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Abstract— We study the connectivity properties of an ad hoc
network consisting of a given number of nodes each moving
according to the Random Waypoint mobility model. Connectivity
properties of networks with uniformly distributed nodes are well
known, but the movement in the RWP model results in a spatial
node distribution which is not uniform. Approximations are pro-
vided for the probability that the network is connected, as well as
for the mean durations of the connectivity periods. The accuracy
of the approximations is compared against extensive numerical
simulations. Especially, for the probability of connectivity, based
on new results on the exact node location distribution, an ap-
proximation is given that is remarkably accurate. Furthermore,
it is shown by numerical examples that in sparse network the
mobility has a positive effect on connectivity, whereas in dense
network the situation becomes the opposite. For the mean length
of the connectivity periods an approximation is derived that gives
accurate results in the important region where the probability of
connectivity rises rapidly.

Index Terms— ad hoc networks, mobility modelling, k-
connectivity, RWP.

I. I NTRODUCTION

An intrinsic property of wireless ad hoc networks is that
data transmission between two nodes occurs over a multihop
path. The functionality of the network critically depends on
the connectivity properties of the network. These typically
depend on the transmission range of the nodes, the number
of nodes and the distribution of the nodes, e.g., resulting
from the assumed mobility model. A common assumption
for the distribution is the uniform distribution. Introducing
mobility may result in a distribution that is far from uniform.
Hence, understanding the impact of mobility on connectivity is
essential. In this paper, we study both the probability that the
network is connected and also the lengths of the connectivity
(and disconnectivity) periods under the assumption of nodes
moving according to the so called Random Waypoint (RWP)
mobility model.

The RWP model is one of the most popular mobility models
used in performance studies of ad hoc networks. Recently,
several papers have appeared analyzing various properties of
RWP [1], [2], [3], [4], [5]. From our point of view, one
important result concerns the stationary distribution of the
location of a node moving according to RWP. Approximate
results for various shapes (circle, rectangle) of the RWP
movement area have been obtained in [1], [3]. However, as part
of our earlier work, in [4] we have derived an exact expression

for the node location distribution which applies in any convex
movement area (a common assumption in RWP models). The
exact result has an especially appealing form in the case of a
circular movement area. Additional related results on the mean
arrival rate of nodes into a given subset of the RWP movement
area have been given in [5].

Also connectivity in wireless multihop networks has been
studied intensively. Connectivity problem deals with deter-
mining if it is possible to transfer information between any
two nodes ignoring all capacity and traffic related phenomena,
most notably interference effects. The most popular network
model – and the one used in this study – defining when
two nodes are directly connected has been the Boolean one,
in which two nodes are connected if they are both within
each others’ transmission ranges. When the Boolean model
is augmented with the common assumption that all nodes
have an equal transmission range, the connectivity problem
reduces to determining the distribution of the threshold range
for connectivity: for a given set of nodes, this is equal to the
greatest edge length in the minimum spanning tree of the nodes
[6]. It has been shown in [7] that for uniformly distributed
nodes in the unit square, as the number of nodes tends to
infinity, the threshold range for connectivity has asymptotically
the same, previously known, distribution as the threshold range
for minimum degree 1, i.e., the greatest edge length in the
nearest-neighbor graph. The result has been generalized to
k-connectivity in [8]. Furthermore, the identity in the case
k = 1 has been shown to hold for normally distributed
points in [9]. Recently, the asymptotic distributions of the
threshold range fork-connectivity whenk > 1, for uniformly
distributed points in circular and square-shaped domains have
been derived in [10]. The distribution of the threshold range
for k-connectivity is not known when the number of nodes is
finite. The results above motivate predictingk-connectivity of
finite networks by minimum degreek, as has been done, e.g.,
in [11]; this is also the basis of our approach.

