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Abstract—We study the connectivity properties of an ad hoc for the node location distribution which applies in any convex
network consisting of a given number of nodes each moving movement area (a common assumption in RWP models). The
according to the Random Waypoint mobility model. Connectivity exact result has an especially appealing form in the case of a
properties of networks with uniformly distributed nodes are well circular movement area. Additional related results on the mean
known, but the movement in the RWP model results in a spatial - e -
node distribution which is not uniform. Approximations are pro-  arrival rate of nodes into a given subset of the RWP movement
vided for the probability that the network is connected, as well as area have been given in [5].
for the mean durations of the connectivity periods. The accuracy Also connectivity in wireless multihop networks has been
of the approximations is compared against extensive numerical studied intensively. Connectivity problem deals with deter-

simulations. Especially, for the probability of connectivity, based . if it | ible to t fer inf i bet
on new results on the exact node location distribution, an ap- mining 1t it 1S possible 1o transter information between any

proximation is given that is remarkably accurate. Furthermore, two0 nodes ignoring all capacity and traffic related phenomena,
it is shown by numerical examples that in sparse network the most notably interference effects. The most popular network
mobility has a positive effect on connectivity, whereas in dense model — and the one used in this study — defining when
network the situation becomes the opposite. For the mean length 4 nodes are directly connected has been the Boolean one,
of the connectivity periods an approximation is derived that gives . . . L
accurate results in the important region where the probability of in which two nodes. ar.e connected if they are both within
connectivity rises rapidly. each others’ transmission ranges. When the Boolean model
Index Terms—ad hoc networks, mobility modelling, - is augmented with the cpmmon assumption th'at' all nodes
connectivity, RWP. have an equal tra_n§m|35|on range, the connectivity problem
reduces to determining the distribution of the threshold range
for connectivity: for a given set of nodes, this is equal to the
greatest edge length in the minimum spanning tree of the nodes
An intrinsic property of wireless ad hoc networks is thai6]. It has been shown in [7] that for uniformly distributed
data transmission between two nodes occurs over a multihopdes in the unit square, as the number of nodes tends to
path. The functionality of the network critically depends oimfinity, the threshold range for connectivity has asymptotically
the connectivity properties of the network. These typicallthe same, previously known, distribution as the threshold range
depend on the transmission range of the nodes, the numfaer minimum degree 1, i.e., the greatest edge length in the
of nodes and the distribution of the nodes, e.g., resultimgparest-neighbor graph. The result has been generalized to
from the assumed mobility model. A common assumptioitconnectivity in [8]. Furthermore, the identity in the case
for the distribution is the uniform distribution. Introducingk = 1 has been shown to hold for normally distributed
mobility may result in a distribution that is far from uniform.points in [9]. Recently, the asymptotic distributions of the
Hence, understanding the impact of mobility on connectivity threshold range fok-connectivity whenk > 1, for uniformly
essential. In this paper, we study both the probability that tligstributed points in circular and square-shaped domains have
network is connected and also the lengths of the connectiviigen derived in [10]. The distribution of the threshold range
(and disconnectivity) periods under the assumption of nodis k-connectivity is not known when the number of nodes is
moving according to the so called Random Waypoint (RWHRite. The results above motivate predictihgconnectivity of
mobility model. finite networks by minimum degrele as has been done, e.g.,
The RWP model is one of the most popular mobility modeis [11]; this is also the basis of our approach.
used in performance studies of ad hoc networks. Recently|n this paper we present approximations for the probability
several papers have appeared analyzing various propertieshat a given ad hoc network with nodes isk-connected.
RWP [1], [2], [3], [4], [5]. From our point of view, one The nodes are assumed to move according to RWP, which
important result concerns the stationary distribution of th@ncentrates more probability mass in the center of the area
location of a node moving according to RWP. Approximatthan to areas near the borders. In the RWP model, nodes move
results for various shapes (circle, rectangle) of the RWRdependently and the number of neighbors a given node has
movement area have been obtained in [1], [3]. However, as partbinomially distributed with a certain parameter These
of our earlier work, in [4] we have derived an exact expressi@re needed in our approximation for the probability that all

