correspondent Router’s Home Address so they get
routed via Home Agent. The Correspondent replies to HoTI with Home-Test (HoT)
message and to CoTI with Care-of-Test (CoT) message. Mobile Router calculates
Registration Management Key (KRm) from the token information in those mes-
sages. The router is able to send Registration Request with an authenticator hash

14

Figure 4: Mobile Routers A and B join the Mobile IP network and the router B
initializes a direct tunnel towards the router A.

encrypted with this key. Authentication in route optimization is discussed more in
Section 3.6. Return Routability procedure is illustrated in Figure 4, stages 3 - 5.

Solicitation of an unknown router

When receiving a registration from the Mobile Router, the Correspondent first
checks if the Mobile Router exists in its RO Cache. If the Home Agent has ad-
vertised this router, it has been added into the RO Cache and it can be trusted.
If the registering Mobile Router is unknown, the Correspondent has to verify its
existence from the Home Agent. The solicitation message is a Registration Request
including RO Solicitation extension. This extension includes Home Address of the
Mobile Router and all networks the router claims to represent. If the Home Agent

15

finds the corresponding information from its Binding Table, it verifies the informa-
tion with RO Solicit Reply. This router solicitation process is illustrated in Figure
4, stages 6 - 7. Registration can be accepted as the Mobile Router is verified by the
Home Agent.

Setting up direct inter Mobile Router tunnel

If the Correspondent finds the registration valid, it replies with the code Registration
Accept. If both nodes support UDP tunneling, the Correspondent adds at least one
Care-of Address (CoA) extension to the reply. By this extension the Mobile Router
is informed of the Correspondent’s Care-of Addresses usable for HAaRO-tunneling.

Mobile Router starts testing the CoA-to-CoA connection by sending an ICMP
Echo Request to the first CoA in the CoA extension list. If the first one does not
reply the Mobile Router goes through the list until one replies. Source of the tunnel
will be the Care-of Address the Mobile Router registered from. Destination will be
the Care-of Address from which the ICMP Echo Reply was received. This direct
CoA-to-CoA connection testing process is illustrated in stages 6 and 7 of Figure 4.

The Mobile Router creates a tunneling device for the new tunnel. Routes for each
network represented by the Correspondent are set to this device. Now traffic sent
from one of the Mobile Router’s networks to one of the Correspondent’s networks
is sent to the direct tunnel.

If the Mobile Router notices that the Correspondent no longer replies to tunnel
keepalives, it removes the tunneling device and all routes towards it. This way all
traffic is again routed via Home Agent. Setting up a new tunnel requires a new
registration possibly preceded by a Return Routability routine.

Deciding the tunneling roles: Mobile Router and Correspondent Router

There are two roles in direct tunneling. One router acts as the Mobile Router and
the other router is the Correspondent, whose role is similar with the Home Agent. A
direct tunnel is attached to Mobile Router’s registration port and Correspondent’s
Mobile IP port (434). When setting up the tunnel, Mobile Router is the active side
which takes care of finding a working CoA-to-CoA pair while Correspondent remains
passive and waits for the Mobile Router to get an ICMP Echo Request through to
one of its CoAs. Both nodes monitor the tunnel’s state by sending keepalives. The
one noticing a problem in the connection first, sends a registration from a new CoA.

The roles are decided by the Home Addresses. The router with smaller Home
Address acts as the Mobile Router. Before Mobile Router accepts a registration
from another Mobile Router, it compares the Home Addresses. In case its Home
Address is smaller than the router’s registering, it replies with code PRE ACCEPT.
This indicates to the other router, the Correspondent, that it should wait for the
Mobile Router to register. The Mobile Router performs RR procedure, calculates
KRm and sends registration to the Correspondent. If the registration is valid, the
Correspondent replies to it with the normal ACCEPT code and starts waiting for
an incoming CoA-to-CoA ICMP Request.

16

3.6 Authentication in Route Optimized Mobile IPv4 net-
work

There are two security matters concerning direct tunnels. The first one is to verify
whether a Correspondent Router can trust that an arbitrary Mobile Router is indeed
the proper route to reach an arbitrary Mobile Network. Routers trust information
provided by Home Agent so in this case a solicitation is performed.

The second matter to verify is that a specific Care-of Address is indeed managed
by a specific Home Address. This is done via Return Routability routine where the
Correspondent calculates Registration Management Key (KRm) from Home Ad-
dress and Care-of Address of the node requesting registration. The Correspondent
does not establish any state information during the Return Routability procedure,
mitigating denial of service attacks. The cryptography scheme is very similar to the
one used in Mobile IPv6 [16].

3.6.1 Authentication keys

Registration Management Key (KRm) authenticates a registration. This key is
calculated using both private and public authentication keys. Each Mobile Router
has a private Correspondent Router Key (Kcr) and private Nonces (”Number used
only once”). Cookies and Tokens are used as public keys.

Private keys: Correspondent Router Key and Nonce Each router has a
private Correspondent Router Key (Kcr), which is used when the router is acting as
a Correspondent. With this key the Correspondent is able to verify that the keygen
tokens, sent by the registering Mobile Router, are its own. The Correspondent
Router Key is a 96 bit random number.

Routers also maintain indexed Nonces. Nonces are random numbers generated
at regular intervals (e.g. 10 minutes). Only the Nonce Index is sent online. The
Correspondent may use the same Nonce with all Mobile Routers. In addition to the
current Nonce, routers keep in memory a small set of previous nonces whose lifetime
have not expired yet.

Cookies and Tokens Cookies and Keygen Tokens are used in identifying commu-
nication initialization requests (HoTI, CoTI) and their replies (HoT, CoT). Home
Init Cookie and Care-of Init Cookie are 64 bit random values sent within HoTI and
CoTI messages, and returned in HoT and CoT messages. MR generates a new pair
of cookies for each HoTI and CoTI message pair it sends. Cookies verify that the
HoT or CoT message matches to the HoTI or CoTI message sent. These Cookies
also ensure that someone who has not seen the request cannot spoof responses.

HoT and CoT messages each contain a cookie, a nonce index and a token. Tokens
are 64 bit values generated using the current Correspondent Router Key and Nonces
as well as the Home or Care-of Address. A token is valid until the Correspondent
Router Key or the Nonce expires.

17

3.6.2 Encryption

Correspondent Router generates Registration Management Key (KRm) from Home
Keygen Token and Care-of Keygen Token which are calculated from the Mobile
Router’s Home Address and Care-of Address, respectively. HAaRO specification
defined HMAC MD5 as the encryption algorithm until version 4. In version 5 the
algorithm was changed to HMAC SHA1 because MD5 is currently very vulnerable
to collision attacks [19]. SHA1 produces 160 bit code instead of 128 so it is slightly
heavier than MD5.

3.6.3 Keys generated during Return Routability procedure

Return Routability (RR) procedure begins when a MR sends a CR HoTI and CoTI
in order to acquire the Keygen Tokens that are received in HoT and CoT. When
the Correspondent receives the HoTI message, it generates a Home Keygen Token
as follows:

Home Keygen Token = getFirst64Bits(HMAC SHA1(Kcr, (HoA | Nonce | 0)))

where | denotes concatenation (joining end-to-end). The final ”0” inside the HMAC SHA1
function is a single zero octet, used to distinguish Home and Care-of Tokens from
each other. Care-of Token is generated with CoA and ending octet ”1”:

Care-of Keygen Token = getFirst64Bits(HMAC SHA1(Kcr, (CoA | Nonce | 1)))

In this calculation Correspondent Router uses the source address of the CoTI packet
as the Care-of Address. The address may have changed in transit due to a NAT
between the Mobile Router and the Correspondent. This does not effect the au-
thentication because the Registration Request following this Return Routability
procedure will contain the same Care-of Address so the Token is equal.

When the Mobile Router has received both Home and Care-of Keygen Token
(in HoT and CoT) it is able to calculate Regisration Management Key and register
with this key. The Mobile Router will establish a Registration Management Key
KRm by default using SHA1 hash algorithm:

KRm = SHA1(Home Keygen Token | Care-of Keygen Token)

In deregistration (Registration Request with time set to zero), Care-of Keygen To-
ken is not used. The Registration Management Key is generated with Home Keygen
Token only:

KRm = SHA1(Home Keygen Token)

18

3.6.4 Registration management key updating

CR creates new a new Nonce once in every 30 seconds and it keeps the 8 newest
Nonces in memory. This means that if MR gets Nonce Index 0 via HoT or CoT
message, and it reregisters after more than 240 seconds, the CR does not have the
nonce with index 0 in memory anymore. In this case CR sends Registration Reply
with code Expired Home Nonce Index, Expired Care-of nonce Index or Expired
nonces. In this case the MR has to calculate a new KRm via Return Routability
procedure.