In this paper we present approximations for the probability
that a given ad hoc network withn nodes isk-connected.
The nodes are assumed to move according to RWP, which
concentrates more probability mass in the center of the area
than to areas near the borders. In the RWP model, nodes move
independently and the number of neighbors a given node has
is binomially distributed with a certain parameterp. These
are needed in our approximation for the probability that all



nodes have at leastk neighbors, which is used to approximate
the probability ofk-connectivity. In our first approximation,
using our earlier exact results on the distribution of the
node location, the parameterp can be computed exactly.
Additionally, two other numerically simpler approximation
schemes are given, which are based on making some additional
poissonian assumptions. Our approach is similar to the one in
[11], with the distinction that in [11] the binomial distribution
characterizing the number of neighbors a given node has is
approximated by a Poisson distribution with appropriately
computed mean. Also, we have an exact result for the node
location distribution, whereas in [11] an approximation has
been used (although a rather accurate one). The quality of
the approximations for 1-, 2- and 3-connectivity are evaluated
by means of numerical simulations in a unit disk, while the
approach itself is not limited to any special geometry. In
the simulations, the threshold ranges fork-connectivity have
been determined using the efficient algorithms given in [12].
The results show that especially our first approximation gives
remarkably accurate results. We also provide an approximation
to estimate the mean time that a network withn nodes is
1-connected (or disconnected). The approximation utilizes re-
sults on the arrival rate of the RWP process in a given subset of
the movement area. These combined with our approximation
for the probability of 1-connectivity yield an approximation for
the mean connectivity periods. The approximation is validated
by means of numerical simulations, and the results show that
the approximation gives reasonably accurate estimates in the
most important region where the probability of connectivity
rises rapidly.

The paper is organized as follows. Section 2 provides
the necessary theoretical background. Our approximations are
derived in Section 3. Numerical results are in Section 4, and
Section 5 contains the conclusions

II. PRELIMINARIES

A. Connectivity

First some terminology and elementary definitions are intro-
duced. We limit ourselves to undirected graphsG = (V, E),
where V is a set of vertices (or nodes) andE is a set of
edges (or links). Nodesvi and vj are said to be neighbors
if there is an edge(vi, vj) in E. A path in G is a sequence
of verticesv1, v2, . . . , vn such that an edge exists inE for
each(vi, vi+1), i = 1, . . . , n− 1. A graphG = (V, E) is said
to be (1-)connected if for each(s, d)-pair a path exists from
s to d. Also, a graphG = (V,E) is said to bek-connected
if for each (s, d)-pair at leastk node disjoint paths exist. In
other words, (1-)connectivity tells us whether we can send
data to each possible destination. In case ofk-connectivity,
each destination can be reached even if anyk − 1 nodes fail.

In (ad hoc) networks two nodes are neighbors, i.e., have
an edge between them in the connectivity graphG, iff they
both can hear each other’s transmissions. In a general case
some links may be unidirectional, i.e., node A can hear node
B transmissions but not vice versa. For simplicity, in this work
it is assumed that all links are bidirectional. In particular, we
assume that two nodes can hear each other if the distance
between them is less thand.

B. Random Waypoint Model

In the RWP model, nodes move in a convex subset denoted
by A. In particular, each node moves independently of the
others directly towards its next waypoint at a certain velocity
v. Once the node reaches the waypoint, the next waypoint
is drawn randomly from the uniform distribution overA.
Similarly, the velocity for the next leg is drawn independently
from the velocity distribution. Furthermore, it is possible to
introduce “thinking times” upon reaching the waypoints.

In the following we state the necessary results from [4] and
[5] for our purposes. Let̀̄ denote the mean length of a leg and
A the area of the domainA. Also, let a1 = a1(r, φ) denote
the distance from pointr ∈ A to the border ofA in direction
φ and similarly, leta2 denote the distance to the border in the
opposite direction, i.e.,a2(r, φ) = a1(r, φ + π). Define1

h(r, φ) =
1
2
· a1a2(a1 + a2).

The stationary distribution of an RWP node is given by (see
[4])

f(r) =
1
C

∫ 2π

0

h(r, φ) dφ =
h(r)
C

, (1)

where normalization constantC = ¯̀A2. Consequently, by
normalization we get

¯̀=
1

A2

∫

A
h(r) dA.

The mean arrival rate into a subsetAj ⊂ A is given by [5]

λ(Aj) =
∫

∂Aj

λ(r, θ(dr)) dr, (2)

whereθ(dr) is the direction of the tangent at pointr, and

λ(r, θ) =
1

C · E[1/v]

∫ π

0

sin φ · h(r, θ + φ) dφ.