I. INTRODUCTION



nodes have at leagtneighbors, which is used to approximatd. Random Waypoint Model

the probability ofk-connectivity. In our first approximation, |5 the RWP model, nodes move in a convex subset denoted
using our earlier exact results on the distribution of thgy A. In particular, each node moves independently of the
node location, the parameter can be computed exactly.gthers directly towards its next waypoint at a certain velocity
Additionally, two other numerically simpler approximation, oOnce the node reaches the waypoint, the next waypoint
schemes are given, which are based on making some additiqga}rawn randomly from the uniform distribution ovet.
poissonian assumptions. Our approach is similar to the onegpjlarly, the velocity for the next leg is drawn independently
[11], with the distinction that in [11] the binomial distributionfrom the velocity distribution. Furthermore, it is possible to
characterizing the number of neighbors a given node hasjigoduce “thinking times” upon reaching the waypoints.
approximated by a Poisson distribution with appropriately |n the following we state the necessary results from [4] and
computed mean. Also, we have an exact result for the no@ for our purposes. Let denote the mean length of a leg and
location distribution, whereas in [11] an approximation hag the area of the domaim. Also, leta; = a1 (r, ¢) denote
been used (although a rather accurate one). The qualityygé distance from point € A to the border ofA in direction

the approximations for 1-, 2- and 3-connectivity are evaluatefland similarly, leta, denote the distance to the border in the
by means of numerical simulations in a unit disk, while thgpposite direction, i.eq,(r, ¢) = a;(r, ¢ + 7). Definé
approach itself is not limited to any special geometry. In 1
the simulations, the threshold ranges feconnectivity have h(r,¢) = = - a1a2(a1 + a2).
been determined using the efficient algorithms given in [12]. . o 2 .
The results show that especially our first approximation givj@e stationary distribution of an RWP node is given by (see
remarkably accurate results. We also provide an approximati
to estimate the mean time that a network withnodes is flr) == h(r,¢) dp = —=, (1)
1-connected (or disconnected). The approximation utilizes re- CJo ¢
sults on the arrival rate of the RWP process in a given subsetwffiere normalization constar® = ¢A2. Consequently, by
the movement area. These combined with our approximatinormalization we get
for the probability of 1-connectivity yield an approximation for 1
the mean connectivity periods. The approximation is validated l= Az / h(r) dA.
by means of numerical simulations, and the results show that . ) A o
the approximation gives reasonably accurate estimates in tH§ mean arrival rate into a subsdj C A is given by [3]
most important region where the probability of connectivity
rises rapidly. AlAy) = oA, Alr, 6(dr)) dr, 2)

The paper is organized as follows. Section 2 provides . L .
the necessary theoretical background. Our approximations g/']%eree(dr) is the direction of the tangent at point and
derived in Section 3. Numerical results are in Section 4, and A(r, 0) 1[1/ ] /7r sing - h(r, 0 + ) do.
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Section 5 contains the conclusions T CE
Il. PRELIMINARIES C. Random Waypoint in Unit Disk
A. Connectivity For unit disk the pdf of node location, denoted pfr-), is

First some terminology and elementary definitions are intrgiven by
duced. We limit ourselves to undirected graghs= (V, E), 2y T
. - . 2(1—r7) 2
where V' is a set of vertices (or nodes) ard is a set of fir)y= — vV1—1r2cos¢do, 3)
edges (or links). Nodes; and v; are said to be neighbors 0
if there is an edgdv;,v;) in E. A path inG is a sequence WhereC' = 1287 /45 ~ 8.936 [4]. Let A(r, d) denote the mean
of verticesvy, vo, ..., v, such that an edge exists ii for arrival rate into a disk with a radius af locatedr units from

each(vi,vi41), i =1,...,n—1. A graphG = (V, E) is said the origin. From Eq. (2) we obtain

to be (l-)connected if for eaclis, d)-pair a path exists from 45 ™ )

s to d. Also, a graphG = (V, E) is said to bek-connected Alryd) = e E[1/4] /a do d(1-2°)

if for each (s, d)-pair at leastt node disjoint paths exist. In i 0 4)
other words, (1-)connectivity tells us whether we can send dé sin ¢\/1 — 22 cos?(ptra—p),

data to each possible destination. In casekafonnectivity, 0
each destination can be reached even if Ary1 nodes fail. where