3.7 Summary of technologies

Mobile IP protocol with a few extensions provides all functionalities needed to imple-
ment RAIIC system. With Mobile IP signaling (Registration Requests and Replies)
the node is able to switch the traffic onto another path. One Mobile Node is con-
nected to several service providers’ networks. If one connection fails, the node
launches a handover by sending a registration via another service provider’s net-
work. Care-of Addresses are never visible outside the Mobile IP network so the
Correspondent Nodes don’t have to care which service provider the Mobile Node is
currently connected to. They can always reach a Mobile Node via its Home Address.

NEMO extension turns the Mobile Node into a router. It enables the Mobile
Router to offer connection to a whole set of networks. The hosts connected to the
Mobile Networks only see a single, high-availability bit-pipe and are not required to
support Mobile IP.

NAT traversal extension provides the ability maintain tunnels through NAT-
devices and firewalls. It also contains a keepalive mechanism which makes the Mobile
Router able to monitor the connections’ states. If quality of the current connection
deteriorates under a specified threshold, a handover is requested.

HAaRO extension offers Mobile Routers the ability to establish direct tunnels.
Data traffic between Mobile Routers is transferred without the Home Agent for-
warding. This distributes the traffic load more equally and prevents the Home
Agent node becoming a bottleneck.

19

4 Implementation

This chapter describes our RAIIC implementation. We created the software by
upgrading Dynamics project which is an open source Mobile IP implementation.
We implemented a MIP stack that supports NEMO, NAT traversal and HAaRO
extensions.

Section 4.1 describes how we ended up using Dynamics instead of creating the
whole software from scratch. Section 4.2 goes through the functional modifications
made on the original Dynamics software. Section 4.3 illustrates the most essential
containers in the software. Section 4.4 sketches the socket interface implemented for
the connections. Section 4.5 illustrates step-by-step what a router does when it gets
launched.

4.1 From scratch or using existing code

The first task was to decide whether to build the functionalities on an existing
Mobile IP implementation or to do the whole software from scratch. The goal was
to implement Mobile IPv4 supporting co-located Care-of Addressing and extensions
NEMO, NAT traversal and HAaRO.

4.1.1 Observing existing implementations

Route optimization has been included in Mobile IPv6 [16] from the start. One
possibility was to take a Mobile IPv6 implementation and make it to run on IPv4
protocol. Some promising open source Mobile IPv6 implementations were found of
which the most interesting one was MIPL - Mobile IPv6 for Linux [20]. The project
was developed in Helsinki University of Technology in 2006. However building func-
tionalities on an IPv4 software seemed more attractive than changing the whole core
protocol from IPv6 to IPv4.

Only a few open source Mobile IPv4 implementations were found. The first
option was a Java implementation of Mobile IPv4. The project was developed as
a student’s master’s thesis in Bremen University. It is named UoB JMIP - Mobile
IP implementation in Java [21]. Since the implementation does not support Care-of
Addresses but only Foreign Agents, it was not our choice either. Also the version
number of the software, 0.1, did not imply that the program was very thoroughly
tested.

An older Mobile IPv4 implementation, Dynamics - HUT Mobile IP, supports
Care-of Addresses. Dynamics was developed in Helsinki University of Technology
in 2001. The source code is written in C language and it is available under GPL
license on sourceforge [17]. We decided to build on this code because it included
many useful functionalities and it seemed to be quite well tested. Dynamics supports
co-located Care-of Addressing and message authentication. It also includes an API
implementation for sending instructions to running routerÂ instances. The API is
described more in Section 4.2.5.

20

4.1.2 Dynamics as a software to build on

Dynamics is a massive and complex package that includes no documentation of the
software architecture. It has a lot of functionalities that are not needed in our
implementation. Luckily the source code of some unwanted features, like Foreign
Agent and Surrogate Home Agent, is conveniently isolated into separate sub-folders.

Figure 5 illustrates the sub-modules of Dynamics package. Also dependencies
between the modules are shown. Dynamics consists of nine sub-modules of which
three have been disabled during our development. Some of the major modifications
implemented on the sub-modules are also listed in the figure. These modifications
are discussed more in Section 4.2.

Figure 5: Dynamics software with its sub-modules, their dependencies and the main
modifications implemented.

It took us quite some time to understand the implementation and learn how
to develop it. It was challenging to debug such a massive software that had a lot
of code we were not familiar with. However, it would have taken a lot more time
to implement the whole Mobile IP protocol from scratch so it was clearly a better
solution to use Dynamics.

4.1.3 Drawbacks of Dynamics’ single thread design

The main task of such router process as Mobile Router or Home Agent is basically
to wait for either a packet to arrive or a timer to expire, and to execute the cor-
responding tasks. In Dynamics, this has been implemented by passing all timers

21

and file descriptors of all listener sockets to select function. The function waits
until a message is received or a timer is expired. When the function returns, the
corresponding task is executed and the function is called again. So if a message is
received during the execution of a task, the message is not handled until the task
execution is finished. This way the router may become slow if lots of packets are
transmitted.

Another possible way to implement a router is based on multi-threading. The
most common action, which is handling bulk data, should happen as quickly as
possible. All kind of background processing such as signaling could be forked to a
new thread. This way the node could handle user data as quickly as possible and the
user would experience the best possible service level. However, functionality testing
was our main goal so this kind of performance optimization was not implemented.

4.2 Functional modifications implemented on Dynamics

Our implementation was built by upgrading Dynamics version 0.8.1 [17]. Some
functional modifications have been made on the original software. This section
describes the modifications implemented, the features added and the parts disabled.

4.2.1 Tunneling mode changed

Dynamics supports only the native Mobile IP tunneling modes which are IP-in-IP
and GRE. Both of these are supported by the linux kernel. In our implementation
they have been disabled and replaced with UDP-in-IP tunneling. This tunneling
mode is not supported by the kernel so it is done in the user-space. The headers
launching UDP tunneling mode are described in RFC 3519 - Mobile IP Traversal of
Network Address Translation Devices [8].

UDP-in-IP tunneling is implemented using linux kernel’s TUN interfaces [18].
TUN stands for network TUNnel. It is a virtual interface that simulates a network
layer device. One TUN device is created for each tunnel. Packets sent by an oper-
ating system via a TUN device are delivered to the user-space program that created
the device. The program can also send packets to the TUN device. The kernel
handles these packets like any packets in its network stack. TUN devices appear
as normal networking interfaces so they can also be added in routing tables. TUN
technology is discussed more in Section 4.4.1.

4.2.2 Foreign agent disabled

Foreign Agent is implemented in Dynamics. The user is able to choose whether to
use Foreign Agents or co-located Care-of Addressing. Network Mobility extension
[8] works only with co-located Care-of Addressing, so we naturally used only that
during the development. Therefore the Foreign Agent execution mode is no longer
supported in our implementation.

22

4.2.3 Added support for Network Mobility and Route Optimization

Support for Network Mobility (NEMO) and Home Agent assisted Route Optimiza-
tion (HAaRO) extensions was implemented. Mobile Node supporting NEMO is
able to operate as Mobile Router. Now Correspondent Nodes no longer commu-
nicate with the Mobile Node’s Home Address but with the hosts on the Mobile
Networks. This requires Home Agent to have all networks of a Mobile Router in
its routing table, pointing to the tunnel towards this router. Without NEMO, only
Mobile Nodes’ Home Addresses are pointing to the tunnel devices.

Nodes supporting HAaRO can create direct tunnels between each other. This
required implementing inter Mobile Router registration process, so some routines
from the Home Agent side had to be included also on the Mobile Router side. Such
routines are Registration Request handling, Registration acknowledging, Authen-
tication extension handling, NEMO Request handling, NEMO acknowledging etc.
Also Route Optimization Cache had to be implemented on the Mobile Router side.
Mobile Router’s Route Optimization Cache is similar to Home Agent’s Binding Ta-
ble. Mobile Router maintains information about its direct tunnels in this container.

4.2.4 Virtual Home Addresses instead of Home Network

In our case, Mobile Routers are not really mobile. They only switch between certain
service providers’ networks. Home Agent is never on the same network so no Mobile
Router is ever on its Home Network.