C. Random Waypoint in Unit Disk

For unit disk the pdf of node location, denoted byf(r), is
given by

f(r) =
2(1− r2)

C

∫ π

0

√
1− r2 cos φ dφ, (3)

whereC = 128π/45 ≈ 8.936 [4]. Let λ(r, d) denote the mean
arrival rate into a disk with a radius ofd locatedr units from
the origin. From Eq. (2) we obtain

λ(r, d) =
45

64π · E[1/v]

∫ π

α0

dα d(1−x2)·
∫ π

0

dφ sin φ
√

1− x2 cos2(φ+α−β),

(4)

where

x2 = r2 + 2rd cos α + d2,

β = arctan(r + d cos α, d sin α),

α0 =





0, whenr + d < 1,

arccos 1−r2−d2

2rd , whenr − d < 1 ≤ r + d,
π otherwise.

1Note thath(r, φ) is symmetric with respect toφ, h(r, φ) = h(r, φ+π).
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Fig. 1. Illustration of the notation.

For the special caser = 0 we havex = d, α0 = 0 andα = β
yielding

λ(d) =
45 · d(1− d2)
64 · E[1/v]

∫ π

0

sinφ ·
√

1− d2 cos2 φ dφ. (5)

III. A NALYTICAL APPROXIMATIONS FORCONNECTIVITY

A. Approximations for Probability of Connectivity

We studyk-connectivity and focus on the case where the
movement of the nodes is restricted to a unit disk. In particular,
we are interested in finding the probability that a network with
n nodes isk-connected at an arbitrary point of time and denote
this by Cn,k(d), whered is the transmission range. Due to
the assumed circular shape ofA, the distribution of the node
location depends only on the distancer = |r| from the center,
as given by Eq. (3). The coverage area of each node is also
assumed to be circular with a radius ofd and is denoted by
Bd(r), see Figure 1. Note that in principle, the domain of
movement can be any convex region, and our general result
(1) on the pdff(·) holds. The approximations presented below
depend on the shape of the domain throughf(·) and thus hold
for any convex region.

Approximation 1: We first derive the probability that an
arbitrary node has at leastk neighbors and denote this prob-
ability by Qn,k(d). Consider an arbitrarily chosen node and
condition on its location, denoted byr. Let p(r, d) denote the
probability that a given node is withinBd(r) (see Figure 1),
where we emphasize that this probability depends only on the
distancer = |r| from the center. We can expressp(r, d) as

p(r, d) =
∫

x∈Bd(r)

f(|x|) dA,

wherex denotes the vector for the location of a point inside
Bd(r). For completeness, an algorithm to computep(r, d)
numerically has been given in the Appendix.

With a probability of1−p(r, d) the arbitrary node is outside
Bd(r). Since all nodes are independent, the number of other
nodes within domainBd(r) obeys a binomial distribution,
Nr,d ∼ Bin(n − 1, p(r, d)), and hence the probability that
a given node is connected to at leastk nodes equals

1−
k−1∑

i=0

(
n− 1

i

)
· p(r, d)i · (1− p(r, d))n−1−i.

On the other hand, with the RWP model in the unit disk the
probability density that a node is at a distancer from the
center equals2πrf(r). Thus, we can conclude thatQn,k(d),
the probability that an arbitrary node has at leastk neighbors,
is given by

Qn,k(d) = 2π

∫ 1

0

rf(r)
(

1−

k−1∑

i=0

(
n− 1

i

)
· p(r, d)i · (1− p(r, d))n−1−i

)
dr,

(6)

which is an exact result. As in [11], we approximatek-
connectivity by

Cn,k(d) = P{n nodes arek-connected} ≈ (Qn,k(d))n
. (7)

Note that forn = 2 and k = 1 one should use the exact
result C2,1(d) = Q2,1(d) given by Eq. (6) instead of the
approximation.

The formal motivation of this approximation is as follows.
As remarked in [7], for uniformly distributed random points,
the asymptotics of the greatest edge length in the nearest
neighbor graph are as if the nearest-neighbor distances were
independent, and the longest edge is likely to be the same for
the nearest neighbor graph and the minimum spanning tree.
Because this holds for normally distributed points [9], the same
can be expected to hold for more general spatial distributions.
Here, we make the additional assumption that this generalizes
to k-connectivity and thek-nearest neighbor graph.

Note thatQn,k(d) can, as a function ofd, be interpreted
as the cumulative distribution function of a singlek-nearest-
neighbor distance. Hence(Qn,k(d))n is the cumulative dis-
tribution of the maximum ofn such i.i.d.k-nearest-neighbor
distances, and by the above, this is approximated to be the
distribution for the greatestk-nearest-neighbor distance. The
final approximation then sets this distribution equal to that of
the threshold range fork-connectivity.