In (ad hoc) networks two nodes are neighbors, i.e., have
an edge between them in the connectivity graphiff they
both can hear each other’s transmissions. In a general case = arctan(r + dcos«, dsin «),
some links may be unidirectional, i.e., node A can hear node 0, whenr +d < 1,
B transmissions but not vice versa. For simplicity, in this work ,; — ¢ ,;ccos 1-r’—d®  \whenr—d<1<r+d,
it is assumed that all links are bidirectional. In particular, we - 2rd otherwise -
assume that two nodes can hear each other if the distance
between them is less thah INote thath(r, ¢) is symmetric with respect t@, h(r, ¢) = h(r, ¢ + 7).

22 =r? 4+ 2rdcos o + d?,




Fig. 1. lllustration of the notation.

For the special case= 0 we haver = d, ap =0 anda =
yielding
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IIl. ANALYTICAL APPROXIMATIONS FORCONNECTIVITY
A. Approximations for Probability of Connectivity

On the other hand, with the RWP model in the unit disk the
probability density that a node is at a distancdrom the
center equal@nrf(r). Thus, we can conclude th&l, x(d),

the probability that an arbitrary node has at Igasteighbors,

is given by

Qni(d) = 27T/Olrf(r)<1—
= (6)
(n P 1) prd)" - (1=, d))"‘l‘i) dr,

(]

=0
which is an exact result. As in [11], we approximakte
connectivity by

Cn x(d) = P{n nodes arés-connectedl ~ (Q,, x(d))". (7)

Note that forn = 2 and k¥ = 1 one should use the exact
result Co1(d) = Q2.1(d) given by Eq. (6) instead of the
approximation.

The formal motivation of this approximation is as follows.
As remarked in [7], for uniformly distributed random points,
the asymptotics of the greatest edge length in the nearest
neighbor graph are as if the nearest-neighbor distances were

We studyk-connectivity and focus on the case where th@dependent, and the longest edge is likely to be the same for
movement of the nodes is restricted to a unit disk. In particuldfe nearest neighbor graph and the minimum spanning tree.
we are interested in finding the probability that a network witBecause this holds for normally distributed points [9], the same
n nodes isk-connected at an arbitrary point of time and deno@n be expected to hold for more general spatial distributions.
this by C,, x(d), whered is the transmission range. Due td1ere, we make the additional assumption that this generalizes
the assumed circular shape 4f the distribution of the node t0 k-connectivity and thet-nearest neighbor graph.

location depends only on the distance- |r| from the center,

Note that@®, 1 (d) can, as a function ofl, be interpreted

as given by Eq (3) The coverage area of each node is a%the cumulative distribution function of a Sing&e’]earest'

assumed to be circular with a radius @fand is denoted by neighbor distance. Henc., x(d))

n

is the cumulative dis-

By(r), see Figure 1. Note that in principle, the domain dfibution of the maximum of such i.i.d.k-nearest-neighbor
movement can be any convex region, and our general redligtances, and by the above, this is approximated to be the
(1) on the pdff(-) holds. The approximations presented belowistribution for the greatest-nearest-neighbor distance. The
depend on the shape of the domain throyfgh and thus hold final approximation then sets this distribution equal to that of

for any convex region.

the threshold range fdt-connectivity.

Approximation 1: We first derive the probability that an Approximation 2: A more simple approximation can be
arbitrary node has at leastneighbors and denote this prob-developed by also making an approximation in computing the
ab|||ty by Qn,k‘(d)- Consider an arbitrar”y chosen node an@rObability that a certain number of nodes exist within the
condition on its location, denoted hy Let p(r, d) denote the Coverage area of a given node at locatiomore specifically,
probability that a given node is withif,(r) (see Figure 1), We make alocal Poisson assumption and assume that the nodes

where we emphasize that this probability depends only on théthin the coverage are®,(r) result from a homogeneous

distancer = |r| from the center. We can expres§-, d) as

p(r,d) = / i J

Poisson point process with intensity= f(r), i.e., the number
of nodes withinB,(r) obeys a Poisson distribution with mean
equal toX times the area oB,(r). Thus, within a small disk
around pointr the approximation is accurate.