Therefore our implementation uses virtual Home Addresses. When a Mobile
Router gets launched, it immediately registers to its Home Agent with Home Address
set to 0.0.0.0. The Home Agent allocates the next available virtual Home Address
from its virtual Home Address pool. When the router performs deregistration, the
Home Agent frees the address so that it can be allocated for another router.

4.2.5 Added two API commands to dynmn tool

Dynamics package has an API tool named dynmn tool for managing the locally
running Mobile Router process. With this tool the user is able to perform manual
location updates, use wireless protocol extensions, make the node to rescan net-
working interfaces of the system etc. The rest of the features are mostly related to
Dynamics’ own tunneling system and the Foreign Agent.

We added two commands to the API: print tunnels and switch tnl iface. The
former prints information about the tunnels created towards the Home Agent and
other Mobile Routers. Information about both the active and the passive tunnels is
printed. This command can be executed for example by giving it as a parameter to
the dynmn tool process:
src/tools/dynmn tool print tunnels.

The other instruction implemented - switch tnl iface - binds a tunnel to a new net-
working device. This is handy in testing load balancing which will be implemented
as a feature of the software in a future release. The switch tnl iface instruction takes

23

two additional parameters: Home Address of the tunnel’s destination node and the
name of the new networking device name. For example tunnel from a Mobile Router
to a Correspondent Router with Home Address 172.31.0.3 would be bound to net-
working device named eth1 by executing:
src/tools/dynmn tool switch tnl iface 172.31.0.3 eth1

4.3 Containers

This section describes the implementation of the main containers. These are Home
Address pool, Binding Table, Route Optimization Cache and the containers for
packet handling.

4.3.1 Home Agent’s Home Address pool

Home Agent allocates Home Addresses (HoA) for Mobile Routers from its virtual
Home Address pool. A virtual Home Address is sent in Registration Reply to each
Mobile Router registering with a valid request and the header’s Home Address field
set to 0.

Home Address pool is implemented in src/ha/ha.c with an array named allo-
cated hoas. All the Home Addresses that are no longer free to allocate are stacked
in this array. At first this array is initialized with function init hoa pool. This func-
tion sets all Home Address slots in the array to 0.0.0.0, which in this case means
”free to allocate”. An address is allocated from the HoA pool by calling function
get hoa from pool. If the requested address is not found from allocated hoas, it is
allocated for the Mobile Router and added to this array to indicate that it is taken.
An address is freed by calling function free hoa which sets the address to 0.0.0.0 in
the array.

4.3.2 Home Agent’s Binding Table

Home Agent caches information about all the (successfully) registered Mobile Routers
in its Binding Table. This table associates Mobile Routers’ Home Addresses with
their current locations: Care-of Addresses. When a Mobile Router registers, a new
entry is created in this table. When the node performs a handover and registers
from the new Foreign Network, the entry of the node is modified. When the node
deregisters or its binding expires, its entry is removed from the table.

Binding Table is implemented as a list of structure instances. The structure is
defined in file src/other/binding.h. The Binding Table list is initialized and handled
in src/other/binding.c. The table handling interface includes functions for example
for adding, removing and fetching entries. Entries can be fetched by Care-of Address,
Network Access Identifier etc.

4.3.3 Route Optimization Cache

Route Optimization Cache (RO Cache) is an array maintained by the Mobile Router.
It contains an entry for each known Correspondent Router which supports Route

24

Optimization. RO Cache (ro cache) is an array of type struct ro entry defined in
file src/mn/mn.c. Type RO entry (struct ro entry) is defined in file src/mn/mn.h
and it contains the following information:

• HoA of the CR (cr hoa)

– identifies the entry

• TUN device (tun dev name) of the tunnel towards the CR

• tunnel destination CoA (tnl dst)

• all known CoAs of this CR (cr coas)

• Mobile Networks reachable via this CR (cr nws)

• local networking devices (for handovers) available for tunneling to the CR
(mr coas)

• etc.

RO Cache entry states and triggers Entries in the RO Cache are associated
with different states during the execution. These states are represented by flags
(integer values) switched on and off in different situations. For example after sending
Registration Request to a Correspondent, the RO Cache entry of this CR is put to
state ”waiting for Registration Reply from this CR”. This state is associated with
a timer so the reply is not waited forever.

RO Cache entries also contain triggers. If a trigger is set, an action is done as
soon as the trigger checking function gets called in the main loop. For example when
new Registration Management Key is needed for a CR, ”start Return Routability”
trigger is set in its entry.

Let’s illustrate the states and triggers with an example where a router needs to
be solicited before accepting its registration. When Registration Request is received
from an unknown Correspondent Router, a new RO Cache entry is created. As the
CR has not been confirmed by the Home Agent, flag confirmed by ha is set to 0. The
request is parsed and Solicitation Request is sent to the Home Agent. In case the
Home Agent verifies the Mobile Router, flag confirmed by ha and trigger send regrep
are set. Triggers are monitored in every iteration of the main loop before entering
the select function. State of the trigger launches Registration Reply creation.

4.3.4 Headers and packets

Message header formats are defined as structs in file src/other/message.h. Unsigned
data types of different lengths represent the fields of the headers. For example u8
is one byte data block.

When a packet gets received, it is parsed into a variable of type struct msg extensions.
This structure (defined in src/other/msgparser.h) contains mostly pointers that are
set to point to different parts of the message buffer. Observe that a variable of this

25

type does not contain the data itself. When handling a packet via these pointers,
the data buffer needs to be in the memory.

By this datatype it is easy to see in which parts of the code a certain header is
handled. You can check which field in struct msg extensions represents the header
and find all references of that field. This can be done for example with grep string
finder or with the references tool of Eclipse.

4.4 Socket interface

Sockets are used as communication endpoints. Mobile Router communicates with
other MIP-routers (CR, HA), hosts in Mobile Networks, API-tools and the kernel’s
TUN devices. Connection-oriented sockets (TCP) are not used in this implementa-
tion so we only discuss connectionless sockets in this chapter.

There are two types of connectionless sockets: outbound sockets (for sending)
and listener sockets (for receiving). Listener is bound to a certain port of a certain IP
address with bind function. Messages sent via a socket bound to 10.10.10.10:55555
have source address 10.10.10.10 and source port 55555. Also, if this socket is
monitored in the main loop, all packets destined for 10.10.10.10:55555 are received
in the software via this socket. Outbound sockets are not required to be bound to
any port. Random ports are allocated for the unbound sockets.

There is also a possibility to bind a socket to a networking device. The socket
option enabling this is SO BINDTODEVICE. This option is handy with handovers
as you can strictly control where the packets are routed. If a socket is bound to
the IP address of for example eth0 but a packet is sent to a destination where
the kernel’s best route goes out eth1, the packet will go out eth1 with the source
IP address of eth0. This would mess up the routers’ ISP switching system so
SO BINDTODEVICE is used in binding Mobile Routers’ CoA sockets to the routers’
networking devices.

Main sockets of the routers are described in the following sections. Section 4.4.1
discusses the file descriptor TUN FD which is used for communicating with the TUN
device. Section 4.4.2 illustrates how Home Agent handles connections. Section 4.4.3
lists the sockets utilized on Mobile Router’s side.

Sockets discussed in these sections are shown in Table 2 (TUN FD), Table 3
(HA) and Table 4 (MR). These tables illustrate the purpose, the interface and the
port of each socket. Some sockets are not bound to any port but to the interface
with socket option SO BINDTODEVICE.

4.4.1 Tunneling file descriptors (tun fd)

Tunneling file descriptor (TUN FD) is a channel between a software and the kernel’s
virtual tunneling (TUN) device created by the software. TUN FD is received from
the kernel when creating a TUN device. The software sends messages to a TUN
device via its TUN FD and vice versa. One TUN device is created for each tunnel
and each TUN device has a TUN FD. Traffic received from the tunnel is written

26

Table 2: TUN device socket: TUN FD.

Purpose Interface Port/Device
Communicate with the
TUN device

TUN device of the corre-
sponding tunnel

SO BINDTODEVICE

into the tunnel’s TUN FD. Traffic going out to the tunnel is received from the TUN
FD.

Incoming tunnel traffic A tunnel message is first received into a Care-of Address
socket bound to a physical networking device, for example eth0. A tunnel message
is recognized by its outer protocol stack: MIP TNL on UDP. MIP TNL header
is removed and the following IP datagram is sent to the corresponding TUN FD.
The corresponding TUN FD can be solved from the address that the UDP packet
was received from (the outer IP packet). This address is the Care-of Address of
one of the known routers (HA or MR). The kernel forwards the IP packet to the
corresponding device.