Approximation 2: A more simple approximation can be
developed by also making an approximation in computing the
probability that a certain number of nodes exist within the
coverage area of a given node at locationr. More specifically,
we make a local Poisson assumption and assume that the nodes
within the coverage areaBd(r) result from a homogeneous
Poisson point process with intensityλ = f(r), i.e., the number
of nodes withinBd(r) obeys a Poisson distribution with mean
equal toλ times the area ofBd(r). Thus, within a small disk
around pointr the approximation is accurate.

Similarly as in the case of Approximation 1, we condition
on the location of a single node, and thus haven − 1
other nodes left. Hence, we have a superposition ofn − 1
identical Poisson point processes yielding a total intensity of
(n−1) ·f(r) per unit area. Consequently, the number of nodes
occurring within the coverage areaBd(r) obeys a Poisson
distribution with parameter

a(r) = (n− 1)πd2 · f(r), (8)

and the probability that the number of nodes withinBd(r) is
less thank is given by

∑k−1
i=0

a(r)i

i! · e−a(r). Thus, in a unit



disk our approximate probabilitŷQn,k(d) for the probability
that a given node has at leastk neighbors equals

Q̂n,k(d) = 1− 2π

∫ 1

0

r f(r)
k−1∑

i=0

a(r)i

i!
· e−a(r) dr. (9)

In the above, it is assumed that the coverage area is a full
circle even on the border of the RWP domain. The limiting
effect of the border can be taken into account by introducing a
functionA(r, d) which gives the area of the intersection of the
unit disk and a disk with radiusd at a distance ofr from the
origin, A(r, d) = ||B1(0)∩Bd(r)||. The exact form ofA(r, d)
is given in the Appendix. With this notation the slightly more
accurate approximation fora(r) can be expressed as

a(r) = (n− 1) ·A(r, d) · f(r). (10)

Finally, we use the same approximation for the probability of
k-connectivity as in Eq. (7), i.e.,Cn,k(d) ≈ (Q̂n,k(d))n.

B. Length of Connectivity Periods

Another related and important performance measure is the
mean time the network remains connected. To this end, we
derive analytical approximations for the mean length of the
time periods the network is 1-connected. Let the random
variableTc denote the length of the time period the network is
connected. Similarly, let random variableTd denote the length
of the time period the network remains unconnected. With this
we have an elementary relation,

Cn,1(d) = P{n nodes are 1-connected} =
T̄c

T̄c + T̄d
. (11)

Hence, as we are interested in̄Tc, knowledge ofCn,1(d) and
T̄d is sufficient also.

If d is small the network is disconnected with a high proba-
bility and the network consists of isolated nodes or groups of
connected nodes. Asd increases beyond a critical value that
depends onn the probability of connectivity starts increasing
quickly. In practise, this is perhaps the most interesting region,
and whenn is large, typically only one (or few) nodes are
separated from the rest of the network at the instant of time
when the network becomes unconnected. Thus, we suggest
estimatingT̄d by considering the mean interarrival time of a
node into a diskBd(r) having a radius ofd and centerr units
away from the center of the unit disk. Recall that,λ(r, d)
denotes the arrival rate of a single node into a diskBd(r)
when the node moves according to RWP model in unit disk.
Using either Eq. (4) or Eq. (5), as the case may be, one can
compute a numerical value forλ(r, d).

Let T̄
(r)
d denote the mean disconnectivity time on condition

that a single node gets isolated at pointr, which we can
estimate by

T̄
(r)
d ≈ T̂

(r)
d =

1
(n− 1) · λ(r, d)

.

Next we approximatēTd by T̂
(r)
d with somer,

T̄d ≈ T̂
(r)
d (12)

or in general case by the integral

T̄d ≈
∫

r

T
(r)
d · g(r) dr, (13)

where g(r) corresponds to the probability that the isolated
node is located at the distance ofr from the origin. Note that
in both Eq. (12) and Eq. (13) we have made on assumption
that disconnectivity is due to one isolated node. In Eq. (12)
we are parameterizing the approximation with respect to the
distancer from the center, and in the numerical experiments
we user = 0 and r = 1, which imply that we assume that
the most likely way a network becomes disconnected is that a
single node gets isolated either at the center(r = 0) or on the
border(r = 1). In (13) we assume some distribution for the
location of the isolated node, and in the numerical experiments
we use the uniform distribution,g(r) = 1/π.