wherex denotes the vector for the location of a point inside Similarly as in the case of Approximation 1, we condition

By(r). For completeness, an algorithm to compuyte, d)
numerically has been given in the Appendix.

on the location of a single node, and thus have- 1
other nodes left. Hence, we have a superpositiom 6f 1

With a probability of1 —p(r, d) the arbitrary node is outside i[dentical Poisson point processes yielding a total intensity of

By(r). Since all nodes are independent, the number of othér—1)-/(r) per unit area. Consequently, the number of nodes
nodes within domainB,(r) obeys a binomial distribution, OccUrring within the coverage ared;(r) obeys a Poisson

N4 ~ Bin(n — 1,p(r,d)), and hence the probability thatdistribution with parameter

a given node is connected to at leashodes equals

k—1

1= (n B 1) p(r.d)" - (1= p(r,d))" ="

=0

a(r) = (n—rd® - f(r), (8)

and the probability that the number of nodes wittiip(r) is

less thank is given bny:_O1 % e~ Thus, in a unit



disk our approximate probabilit@n,k(d) for the probability or in general case by the integral
that a given node has at ledsieighbors equals B
) Ty~ / ) - g(r) dr, (13)

. ! — a(r)"
Qnr(d) =1~ 2”/0 rf(r) Z (i!) e . (9) where g(r) corresponds to the probability that the isolated
=0 node is located at the distancerofrom the origin. Note that

In the above, it is assumed that the coverage area is a fullboth Eq. (12) and Eq. (13) we have made on assumption
circle even on the border of the RWP domain. The limitinghat disconnectivity is due to one isolated node. In Eq. (12)
effect of the border can be taken into account by introducinga® are parameterizing the approximation with respect to the
function A(r, d) which gives the area of the intersection of thelistancer from the center, and in the numerical experiments
unit disk and a disk with radiug at a distance of from the we user = 0 andr = 1, which imply that we assume that
origin, A(r,d) = [|B1(0) N By(r)||. The exact form ofA(r,d) the most likely way a network becomes disconnected is that a
is given in the Appendix. With this notation the slightly moreingle node gets isolated either at the ceifter 0) or on the

1

accurate approximation far(r) can be expressed as border (r = 1). In (13) we assume some distribution for the
location of the isolated node, and in the numerical experiments
a(r) = (n—1)- A(r,d) - f(r). (10) e use the uniform distributiony(r) = 1/7.
Finally, we use the same approximation for the probability of Finally, combining the above with Eq. (7) gives us an
k-connectivity as in Eq. (7), i.e(y x(d) = (Qn,x(d))™. estimate for the mean connectivity peridg
_c = 707171(60 Td ~ 7]) ol Td7 (14)
B. Length of Connectivity Periods 1—=Cpa(d) 1—-p

Another related and important performance measure is ty8erep denotes the probability that a node has at least one
mean time the network remains connected. To this end, W&ighbor,p = Qy.1(d) andTy is given by either Eqg. (12) or
derive analytical approximations for the mean length of tHed- (13).
time periods the network is 1l-connected. Let the random
variableT, denote the length of the time period the network is IV. NUMERICAL EXAMPLES
connected. Similarly, let random varialilg denote the length A. Validation of the Probability of Connectivity
of the time period the network remains unconnected. With thisgjrst we compare the accuracy of the approximations for

we have an elementary relation, 1-connectivity as a function of the radius of the coverage area
T. d for different values of the number of nodes From this
Cy,1(d) = P{n nodes are 1-connectpd= T +‘Td. (11) point on, we refer as Al to Approximation 1 as defined in
(&