Figure 6 illustrates how Mobile Router forwards a tunnel message it received
to the corresponding TUN device. In this case a message was received on a socket
bound to a networking device. At first, it is checked if it is a signaling packet or a
tunnel message. If the packet came from a tunnel, the sender needs to be identified.
The outermost source IP address is compared with the Home Agent and all the
Correspondents in the Route Optimization Cache. If a match is found, the outer
header stack (MIP in UDP in IP) is removed and the remaining IP packet (inside
the tunnel) is sent to the corresponding TUN FD.

Outgoing tunnel traffic The TUN FDs also need to be actively monitored in
the select function of the main loop. If a message is received in a TUN FD (sent
by the kernel), MIP TNL header is added and the packet is sent as UDP to the
corresponding router’s Care-of Address (tunnel endpoint). More detailed informa-
tion about the TUN/TAP technology can be found from the TUN/TAP interface
tutorial [18].

Figure 7 illustrates how a packet sent out to the tunnel is handled by Mobile
Router. Mobile Router monitors all TUN FDs it has created. If a packet is routed
to a TUN device, it ends up in the TUN FD of that device. Mobile Router reads
the packet from the TUN FD, adds MIP TNL header outside the packet and sends
it on UDP to the Care-of Address of the CR the tunnel was created for.

4.4.2 Home Agent side connection sockets

Home Agent has a socket bound to each of its interfaces. Sockets are bound to the
MIP signaling port 434. In our case all Mobile Routers register to the same interface
(same IP address) of the Home Agent.

27

Figure 6: Mobile Router forwards a tunnel message to a TUN device.

Table 3: Home Agent’s MIP sockets.

Purpose Interface Port/Device
Communicate with the
Mobile Routers

One per each CoA port 434

Home Agent handles all communication with a Mobile Router via the socket the
initial registration was received from. Communication includes receiving Registra-
tion Requests and incoming tunnel messages and sending Registration Replies and
outgoing tunnel messages.

28

Figure 7: Mobile Router sends a packet from the TUN device to the tunnel.

Table 4: Mobile Router’s connection sockets.

Purpose Interface Port/Device
Registration to HA CoA SO BINDTODEVICE

(random port)
Registration to CR CoA SO BINDTODEVICE

(random port)
Send CoTI and receive
CoT

CoA SO BINDTODEVICE
(random port)

Tunneling as ”CR” CoA port 434
Send HoTI and receive
HoT

HoA random port

Receive HoTI and send
HoT

HoA port 434

4.4.3 Mobile Router side connection sockets

Mobile Router has a socket towards the Home Agent and several sockets to use for
communication with Correspondent Routers.

29

Socket towards Home Agent Mobile Router registers to its Home Agent and
sends outgoing tunneling traffic via registration socket defined in struct mn data.
Registration replies and incoming tunneling traffic are also received into this socket.
If the Home Agent connection fails, this socket is bound to the next networking
device and a new Registration Request is sent with the new CoA.

Sockets for registering to Correspondent Routers Mobile Router creates
one registration socket for each entry of Route Optimization Cache. Sockets are
bound to the networking devices. One of these sockets is used when registering to
a Mobile Router (Route Optimization). Tunneling traffic is also transfered via the
registration socket in case the tunneling role in the connection is ”MR”.

Sockets for Care-of Test Initializations (CoTI) There is also a CoTI socket
for each entry of the Route Optimization Cache. CoTI messages are sent and CoT
messages received via this socket. The socket is bound to a networking device the
CoTI is to be sent from.

Tunnel traffic when tunneling as ”CR” Mobile Router’s each networking
device (CoA) has a socket bound to the MIP signaling port (434). Tunneling traffic
is handled via these sockets if the tunneling role of an inter Mobile Router connection
is ”CR”.

Sockets bound to the Home Address HoTI messages are sent and HoT mes-
sages are received on a socket named hoa socket defined in struct mn data. This
socket is bound to the Mobile Router’s Home Address, to a random port.

A socket named hoa listener socket is bound to the MIP signaling port (434) of
the Home Address. HoTI messages are received and HoT messages are sent on this
socket.

4.5 Execution states

This section illustrates the execution of the Home Agent and Mobile Router pro-
cesses. The execution of a Mobile IP router can be divided in three different states:
initialization, packet handling and timer expiration handling. In the first state the
node is initialized by loading configuration, reading command line arguments, set-
ting timer expiration times etc. Mobile Router directly connects to the Home Agent
it finds from its configuration file by sending Registration Request.

After the initialization the execution jumps into select function to wait either
for a packet to arrive or for a timer to expire. The packet arrival state is entered
when a packet arrives in a socket that is listened to in the select function. In this
state the incoming packet is handled. The timer expiration state is entered when a
timer - given to select as parameter - expires. The expiration of a timer triggers an
action such as sending a keepalive ping, updating a binding etc.

30

4.5.1 Initialization

Figure 8: Flowchart of the initialization state of the Mobile Router process.

Execution of a router starts by going through the first state, initialization. In this
state the node is initialized with values given by the user. At first, the command line
and the configuration file are parsed and global run-time variables are set to obey the
current configuration. Also the socket interface is created to enable communication
between the routers.

In Mobile Router’s case, the execution of the node starts by connecting to the
Home Agent. Its IP address is read from the configuration file, and Registration
Request is sent towards this address. When the registration is successful, the main
loop is entered.

Execution of the loop starts by updating the file descriptor set. Also Route
Optimization Cache triggers are checked. Each entry (Correspondent) in the RO
Cache has integer variables which trigger certain actions if they are set to a non-

31

zero value. For example sending HoTI, CoTI and Registration Reply messages to
Correspondents are launched via these triggers.

In the main loop there is a select function call. Two parameters are passed to
the select function: the file descriptor set and the timer that will expire next. Before
calling select function, the timer expiring next is fetched from the timer array.

Select returns when either there is a message in a file descriptor or the timer
expired. If a message is received, the execution steps into the incoming packet
handling routine. If the timer expired, the execution jumps into the timer expiration
handling routine. Tasks and conditions in the initialization state are illustrated as
flowchart in Figure 8.

Home Agent process launch is similar with the Mobile Router, except that Mobile
Router starts directly requesting registration from the Home Agent and Home Agent
simply remains waiting for routers to register. Home Agent also maintains Binding
Table instead of RO Cache so there are no triggers on the Home Agent side.

4.5.2 Incoming packet handling

Incoming packet handling routine starts when a message is received in a file de-
scriptor. Different sockets handle different types of messages. The first byte of the
message indicates the type. Figure 9 illustrates the execution paths of the incoming
packet handling routine on the Mobile Router side. The path executed depends on
the socket the message was received in along with the type of the message. The
boxes with blue frames represent the listener sockets of the Mobile Node.

Mobile Node sends Registration Requests to the Home Agent via HA registration
socket. This socket is also used for receiving Registration Replies or Tunnel Data
Messages sent by the Home Agent. The first byte of the MIP-message indicates
whether the message is Registration Reply or Tunnel Data Message. The message
is parsed according to the packet format. Data in the message is either forwarded to
a customer-host (tunnel message) or parsed locally (registration message signaling).
After receiving, parsing and handling the message, the execution is taken back to
the beginning of the main loop.

If a message is received in API socket, the user is requesting for some information
about the node via the API interface. It may concern the status of the node, its
tunnels, configuration etc. The request is replied and the execution is continued
back to the beginning of the loop.

RT Netlink monitor socket (RT Netlink socket) being active indicates that the
networking interface configuration of the system has changed. In this case the router
checks if networking interfaces have been added or removed. The networking device
list of the software is updated to correspond to the configuration of the operating
system and the execution is returned to the loop.

Dynamics has an ICMP socket listening to agent advertisements. In our im-
plementation Agent Advertisements are never received because the Mobile Routers
have virtual Home Networks and there are no Foreign Agents. The Mobile Routers
still have the ability to handle Agent Advertisements and there is a socket (ICMP
socket) listening to these messages. In further development this feature can be

32

Figure 9: Flowchart of the incoming packet handling state of the Mobile Router
process.

disabled in order to clean the code, improve performance etc.
Mobile Router establishes a tunnel to its Home Agent and possibly some direct

tunnels towards Correspondent Routers. There is a tunneling socket for each tunnel
(HA tun fd, a CR’s tun fd). When a message is received in one of the tunneling
sockets, the packet is encapsulated with MIP TNL header and sent to the tunnel
endpoint. Functionality of the tunneling file descriptors is discussed more in Section
4.4.1

Mobile Router has one socket per each Care-of Address (CoA listener socket)
bound to the MIP port (434). These sockets serve as direct tunnel endpoints when
the node is tunneling as Correspondent (tunneling roles explained in Section 3.5).
Keepalive pings and Tunnel Data Messages are received from Mobile Routers via
these sockets.