Finally, combining the above with Eq. (7) gives us an
estimate for the mean connectivity period̄Tc

T̄c =
Cn,1(d)

1− Cn,1(d)
T̄d ≈ pn

1− pn
· T̂d, (14)

wherep denotes the probability that a node has at least one
neighbor,p = Qn,1(d) and T̂d is given by either Eq. (12) or
Eq. (13).

IV. N UMERICAL EXAMPLES

A. Validation of the Probability of Connectivity

First we compare the accuracy of the approximations for
1-connectivity as a function of the radius of the coverage area
d for different values of the number of nodesn. From this
point on, we refer as A1 to Approximation 1 as defined in
Section 3.1. Approximation 2 (in Section 3.1) actually contains
two approximations and they are referred to as A2a and A2b,
where A2a refers to the approximation witha(r) given by
Eq. (8), i.e., the domainBd(r) is a full circle even at the
border, and A2b refers to the approximation witha(r) given
by Eq. (10), i.e., the border effect is taken into account.
The results are shown in Figure 2, where the dashed lines
correspond to simulated results and solid lines represent the
analytical approximations (which approximation is in question
is indicated in the figures). As can be seen A1 is remarkably
accurate asn increases. Also, both A2a and A2b are able
to predict well the initial rise in the value ofCn,k(d), but
they do not rise as steeply as they should asd increases.
Somewhat surprisingly, the more detailed approximation A2b
which includes the proper handling of the border effect, is
even less accurate than the simpler A2a.

Then we validate our results for 2- and 3-connectivity. The
results are shown in Figure 3, where in each figure we show
simultaneously the results for 1-, 2- and 3-connectivity as a
function of d for different values ofn. In the simulations,
the k-connectivity of the network has been determined using
the algorithms described in [12]. The results only compare the
accuracy of A1 (solid lines) to simulated results (dashed lines)
as the accuracy of A2a and A2b is similar to that already
shown before. Again, it can be seen that A1 very closely
approximates the simulated values asn increases. Also, the
higher the value ofk the better the fit.
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Fig. 2. Validation of 1-connectivity forn = 20, 100, 500 nodes (from left to right) as a function ofd, dashed lines depict simulations and solid lines
analytical results.
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Fig. 3. Validation of k-connectivity forn = 20, 100, 500 nodes (from left to right) as a function ofd, dashed lines depict simulations and solid lines
analytical results.
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Fig. 4. Comparison of the accuracy of A1 (solid lines) and the approximation in [11] (dotted lines) against simulations (dashed lines) forn = 100, 500
(left, right) nodes.

Finally, we compare the accuracy of A1 with the approx-
imation given in [11], where the aim has been to study
connectivity in large networks. Figure 4 shows the results of
1-connectivity for A1 (solid lines), the approximation from
[11] (dotted lines) and simulations (dashed lines) forn = 100
nodes (left figure) andn = 500 nodes (right figure). As can
be seen, A1 is more accurate, especially forn = 500.

B. Comparison with Uniform Node Distribution

Next we compare the impact on 1-connectivity of a uniform
node location distribution vs. the RWP node location distribu-
tion. The analytical results for the RWP case correspond to
approximation A1, and the results for the uniform case are
obtained from A1 by usingf(r) = 1/π and thusp(r, d) =
A(r, d)/π. The results are shown in Figure 5, where the figure
on the left contains results obtained by using our analytical
approximations, and the figure on the right contains the
corresponding simulated results. Each figure depictsCn,1(d)
as a function ofd for n = 20, 100, 500. Solid lines correspond
to connectivity under RWP node distribution and dashed lines
to connectivity under uniform node distribution. It can be
seen that the mobility induced by the RWP model can either

improve or degrade the connectivity probability depending
on the number of nodes. In particular, for small number of
nodes, connectivity properties gain from mobility. However,
as the number of nodes is increased, the situation becomes the
opposite, i.e., the required transmission ranged is higher for
nodes moving according to RWP than for uniformly distributed
nodes (see results forn = 500). This phenomenon occurring in
the simulations (right figure) is also captured by our analytical
approximations (left figure), although numerical accuracy is
not perfect for small number of nodes.