B Section 3.1. Approximation 2 (in Section 3.1) actually contains
Hence, as we are interestedfp, knowledge ofC’, 1 (d) and two approximations and they are referred to as A2a and A2b,
T, is sufficient also. where A2a refers to the approximation with{r) given by
If d is small the network is disconnected with a high proba&q. (8), i.e., the domaimB,(r) is a full circle even at the
bility and the network consists of isolated nodes or groups bbrder, and A2b refers to the approximation witfr) given
connected nodes. Ag increases beyond a critical value thaby Eq. (10), i.e., the border effect is taken into account.
depends om the probability of connectivity starts increasingThe results are shown in Figure 2, where the dashed lines
quickly. In practise, this is perhaps the most interesting regiagorrespond to simulated results and solid lines represent the
and whenn is large, typically only one (or few) nodes areanalytical approximations (which approximation is in question
separated from the rest of the network at the instant of tinindicated in the figures). As can be seen Al is remarkably
when the network becomes unconnected. Thus, we suggesturate as: increases. Also, both A2a and A2b are able
estimatingZy by considering the mean interarrival time of ao predict well the initial rise in the value of',, 1 (d), but
node into a diskB,(r) having a radius ofl and center- units they do not rise as steeply as they shoulddascreases.
away from the center of the unit disk. Recall tha{r,d) Somewnhat surprisingly, the more detailed approximation A2b
denotes the arrival rate of a single node into a dizkr) which includes the proper handling of the border effect, is
when the node moves according to RWP model in unit diskven less accurate than the simpler A2a.
Using either Eq. (4) or Eq. (5), as the case may be, one carrhen we validate our results for 2- and 3-connectivity. The
compute a numerical value fox(r, d). results are shown in Figure 3, where in each figure we show
Let T(Y) denote the mean disconnectivity time on conditiorimultaneously the results for 1-, 2- and 3-connectivity as a
that a single node gets isolated at pointwhich we can function of d for different values ofn. In the simulations,
estimate by the k-connectivity of the network has been determined using
1 the algorithms described in [12]. The results only compare the
m. accuracy of Al (solid lines) to simulated results (dashed lines)
’ as the accuracy of A2a and A2b is similar to that already
Next we approximatd’; by TAé’r) with somer, shown.before. Aga?n, it can be seen that Al very closely
approximates the simulated valuesasncreases. Also, the
Ty~ Ty) (12) higher the value of the better the fit.
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Fig. 2. Validation of 1-connectivity fom = 20, 100, 500 nodes (from left to right) as a function a@f, dashed lines depict simulations and solid lines
analytical results.
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Fig. 4. Comparison of the accuracy of Al (solid lines) and the approximation in [11] (dotted lines) against simulations (dashed fnes)1 @y, 500
(left, right) nodes.

Finally, we compare the accuracy of Al with the approXimprove or degrade the connectivity probability depending
imation given in [11], where the aim has been to studgn the number of nodes. In particular, for small number of
connectivity in large networks. Figure 4 shows the results abdes, connectivity properties gain from mobility. However,
1-connectivity for Al (solid lines), the approximation fromas the number of nodes is increased, the situation becomes the
[11] (dotted lines) and simulations (dashed lines)/foe 100 opposite, i.e., the required transmission radgs higher for
nodes (left figure) aneh = 500 nodes (right figure). As can nodes moving according to RWP than for uniformly distributed
be seen, Al is more accurate, especiallyrior 500. nodes (see results far= 500). This phenomenon occurring in
the simulations (right figure) is also captured by our analytical
approximations (left figure), although numerical accuracy is
not perfect for small number of nodes.

Next we compare the impact on 1-connectivity of a uniform
node location distribution vs. the RWP node location distribu- - .
tion. The analytical results for the RWP case correspond ?0 Mean Length of Connectivity Periods
approximation A1, and the results for the uniform case areln Figure 6 the estimated mean length of the connectivity
obtained from Al by usingf(r) = 1/7 and thusp(r,d) = periods are depicted as a functiondtnd compared against
A(r,d) /. The results are shown in Figure 5, where the figuimulations, when the speed is constant; 1, and the number
on the left contains results obtained by using our analyticaf nodesn = 20,100,500. Simulation results are indicated
approximations, and the figure on the right contains tiwith black dashed lines and triangle markers. Blue lines with
corresponding simulated results. Each figure depitts(d) square markers correspond to our approximation where we
as a function ofi for n = 20, 100, 500. Solid lines correspond have assumed an uniform location for isolated node. Green
to connectivity under RWP node distribution and dashed linéses with star markers correspond to our approximation with
to connectivity under uniform node distribution. It can bd} ~ Téo), i.e., that a node becomes most likely disconnected
seen that the mobility induced by the RWP model can eith&r the center. Red lines with diamond markers correspond to