Mobile Router performs Return Routability process before registering to a Cor-

33

respondent. It sends CoTI and receives CoT via CoTI socket. HoTI is sent and
HoT is received via HoA socket. When Registration Management Key has been
calculated, Registration Request is sent and Reply is received via one of the CR’s
registration sockets.

4.5.3 Timer expiration handling

Figure 10: Flowchart of the timer expiration handling state of the Mobile Router
process.

Timer expiration handling begins if select function returns 0. This value indicates
that the timer given to select as parameter got expired before any message got
received. At first it is examined, which timer it was that got expired and the
corresponding routine is executed. Finally the timer is reset to expire after the time
interval associated with the timer. Figure 10 illustrates the execution paths of the
timer expiration handling routine. The path executed depends on which timer got

34

expired. These timers are discussed in this section.
Home Agent informs Mobile Router about the amount of time that the registra-

tion is valid for. Mobile Router sets HA binding update timer to expire when a new
Registration Request needs to be sent. In direct tunnel bindings there is similar
logic. There is one CR binding update timer for each Correspondent tunnel where
the tunneling role is Mobile Router.

When Registration Request is sent there is a timer waiting for the reply to arrive.
If the request gets lost in the way, this timer expires and a new Registration Request
is sent. There is HA RegRep wait timer and one CR RegRep wait timer for each
Correspondent. If several requests to a Correspondent get lost, the corresponding
entry is removed from the RO Cache.

Each tunnel needs to be kept alive so that firewall or NAT possibly on the way
does not close the connection. There is HA keepalive timer to ensure that keepalives
are sent frequently enough to the tunnel towards the Home Agent. There is also CR
keepalive timer for each direct tunnel where the tunneling role is Mobile Router.

ICMP Echo Requests are used in direct inter Mobile Router tunneling for two
purposes: as initial MR CoA to CR CoA connectivity test and as tunnel keepalive
packets. When an ICMP Echo Request is sent, a timer is set to wait for the ICMP
Reply. For this purpose there is one CR ping failure timer for each Correspondent.
There is also HA ping failure timer for the keepalives of the HA tunnel.

The action following a lost ICMP Echo Request depends on the purpose of the
packet. If it was a CoA to CoA connectivity test, a new ICMP Echo Request is sent
to another CR CoA. If it was a tunnel keepalive, a new keepalive is sent to the tunnel.
The user has configured the maximum amount of keepalive failures tolerated. In
case this amount of keepalives have not been replied, the path is interpreted to be
broken and a handover to another networking device is performed.

35

5 Usage and maintenance

This chapter describes how to use and develop the software. The software consists
of preparation scripts, source code, compilation scripts and configuration files (text
format). Section 5.1 includes very brief instructions how to get the program running.
Section 5.2 describes how the software execution can be configured. Section 5.3
describes debugging routines used during the development process.

5.1 Getting started with the program

After decompressing the package it needs is prepared for the environment, compiled
and executed. The commands in this chapter are to be run in the root folder of the
package.

5.1.1 Preparation and compilation

Start by executing the configuration script. Surrogate Home Agent and Foreign
Agent nodes are not used in this project so they can be left out:
./configure –without-sha –without-fa

The configure script checks if the environment is missing some components. For
example GMP library is required. This can be installed on Debian with the follow-
ing command:
apt-get install libgmp3-dev

After installing the missing software and running configure without errors, the soft-
ware can be compiled by executing:
make

...or it can be installed with command:
make install

5.1.2 Execution

The program needs to be run as root because it modifies routing tables and uses
ports with number less than 1024. For example the Mobile IP signaling port is
434. Compilation of the software package creates multiple executables into different
folders. The following executable files got modified during this project:

• src/ha/dynhad (Home Agent executable)

• src/mn/dynmnd (Mobile Router executable)

• src/tools/dynmn tool (a tool to control the Mobile Router currently running)

36

Executables dynhad and dynmnd Executable dynhad is the Home Agent and
dynmnd is the Mobile Router. In normal Mobile IP network there is one Home Agent
and multiple Mobile Routers. Bash script run haaro.sh was added in the package in
order to make the it easier to run the executables in different development modes.
It’s a simple switch-case script that takes one of the following arguments: ha, ha-
debug, mn, mn-debug or help. All the execution modes do the following:

• run in the terminal without making the process a daemon

• read configuration from the local configuration file:

– src/ha/dynhad.conf (Home Agent)

– src/mn/dynmnd.conf (Mobile Router)

• print the execution traces into two locations:

– stdout

– file named ha traces.txt (Home Agent) or mn traces.txt (Mobile Router)

If a mode is run with -debug extension (ha-debug or mn-debug) - in addition to
the traces - also debug information is printed into a file named ha debug.txt (Home
Agent) or mn debug.txt (Mobile Router). This execution mode runs a bit slower so
it should not be used when performing measurements.

For example Mobile Router in debug mode executes src/mn/dynmnd by read-
ing configuration from src/mn/dynmnd.conf. Debug information is printed into
mn debugs.txt and execution traces into both mn traces.txt and stdout. The com-
mand is the following:
sh run haaro.sh mn-debug

Executable dynmn tool When Mobile Router (dynmnd) is running, it can be
monitored and controlled by sending it commands with the executable dynmn tool.
For example, it is possible to print its current tunnels by executing:
src/tools/dynmn tool print tunnels

A tunnel can also be binded to another networking device. For example the fol-
lowing command would bind the tunnel going towards the Correspondent having
Home Address 172.31.0.3 to interface eth1 :
src/tools/dynmn tool switch tnl iface 172.31.0.3 eth1

5.2 Configuration

This section describes how to configure the execution. The execution can be adjusted
by modifying command-line parameters, values in the configuration files or defined
preprocessor variables (#define).

37

5.2.1 Command line parameters

Home Agent and Mobile Router executables take command line arguments. During
the development, the nodes were run with the following parameters:

• fg : runs the process in the terminal without making it a daemon

• traces : prints execution traces which describe the state of the execution

• config : reads configuration from the file defined

Here is the full command used when running the Home Agent:
./src/ha/dynhad –fg –traces –config src/ha/dynhad.conf 2>&1 | tee ha traces.txt

5.2.2 Configuration files

When a node gets launched it reads a configuration file in addition to the command
line. The program reads the file and looks for values following certain keywords.
Lines starting with hash character (#) are ignored.

If for example the Mobile Router switches to another link too easily, the amount
of lost keepalives tolerated can be changed by modifying the number in the following
line:
Max lost keepalives 3

In this line the Mobile Router is instructed about how many keepalives can get
lost before the connection is switched onto another link.

5.2.3 Defined constants

In the code, certain constants are defined as preprocessor variables (#define) in
order to make them easy to modify. For instance, HAaRO message type numbers
were not yet confirmed when this software was developed. They need to be updated
in the code when they get confirmed.

Message types are defined in src/other/message.h. Mobile Router related con-
stants such as nonce creation interval and Registration Reply waiting time are de-
fined in src/mn/mn.h. Home Agent related constants like maximum amount of
bindings and default listener port are defined in src/ha/ha config.h Maximum mes-
sage size is defined in src/mn/mn.h (MR) and in src/ha/ha config.h (HA).

5.3 Debugging tools and routines

This section describes how the software was debugged during the development. The
aim is to help the next developers with their issues. The system being distributed
makes the development more complicated. In addition to basic bugs in the software,

38

an error can lie in several different locations such as Linux configuration or format
of a packet generated.

Software execution logic and memory accessing was monitored with Gnome De-
bugger (GDB). Section 5.3.1 discusses this kind of debugging. Section 5.3.2 describes
how certain attributes in the Linux configuration were verified to be suitable for the
software execution. Section 5.3.3 illustrates how packet formats and contents were
monitored. Section 5.3.4 describes how outages were caused manually on the in-
frastructure network. Breaking down paths enables testing if the software detects
breakdown and finds a working path.

5.3.1 Monitoring execution of the software with Gnome Debugger

The easiest fault to locate is an error in execution of the local router instance. When
the node acts strangely or crashes for a segmentation fault, the situation should be
repeated under Gnome Debugger (GDB).