C. Mean Length of Connectivity Periods

In Figure 6 the estimated mean length of the connectivity
periods are depicted as a function ofd and compared against
simulations, when the speed is constant,v = 1, and the number
of nodesn = 20, 100, 500. Simulation results are indicated
with black dashed lines and triangle markers. Blue lines with
square markers correspond to our approximation where we
have assumed an uniform location for isolated node. Green
lines with star markers correspond to our approximation with
T̄d ≈ T̂

(0)
d , i.e., that a node becomes most likely disconnected

in the center. Red lines with diamond markers correspond to
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Fig. 5. Comparisons forCn,1(d) with RWP node distribution (solid lines) and uniform node distribution (dashed lines) using our approximations (left) and
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our approximation withT̄d ≈ T̂
(1)
d , i.e., that a node becomes

most likely disconnected on the border. The results show that
in the interesting region, where connectivity probability rises
steeply, usingT̄d ≈ T̂

(0)
d andT̄d ≈ T̂

(1)
d gives estimates of the

lower and upper bounds for the mean connectivity durations.
Finally, the approximation with uniform assumption for the
isolated node gives a rather accurate approximation of the
mean connectivity periods forn = 100 and n = 500, where
for n = 100 the results practically coincide. Figure 7 shows
the same in a logarithmic scale, where dashed lines correspond
to simulations and the solid lines represent our approximations
in the same order as earlier.

D. Velocity Distributions

Next we will study how the velocity distribution affects
the mean length of the connectivity period. Note that as the
quantity λ(r, d) is inversely proportional to quantityE[1/v],
our approximation Eq. (14) is directly proportional to quantity
E[1/v]. In Fig. 8 the simulation results with three different
velocity distributions are illustrated forn = 20, 100, 500
nodes, i)v = 1 (i.e., constant), ii)v ∼ U(0.1, 1.9) (i.e.,
v̄ = 1), and iii) v ∼ U(0.356, 2.156) (i.e., E[1/v] ≈ 1).
Red lines with diamond markers correspond to i), green
lines with star markers correspond to ii), and blue lines with
square markers correspond to iii). It can be seen that with
n = 20, 100, 500 nodes i) and iii) are almost identical, while
case ii) generally leads to longer connectivity durations. Also
note that the relative difference in the results for the case ii)
and cases i,iii) is close toE[1/v] ≈ 1.64, as predicted by our
approximation approach.

V. CONCLUSIONS

In this paper, we have studied the connectivity properties
of ad hoc networks where the nodes are moving indepen-
dently according to the RWP mobility model. Analytical
approximations have been given for estimating the probability
that a network consisting ofn nodes isk-connected. The
approximations are based on estimating the probability that
the network has minimum degreek. This requires knowledge
of the probability that a given node hask neighbors. The most
straightforward approximation for this follows from making
additional assumptions that the number of neighboring nodes
obeys a Poisson distribution with an intensity depending on
the location. However, by using our recent results on the
exact node location distribution, we are able to compute the

probability of havingk neighbors exactly, which yields a very
accurate approximation for the probability ofk-connectivity.

The mean lengths of the 1-connectivity periods have been
also studied. The approximations utilize new results on the
arrival rate of the RWP process in a given subset of the
movement area. These combined with our approximation for
the probability of 1-connectivity yield a parameterized approx-
imation for the mean connectivity periods. The approximation
essentially represents a conditioning on the location where a
single node becomes isolated from the rest of the network.
The numerical results show that in the interesting region where
connectivity probability rises steeply, assuming that the node
gets isolated in the center or the border gives estimates of the
lower and upper bounds for the mean connectivity durations.
Finally, the approximation with uniform assumption for the
isolated node seems to give a rather accurate approximation
of the mean connectivity periods. Furthermore, according to
our approximation the mean length of the connectivity period
is directly proportional to quantityE[1/v], which matches well
with the numerical experiments.

As part of future work one can consider more accurate ap-
proximations to the mean connectivity lengths. Also, general-
ization of the approximations for the lengths ofk-connectivity
periods can be studied.
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[5] Esa Hyytïa and Jorma Virtamo, “Random waypoint mobility model
and cellular networks,” submitted for publication, available athttp:
//www.netlab.tkk.fi/julkaisut/bib/ , Sept. 2004.