B. Comparison with Uniform Node Distribution
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Fig. 5. Comparisons fo€',,1(d) with RWP node distribution (solid lines) and uniform node distribution (dashed lines) using our approximations (left) and
simulations (right).

our approximation withl; ~ Tél), i.e., that a node becomesprobability of havingk neighbors exactly, which yields a very
most likely disconnected on the border. The results show treatcurate approximation for the probability efconnectivity.

in the interesting region, where connectivity probability rises The mean lengths of the 1-connectivity periods have been
steeply, usingl; ~ Téo) andT,; ~ Tél) gives estimates of the also studied. The approximations utilize new results on the
lower and upper bounds for the mean connectivity duratiorerival rate of the RWP process in a given subset of the
Finally, the approximation with uniform assumption for thanovement area. These combined with our approximation for
isolated node gives a rather accurate approximation of tthe probability of 1-connectivity yield a parameterized approx-
mean connectivity periods fot = 100 andn = 500, where imation for the mean connectivity periods. The approximation
for n = 100 the results practically coincide. Figure 7 showsssentially represents a conditioning on the location where a
the same in a logarithmic scale, where dashed lines correspsitjle node becomes isolated from the rest of the network.
to simulations and the solid lines represent our approximationbBe numerical results show that in the interesting region where

in the same order as earlier. connectivity probability rises steeply, assuming that the node
gets isolated in the center or the border gives estimates of the
D. Velocity Distributions lower and upper bounds for the mean connectivity durations.

Finally, the approximation with uniform assumption for the

Next we will study how the velocity distribution affeas'solated node seems to give a rather accurate approximation
the mean length of the connectivity period. Note that as tljg? the mean connectivit ’ eriods. Furthermore alirc):ordin to
quantity A(r, d) is inversely proportional to quantiti[1/v], Y P : ' 9

i(;ur approximation the mean length of the connectivity period

our approximation Eq. (14) is directly proportional to quantity . . . .
E[1/v]. In Fig. 8 the simulation results with three differen s.dlrectly propqrtlonal o quantltE[l/v], which matches well
with the numerical experiments.

velocity distributions are illustrated forn = 20,100,500 A ¢ of fut K id ¢
nodes, i)v = 1 (i.e., constant), ii)jv ~ U(0.1, 1.9) (i.e., S part of IUILre work one can consider more accurate ap-
proximations to the mean connectivity lengths. Also, general-

o = 1), and iii)) v ~ U(0.356,2.156) (i.e., E[1/v] ~ 1). = " o =
Red lines with diamond markers correspond to i) greéﬁat'on of the approximations for the lengthsistonnectivity
’ t[I)]eriods can be studied.

lines with star markers correspond to ii), and blue lines wi
square markers correspond to iii). It can be seen that with
n = 20, 100, 500 nodes i) and iii) are almost identical, while ACKNOWLEDGEMENT
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APPENDIX else_ t1 ( d t) dt
A. Probability of Finding a Node insid&,(r) PR R
. y g d end if

An algorithm for computingp(r,d), the probability of  returnz

finding a node inside a disk with a radidsat the distance
of r from the origin, is given in Algorithm 1 and 2 (see also
Figure 9). Recall thak(t) and C' are according to (1).



each stripe is equal to s(r,d,t) dt

\4

Fig. 9.  Partitioning theBy(r) into circular “stripes” results in a one Fig. 10. Notation for used i (r, d) for unit disk.
directional integral.

B. Area of the Intersection of a Unit Disk argl;(r)

From Figure 10 it is easy to see that the area of the
intersection of a unit disk an@,(r), A(r,d), equalsrd? as
long asr < 1 —4d. If »r > 1 —d, then the part of the small
disk outside the unit disk is given by the difference of two
segments. Hence, for the unit disir, d) is given by

A(r,d) =

nd?, if r<1-—d,
wd® — ((yd* — 3d*sin2v)—
(¢ — % sin2¢)), if 1—d<r<1,
where
1—d?—1r?
2rd "’
VAr2d2 — (1 —d? — r2)?
2r '

Y = arccos

¢ = arcsin