Before executing on GDB, limitations on shell processes should be removed by exe-
cuting:
ulimit -c unlimited

Also compilation should be done in debug mode. Compilation mode can be changed
by modifying the Makefile in the root folder of the project. In the Makefile, -g flag
should be added to the CFLAGS variable:
CFLAGS = -O2 -g

GDB can be launched by giving it the executable as command line parameter. For
example the Home Agent executable was debugged in folder src/ha/ with command:
sudo gdb dynhad

In GDB a breakpoint can be set at a certain line with command (following the
(gdb) label):
(gdb) break ha.c:2267

Or at a function:
(gdb) break ha.c:handle reg msg

The program is launched with run command and parameters:
(gdb) run –fg –debug –config dynhad.conf

On GDB the process can be stopped by sending it signal SIGINT (ctrl+c). It
may also crash. The last function calls of a stopped or crashed execution can be
back-traced with command bt. The execution can be followed line by line with
command n (next) and jump inside a function with command s (step). Variables’
current values can be printed with p <variable name>. You can jump into the caller
function with command up and back to the callee with down.

39

5.3.2 Checking Linux routing configuration

Incorrectly configured routing table or Reverse Path Filtering option may prevent
the software from working properly. This can for instance cause a situation where
no packet leaves the interface even though the software seems to be sending packets
correctly.

Routing table Mobile Router has to have at least one interface for its Mobile
Network(s) and one interface for each wide-area network (ISP). When the router is
running, there are also devices for each tunnel. Routes to a Correspondent’s Mobile
Networks point to the tunnel towards the Correspondent. You can see network in-
terface statuses by executing:
ifconfig

You can create a new networking interface eth2 with IP address 10.10.10.10 :
ifconfig eth2 10.10.10.10 netmask 255.255.255.0 up

Routes can be monitored and managed with command ip. The following prints
the routing table:
ip route

Current route to host 11.11.11.11 is shown with:
ip route get 11.11.11.11

Route to host 11.11.11.11 is added via device TUN1 with command:
ip route add 11.11.11.11 via TUN1

Default route via 20.20.20.20 is deleted with command:
ip route del default via 20.20.20.20

See the full manual:
man ip

Reverse Path Filtering One parameter in Linux configuration which caused us
confusion was Reverse Path Filtering (RPF). This feature is used for example to
prevent IP source address spoofing. RP-filter checks that source IP addresses of
packets received on a networking interface match the rules set in the routing table.

Let’s take an example. A router has two networking interfaces:

• eth1

– address: 10.10.10.10

– routes: 10.10.10.0/24

• eth2

40

– address: 20.20.20.20

– routes: 20.20.20.0/24

The router has RP-filtering enabled for eth1. A packet on eth1 from source address
20.20.20.5 will be blocked because its route belongs to eth2.

In this project RP-filter should be disabled for all interfaces utilized by the router.
The status of the filters on networking interfaces can be checked by executing com-
mand:
sysctl -a | grep rp filter

RP-filtering can be disabled for eth0 with command:
sudo sysctl -w net.ipv4.conf.eth0.rp filter=0

5.3.3 Monitoring packet formats with Wireshark

An outgoing packet can contain invalid fields causing the kernel discarding it. Pack-
ets received by a networking device can be monitored with Wireshark. With this
graphical tool it is easy to follow connection initialization, connection maintenance
and disconnection packets.

One confusing situation we came up against was a tunnel inside of a tunnel.
Tunnel packet was routed to a tunneling device two times instead of one. These
kind of bugs would be hard to notice without observing the actual bits online.

Figure 11 illustrates how packets are shown in Wireshark. There is a tunnel
keepalive (ICMP Request) sent from a Mobile Router with HoA 172.31.0.2 to a
router with HoA 172.31.0.3. The keepalive packet is in UDP tunnel so it is encap-
sulated with MIP in UDP in IP stack.

5.3.4 Testing how the node finds a working path

Path fails if a link on the way is down or some part of the infrastructure is broken.
Mobile Router is supposed to notice a problem in connectivity and find a working
path fast enough in order to maintain tolerable service level. Router’s ability to
notice breakdowns was tested by breaking down links and routes inside the infras-
tructure so that packets won’t get through. Noticing a local link being down is quick
and easy because the status of the link changes. Problem in the infrastructure gets
noticed only when sent keepalives are no longer replied by the destination router.

In our tests, the service provider infrastructure was emulated with a networking
switch (described more in Section 6.1). We caused breakdowns in the infrastructure
by adjusting this switch. The most rudimentary method we used to disconnect
a path through the infrastructure was to manually pull out a networking cable.
However it was faster and more flexible to do this at software level. This required
adjusting the operating system of switch.

Packets can be blocked by creating filtering rules with iptables. Iptables is an
interface to the firewall inside the linux kernel. You can block specific IP addresses,
ports etc.

41

Figure 11: Tunneled ICMP Request viewed with Wireshark.

The method we found the most convenient was configuring Virtual Local Area
Network (VLAN) inside the infrastructure switch. VLAN can be used to manage
routing inside the switch. The user can define which interfaces are interconnected.
Breakdowns can be caused simply by reconnecting one end of a working path to a
different interface.

42

6 Performance measurements

This section describes the measurement conditions and performance results achieved
with the software. A physical test network was set up to run the network on. Perfor-
mance was measured by testing how fast the implementation restores connectivity
in case of a path failure. We also measured how an outage affects TCP download
rate and VoIP voice quality.

Section 6.1 describes the hardware used to build the test network. Section 6.2
discusses the logical topology of the test network. Section 6.3 describes the test
cases executed. Section 6.4 illustrates the results achieved with the running code.
These measurements and results are described more thoroughly in Antti Mäkelä’s
article [22].

6.1 Hardware

Routers and infrastructure The software was tested on a network that consists
of a Home Agent, three virtual ISP routers, three Mobile Routers and hosts on the
routers’ Mobile Networks. Each Mobile Router was running on a PC-Engine’s Alix
Geode system board, running Debian GNU/Linux. The board has 256 megabytes
of memory, variable number of network interfaces and AMD Geode LX CPU. Since
Home Agent has to process large amount of the signaling, a more powerful Intel i7
Core-based PC was used as the Home Agent.

Figure 12: A router in the HAaRO test network.

The last board was a switch working as an ”infrastructure” node. The board
emulated the three service provider routers and the WAN connections from each
router to each service provider. In addition to the switching, the infrastructure

43

system could be set up to provide variable delays, capture traffic for debugging, set
up traffic failures and so on.

Figure 12 shows the piece of hardware running the Mobile Router process. There
are three Ethernet wires, each connected to a service provider router (the WAN
connections). In the USB-Ethernet adapter there is the ”customer” connection
(host in the Mobile Network). Traffic from the customer was forwarded by the
Mobile Router to a tunnel on one of the WAN-connections. When the WAN was
disconnected, the router created a new tunnel on a different WAN.

Traffic and measurement The measurements were performed using Spirent
Testcenter, which is a well-known industry standard testing platform. Spirent con-
sists of two components: the ”Avalanche” component emulates end-users and the
”Reflector” component emulates servers. The platform’s primary use cases are run-
ning stress tests either on network services by emulating end-users, or on the network
infrastructure by emulating both the end-users and the services they are accessing.
Our case resembles the latter as we want to observe effects to end-user experience.
The end-users can be instructed to load a website, conduct a VoIP call and so on.
In a single test run an increasing number of users starts to use the network services,
until a desired number of users is reached. Then the ”steady state” is kept for
desired length before the users leave the network.

The Mobile Routers have some performance limitations, mainly due to the tun-
neling technology. UDP tunneling was implemented using Linux TUN/TAP technol-
ogy [18] which operates in user-space. Since our primary interest is consumer-level
connections, our packet rate was limited to 10 Mbps, which our chosen hardware
can handle easily. Processing the signaling messages also creates some processing
overhead.

6.2 Topology

The test network consists of a Home Agent, three Mobile Routers, three service
provider routers and some end-user hosts, the ”customers”. Figure 13 illustrates
the topology of the test network. Service providers are emulated by the ”infra
router”. Each Mobile Router and the Home Agent are all connected to each service
provider. A Mobile Router can register to the Home Agent via any service provider.
Each customer host is connected to one Mobile Router. All traffic a customer sends
is routed to its Mobile Router. Mobile Router tunnels all traffic via the current
service provider. The tunnel endpoint is either the Home Agent or a Correspondent
Router (in HAaRO). The Home Agent has access to the Internet.