0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.5

1

1.5

2

0.25 0.3 0.35 0.4

0.5

1

1.5

2

0.16 0.18 0.2 0.22 0.24

0.5

1

1.5

2

Fig. 6. Mean connectivity period length forn = 20, 100, 500 nodes (from left to right). Dashed curves corresponds to simulated results and solid curves
to estimates. .

0.3 0.4 0.5 0.6 0.7 0.8

0.1

1

10

100

0.2 0.25 0.3 0.35 0.4

0.1

1

10

0.14 0.16 0.18 0.2 0.22 0.24

0.05
0.1

0.5
1

5

Fig. 7. Mean connectivity period length forn = 20, 100, 500 (from left to right) in logarithmic scale. Dashed lines correspond to simulations and solid
lines to estimates. .

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.5

1

1.5

2

0.25 0.3 0.35 0.4

0.5

1

1.5

2

0.16 0.18 0.2 0.22 0.24

0.5

1

1.5

2

Fig. 8. Mean connectivity period length forn = 20, 100, 500 nodes (from left to right) with different velocity distributions.

.

[6] M. Sánchez, P. Manzoni, and Z. J. Haas, “Determination of critical
transmission range in Ad-Hoc networks,” inProceedings of Multiaccess
Mobility and Teletraffic for Wireless Communications 1999 Workshop
(MMT’99), Oct. 1999.

[7] M. D. Penrose, “The longest edge of the random minimal spanning
tree,” Annals of Applied Probability, vol. 7, no. 2, pp. 340–361, 1997.

[8] M. D. Penrose, “Onk-connectivity for a geometric random graph,”
Random Structures and Algorithms, vol. 15, no. 2, pp. 145–164, 1999.

[9] M. D. Penrose, “Extremes for the minimal spanning tree on normally
distributed points,”Advances in Applied Probability, vol. 30, no. 3, pp.
628–639, 1998.

[10] Peng-Jun Wan and Chih-Wei Yi, “Asymptotic critical transmission
radius and critical neighbor number fork-connectivity in wireless ad
hoc networks,” inProceedings of ACM MobiHoc ’04. 2004, pp. 1–8,
ACM Press.

[11] Christian Bettstetter, “On the connectivity of Ad Hoc networks,”
Computer Journal, vol. 47, no. 4, pp. 432–447, July 2004.

[12] H. Koskinen, “A simulation-based method for predicting connectivity in
wireless multihop networks,”Telecommunication Systems, vol. 26, no.
2-4, pp. 321–338, June 2004.

APPENDIX

A. Probability of Finding a Node insideBd(r)
An algorithm for computingp(r, d), the probability of

finding a node inside a disk with a radiusd at the distance
of r from the origin, is given in Algorithm 1 and 2 (see also
Figure 9). Recall thath(t) andC are according to (1).

Algorithm 1 Functions(r, d, t)
if t ≤ 0 or t ≤ d− r then

θ = 2π
else

A = d/t
B = r/t
θ = 2(π/2− arcsin

(
(1 + B2 −A2)/(2B)

)
)

end if
return (1/C) · θ · t · h(t)

Algorithm 2 Functionp(r, d)
t0 = max{0, r − d}
t1 = min{1, r + d}
if d > r then

x =
∫ d−r

t0
s(r, d, t) dt +

∫ t1
d−r

s(r, d, t) dt
else

x =
∫ t1

t0
s(r, d, t) dt

end if
returnx



each stripe is equal to s(r,d,t) dt

Fig. 9. Partitioning theBd(r) into circular “stripes” results in a one
directional integral.

B. Area of the Intersection of a Unit Disk andBd(r)
From Figure 10 it is easy to see that the area of the

intersection of a unit disk andBd(r), A(r, d), equalsπd2 as
long asr ≤ 1 − d. If r > 1 − d, then the part of the small
disk outside the unit disk is given by the difference of two
segments. Hence, for the unit diskA(r, d) is given by

A(r, d) =



πd2, if r ≤ 1− d,

πd2 − (
(γd2 − 1

2d2 sin 2γ)−
(φ− 1

2 sin 2φ)
)
, if 1− d < r ≤ 1,

where 



γ = arccos
1− d2 − r2

2rd
,

φ = arcsin

√
4r2d2 − (1− d2 − r2)2

2r
.
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Fig. 10. Notation for used inA(r, d) for unit disk.