Each MIP node has three networking interfaces. Each interface is connected to
a different service provider network with a different metric value. When Mobile
Router process starts, it first connects to the Home Agent via the interface having
the lowest metric. When the router receives a UDP Tunneling Accept, it creates a
new networking device for the HA tunnel: TUNLMNA. The router sets its default
route to this device and starts forwarding packets from the virtual tunneling device
to the physical networking device the registration was sent from. UDP Data Message

44

Figure 13: HAaRO test network topology.

in UDP in IP header stack is added to each packet forwarded. This way all packets
sent from the TUN device are ”in the tunnel” being encapsulated with the UDP
tunneling stack

6.3 Test cases

We were interested in testing how much end-user experience on our network dete-
riorates when an unreliable commodity-connection fails. User experience consists
of availability and quality of network services. In practice, availability would be
responsiveness to an HTTP-request initiated by an end-user when clicking on a link
in a web browser. Another example of quality is download speed of a web site, or
in case of VoIP, perceived quality of speech.

In case of a path failure, the software has to find a working connection before the
user notices critical decrease of service quality. Studies [23], [24], [25] suggest that
web users generally tolerate pauses with maximum length of 2 seconds. For VoIP,
a commonly accepted methodology is Mean Opinion Score (MOS) which measures
call quality on a scale from 1 to 5, where 1 is ”Bad”, 2 is ”Poor”, 3 is ”Fair”, 4 is
”Good” and 5 is ”Excellent”.

In each test case, 5 test runs were conducted and the results were averaged.
MR to MR round-trip time was set to 50 ± 6 ms to emulate higher geographical
distance between each site. Before running the application, we performed baseline
measurements with the infrastructure. We caused connection breakdowns of dif-
ferent lengths and measured how these outages affected TCP download speed and
VoIP quality. With the results we could later approximate how long of a connection
breakdown does the implementation’s connection restoration correspond to.

Performance of the implementation was tested by introducing connection failures

45

and measuring how quickly the connection is reinitialized on another path. Paths
were disconnected inside the infrastructure so that the Mobile Router does not detect
the current link’s status being down. Instead, the router notices tunnel keepalives
not being replied. This is the breakdown case that takes more time to notice.
The time it takes for the router to recover depends on the router configuration
(minimum keepalve interval, failure detection threshold) so it is more interesting in
this research.

The configuration was adjusted to provide failure detection and connection recov-
ery as fast as possible. Return Routability was set to be performed on all potential
paths before any KRm gets expired. This way the Mobile Router is able to switch
to any link directly without consuming extra round-trips for calculating registration
keys.

The two configuration parameters that require tuning are minimum keepalve
interval (keepalive sending frequency) and failure detection threshold (the amount
of lost pings that is interpreted to be a path failure). Larger keepalive interval
delays failure detection but too frequent pinging will flood the link. Too large
failure detection threshold also slackens failure detection but too small threshold -
specially with small keepalive interval - causes incorrectly interpreted path failures,
so called false positives. The existing practice for the threshold is 3 pings and for
the interval 200 ms. Linux’s Priority Queuing was utilized to give the registration
and keepalive messages priority over end-user data.

6.4 Measurement results

The effects of different length breakdowns on TCP and VoIP are listed in Table 5.
These are the baseline measurement results. In the TCP column, the first subcolumn
illustrates how many seconds it took for the download rate to rise to half of the
maximum. The second subcolumn is the amount of time the throughput was below
10 % of the maximum. Measured MOS values are listed in the VoIP column.

Table 5: Baseline measurement of TCP download rate recovery time and VoIP
quality on breakdowns of different lengths.

TCP VoIP
< 50 % < 10 % MOS

100 ms 2.6 s 0.2 s 3.94
200 ms 2.6 s 0.6 s 3.66
400 ms 3.4 s 0.8 s 3.18
600 ms 3.8 s 0.6 s 2.76
800 ms 4.0 s 0.8 s 2.60
1000 ms 4.4 s 2.0 s 2.29
1200 ms 4.6 s 2.8 s 2.08

Two different configurations were used during the performance measurements:

46

200 ms interval with failure threshold 3 and 150 ms interval with failure threshold 2.
Measurement results achieved with the implementation are listed in Table 6. VoIP
is simply UDP-stream so comparing the results with the baseline measurements is
quite straightforward. The first MOS value match with the baseline value of 800 ms
and the second MOS value match close to average of 400 and 600 ms. This makes
sense because the response time of the latter is 300 ms faster (200 ms * 3 vs. 150 ms
* 2). Both of these MOS-values are rounded to ”Fair” with the metrics introduced
in Section 6.3.

It takes TCP more than two seconds in both cases before transmission rate
starts increasing. This indicates that TCP is on ”slow start” mode. Due to the
congestion control, the measured values are not that easy to compare with the
baseline breakdown values. Connection recovery of the implementation during a
TCP session corresponds to a breakdown of 1 - 1.5 s. As mentioned in Section 6.3,
pauses under 2 seconds are considered tolerable.

Table 6: Measurements with the implementation

TCP VoIP
< 50 % < 10 % MOS

interval 200 ms, threshold 3 5.8 s 2.2 s 2.61
interval 150 ms, threshold 2 5.6 s 2.8 s 3.09

Keepalive intervals and timers affect the failure detection time and sensitivity
to false positives. On the other hand, end-to-end delay on the network affects the
connectivity restoration time. This has significant effect on end-user application
behavior, especially on TCP which uses congestion control.

The measurements were performed with end-to-end delay set to 25 ms, causing
50 ms round-trip time. Figure 14 illustrates the effect of different end-to-end delays
on recovery speed of TCP. Test runs were conducted with 25 ms, 50 ms and 75
ms delays. In all cases the throughput starts increasing immediately when the
connection is restored, but the time spent in getting the transmission rate to the
maximum increases dramatically when the delay is increased.

6.5 Performance summary

In these measurements we tested end-user experience during a connection outage.
The implementation has to notice the connection being down and switch to another
connection fast enough in order to maintain tolerable service level. End-user experi-
ence was measured with TCP and VoIP traffic. On TCP, the user experience comes
from responsiveness of for instance a link on a web page. On VoIP, the experience
depends on the voice quality.

Connection switching during a TCP session corresponded to an outage of 1 - 1.5
seconds. This response time is considered to be well tolerable. In VoIP case, an

47

Figure 14: Effect of delay on throughput in HTTP case [22]

outage during a call did not lower the voice quality below ”Fair” in Mean Opinion
Score metrics.

The implementation was tested on real hardware and with real traffic. However,
we did not have a proper network. Our infrastructure switch was very idealistic. In
the future the implementation needs to be tested in various network conditions. We
need to use networks of real-world service providers in order to reveal all possible
networking issues.

48

7 Summary and future work

The purpose of this study was to explore how well Redundant Array of Independent
Internet Connections (RAIIC) works in real world. RAIIC is a concept for pro-
viding guaranteed access with low cost. A set of cheap, unreliable consumer-level
connections is utilized to provide guaranteed service level. One connection is used
at a time and the state of the connection is actively monitored. In case the quality
deteriorates, the traffic is switched onto another unreliable connection. Hence the
system is able to provide access as long as all the connections are not down at the
same time. If the connections are truly independent with no shared infrastructure,
the probability of a full outage is almost negligible.

We implemented a Mobile IP based solution in order to be able to test our
concept on real hardware and running code. We wanted to verify that the concept
is sound and the user experience remains tolerable during a connection breakdown.
The system was required to perceive the connection quality deterioration and switch
the traffic onto another connection fast enough in order to maintain satisfactory end-
user experience. This was tested with TCP and VoIP traffic and in both cases the
implementation was able to maintain adequate quality of service. However, our
infrastructure network was simulated with a networking switch. In order to achieve
more realistic results, the implementation needs to be tested using networks of real-
world service providers.

The reason to provide high-availability with multiple commodity-level connec-
tions instead of one guaranteed connection is to save on costs. Connectivity guar-
antees are normally expensive. It may be considerably cheaper to buy multiple
commodity-grade connections than to buy SLA guarantees. However, more busi-
ness model analysis is needed. We still need to study whether you can actually make
enough money on network that you don’t control.

Also the implementation will be further upgraded. A router will be able to utilize
all available paths via load balancing. With this feature, the traffic is distributed
more equally on the operational connections instead of just using one at a time.
Support for load balancing has already been specified as Mobile IPv4 extension [26].
We also have implemented functions that can be utilized when developing this sort
of functionality.

49

References

[1] A. Mäkelä, H. Warma, K. Kilkki, A. Decros, J. Manner Economic feasibility
analysis of seamless multi-homing WAN solution, June 2011, Next Generation
Internet (NGI), 2011 7th EURO-NGI Conference

[2] Tao of Internet Engineering Task Force. http://www.ietf.org/tao.html

[3] C. Perkins, IP Mobility Support for IPv4, Revised, RFC 5944, November 2010,
Internet Engineering Task Force. http://tools.ietf.org/html/rfc5944

[4] C. Perkins, IP Mobility Support for IPv4, RFC 3344, August 2002, Internet
Engineering Task Force. http://tools.ietf.org/html/rfc3344

[5] C. Perkins, IP Mobility Support, RFC 2002, October 1996, Internet Engineering
Task Force. http://tools.ietf.org/html/rfc2002

[6] A. Mäkelä and J. Korhonen, Home Agent assisted Route Optimization
between Mobile IPv4 Networks, draft-makela-mip4-nemo-haaro-05, April
2010, Internet Engineering Task Force. http://tools.ietf.org/html/

draft-ietf-mip4-nemo-haaro-05

[7] H. Levkowetz, S. Vaarala, Mobile IP Traversal of Network Address Translation
(NAT) Devices, RFC 3519, April 2003, Internet Engineering Task Force. http:
//tools.ietf.org/html/rfc3519

[8] K. Leung, G. Dommety, V. Narayanan, A. Petrescu, Network Mobility (NEMO)
Extensions for Mobile IPv4, RFC 5177, April 2008, Internet Engineering Task
Force. http://tools.ietf.org/html/rfc5177

[9] Mäkelä, A. Concept for providing guaranteed service level over an array of un-
guaranteed commodity connections, in proceedings of The 25th Symposium On
Applied Computing (ACM SAC 2010), March 2010.

[10] Comparison Guide: Bandwidth Suppliers for Small- to Medium-sized Busi-
nesses, October 2007. www.voip-news.com

[11] N. Rickard, Cost Cutting by Rightsizing Network Reliability, Gartner research
report G00155940, April 2008.

[12] R. Teixeira, S. Uhlig, C. Diot, BGP Route Propagation between Neighboring
Domains, in Passive and Active Network Measurement, Lecture Notes in Com-
puter Science, 2007.

[13] IOS IOS NAT Load-Balancing for Two ISP Connections, Cisco Document ID
100658, February 2008.

[14] P. Vixie et al, Dynamic Updates in the Domain Name System (DNS UPDATE),
IETF RFC 2136, April 1997, Internet Engineering Task Force.

http://www.ietf.org/tao.html
http://tools.ietf.org/html/rfc5944
http://tools.ietf.org/html/rfc3344
http://tools.ietf.org/html/rfc2002
http://tools.ietf.org/html/draft-ietf-mip4-nemo-haaro-05
http://tools.ietf.org/html/draft-ietf-mip4-nemo-haaro-05
http://tools.ietf.org/html/rfc3519
http://tools.ietf.org/html/rfc3519
http://tools.ietf.org/html/rfc5177
www.voip-news.com

50

[15] P. Calhoun, C. Perkins Mobile IP Network Access Identifier Extension for IPv4,
RFC 2794, March 2000, Internet Engineering Task Force. http://www.ietf.
org/rfc/rfc2794.txt

[16] D. Johnson, C. Perkins, and J. Arkko Mobility Support in IPv6, RFC 3775,
June 2004, Internet Engineering Task Force. http://tools.ietf.org/html/
rfc3775

[17] B. Andersson, D. Forsberg, J. Hautio, J. Malinen, K. Mustonen and K.
Weckström Dynamics software package in sourceforge, October 2001. http:

//sourceforge.net/projects/dynamics/

[18] Tun/Tap interface tutorial, March 2010. http://backreference.org/2010/
03/26/tuntap-interface-tutorial/

[19] M. Stevens, Fast Collision Attack on MD5, August 2009, http:

//crppit.epfl.ch/documentation/Hash_Function/Examples/Code_

Project/Documentation/104.pdf

[20] Mobile IPv6 for Linux (MIPL) source code, March 2006. http:

//linux.wareseeker.com/download/mipl-mobile-ipv6-for-linux-2.

0.1.rar/334567

[21] Mobile IP Implementation in Java (JMIP) source code, March 2005. http:

//www.mobileip.org/

[22] A. Mäkelä, J. Manner Performance of a economical, redundant system for In-
tranet connectivity, IEEE ISCC 2011.

[23] D. Miras et al, A Survey on Network QoS Needs of Advanced Internet Applica-
tions, Internet 2, QoS Working Group, 2002.

[24] D. Galletta, R. Henry, S. McCoy, P. Polak, Web Site Delays: How tolerant are
users?, Journal of the Association for Information Systems Vol. 5 Issue 1, pages
1-28, January 2004.

[25] J. Jacko, A. Sears, M. Borella, The effect of network delay and media on user
perceptions of web resources, Behavior and Information Technology, Volume 19,
Issue 6, November 2000, pages 427 - 439.

[26] S. Gundavelli and K. Leung, Multiple Tunnel Support for Mobile
IPv4, draft-gundavelli-mip4-multiple-tunnel-support-01, January 2010,
Internet Engineering Task Force. http://tools.ietf.org/html/

draft-gundavelli-mip4-multiple-tunnel-support-01

http://www.ietf.org/rfc/rfc2794.txt
http://www.ietf.org/rfc/rfc2794.txt
http://tools.ietf.org/html/rfc3775
http://tools.ietf.org/html/rfc3775
http://sourceforge.net/projects/dynamics/
http://sourceforge.net/projects/dynamics/
http://backreference.org/2010/03/26/tuntap-interface-tutorial/
http://backreference.org/2010/03/26/tuntap-interface-tutorial/
http://crppit.epfl.ch/documentation/Hash_Function/Examples/Code_Project/Documentation/104.pdf
http://crppit.epfl.ch/documentation/Hash_Function/Examples/Code_Project/Documentation/104.pdf
http://crppit.epfl.ch/documentation/Hash_Function/Examples/Code_Project/Documentation/104.pdf
http://linux.wareseeker.com/download/mipl-mobile-ipv6-for-linux-2.0.1.rar/334567
http://linux.wareseeker.com/download/mipl-mobile-ipv6-for-linux-2.0.1.rar/334567
http://linux.wareseeker.com/download/mipl-mobile-ipv6-for-linux-2.0.1.rar/334567
http://www.mobileip.org/
http://www.mobileip.org/
http://tools.ietf.org/html/draft-gundavelli-mip4-multiple-tunnel-support-01
http://tools.ietf.org/html/draft-gundavelli-mip4-multiple-tunnel-support-01

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Guaranteed Wide Area Network access
	Differences between consumer-grade and business-grade connections
	Possible technologies to implement high availability
	Other use cases for reliable access over unreliable connections

	Mobile IPv4 with extensions
	Mobile IPv4 addressing
	Mobile IPv4 signaling
	UDP in IP tunneling
	Network Mobility
	Home Agent assisted Route Optimization
	Authentication in Route Optimized Mobile IPv4 network
	Authentication keys
	Encryption
	Keys generated during Return Routability procedure
	Registration management key updating

	Summary of technologies

	Implementation
	From scratch or using existing code
	Observing existing implementations
	Dynamics as a software to build on
	Drawbacks of Dynamics' single thread design

	Functional modifications implemented on Dynamics
	Tunneling mode changed
	Foreign agent disabled
	Added support for Network Mobility and Route Optimization
	Virtual Home Addresses instead of Home Network
	Added two API commands to dynmn_tool

	Containers
	Home Agent's Home Address pool
	Home Agent's Binding Table
	Route Optimization Cache
	Headers and packets

	Socket interface
	Tunneling file descriptors (tun_fd)
	Home Agent side connection sockets
	Mobile Router side connection sockets

	Execution states
	Initialization
	Incoming packet handling
	Timer expiration handling

	Usage and maintenance
	Getting started with the program
	Preparation and compilation
	Execution

	Configuration
	Command line parameters
	Configuration files
	Defined constants

	Debugging tools and routines
	Monitoring execution of the software with Gnome Debugger
	Checking Linux routing configuration
	Monitoring packet formats with Wireshark
	Testing how the node finds a working path

	Performance measurements
	Hardware
	Topology
	Test cases
	Measurement results
	Performance summary

	Summary and future work
	References

