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Abstract— The random waypoint model (RWP) is one of the
most widely used mobility models in performance analysis of ad
hoc networks. We analyze the stationary spatial distribution of a
node moving according to the RWP model in a given convex area.
For this we give an explicit expression, which is in the form of a
one-dimensional integral giving the density up to a normalization
constant. This result is also generalized to the case where the
waypoints have a non-uniform distribution. As a special case,
we study a modified RWP model, where the waypoints are
on the perimeter. The analytical results are illustrated through
numerical examples. Moreover, the analytical results are applied
to study certain performance aspects of ad hoc networks, namely
connectivity and traffic load distribution.

Index Terms— mobility modeling, random waypoint model, ad
hoc networking, connectivity

I. I NTRODUCTION

Analysis of wireless systems, either via simulation or an-
alytical modeling, often requires that the effect of node (or
user) mobility on system performance can be modelled. The
construction and use of mobility models based on the actual,
say, measured characteristics of mobile nodes is difficult.
Instead, one often uses elementary synthetic mobility models,
which still capture the essential impact of mobility on the
performance measure under study. The advantage of using
synthetic models is that they can be more easily treated in
analysis or implemented in simulations.

The most widely used synthetic mobility model is the Ran-
dom Waypoint model (RWP), which was originally proposed
for studying the performance of ad hoc routing protocols by
Johnson and Maltz [1]. In this model, a mobile node moves
in a convex domain along a zigzag path, where each of the
straight line segments is calleda leg. At each turning point
the node chooses a new destination randomly and then moves
towards the destination at a constant speed, which is drawn
independently from a given speed distribution at each turning
point. The node may also remain stationary for a random pause
time before starting its movement towards the next destination.

Analytical performance evaluation of ad hoc networks re-
quires analyzing the properties of the mobility models. For ex-
ample, one important intrinsic property of any mobility model
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is the distribution of the node location (or shortly the node
distribution), which may be far from uniform. On the other
hand, the uniform distribution is commonly assumed in many
performance studies, for example in studies on ad hoc network
capacity (see, e.g., [2] and [3]) and connectivity properties of
random networks (see, e.g., [4], [5], and [6]). Thus, knowledge
of the actual node distribution is often needed in order to study
the impact of mobility on the performance measure of interest.

In this paper, we derive an explicit expression for the
node distribution of RWP in an arbitrary convex domain and
demonstrate the use of the result for various shapes of the
domain. Accurate polynomial approximations for the density
function are derived for a regular triangle, square and hexagon.
We comment on the relation of our results to other related
work separately in Section I-A. Additionally, a generalized
RWP model is considered, where the waypoints may have
an arbitrary distribution, for which a general expression for
the node distribution is derived. As a special case of this,
we further study a variant of the RWP model, named as
RWPB, where the waypoints are located on the perimeter
of the area. The motivation for introducing and analyzing
the RWPB model is that, whereas the RWP model yields a
distribution that concentrates more probability mass near the
center of the domain, the RWPB model gives a distribution
with more probability mass near the edges than in the cen-
ter. Hence, these models serve as two elementary mobility
models with fundamentally different spatial characteristics,
and any practical networking mechanism should be robust
with respect to different mobility patterns. As an application
of our results, we consider the connectivity properties of
ad hoc networks. In particular, we compare the impact of
nodes moving according to either RWP or RWPB against the
assumption of nodes being uniformly distributed in the area.
Knowledge of the exact node distribution allows the derivation
of accurate polynomial approximations. Such approximations
facilitate numerical computations in another application, where
we study the impact of node mobility on the traffic load
distribution in ad hoc networks with shortest path routing.

The rest of the paper is organized as follows. Section II
introduces the traditional RWP model together with some of
the notation. The RWP model is analyzed in Section III,
where analytic expressions for the node distribution and its
polynomial approximations are derived and illustrated for
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several geometries. Correspondingly, the results for the gener-
alized RWP model with an arbitrary waypoint distribution are
given in Section IV. Applications of our results are given in
Section V. Section VI contains our conclusions.

A. Related work and our contribution

The RWP model and its spatial properties have been ana-
lyzed recently in a number of other papers. The observation
that the initial definition of the speed distribution (i.e., the
uniform distribution in the range[0, vmax]) was indeed ill-
defined was made in [7]. Since then the same observations
have been made in several other papers as well, see, for
example [8], [9] and [10]. The impact of the speed distribution
on simulations is further discussed in [11] for more general
mobility models.

Concerning the derivation of the node distribution, results
for some special shapes of the movement region have been
given in [8], [9], [12], and [13]. Navidi and Camp [8] basically
give the definition of the node distribution in a rectangular
area, resulting in a four-dimensional integral over all pos-
sible locations of the starting and ending points. Using our
approach, we are able to simplify this expression considerably
(in an arbitrary convex domain). In [12] and [13], Bettstetter
et al. derive simple explicit results for the node distribution
in circular and rectangular regions ([9] contains new results
on temporal properties of RWP and repeats the results on the
node distribution from [13]), but the derivations have been
performed using approximations at certain steps resulting in
slight inaccuracy in the results (as indicated in our numerical
examples).

Our analysis is similar to that of Bettstetter et al. in [13].
However, we complete the analysis without using approxima-
tions or a special shape for the region and derive an explicit
analytical expression for the node distribution in an arbitrary
convex region. The point at which our analysis differs from
[13] is indicated in our derivation in Section III. As mentioned
earlier, the direct application of the definition for the node
distribution results in a four-dimensional integral. We are able
to simplify the expression to a one-dimensional integral, which
gives the distribution up to a normalization constant. The
evaluation of the normalization constant requires integration of
the density expression over the considered region. Our result
was first given in report form in [14]. A generalization of this
result toR

n has been published in [15].
We also give results on the mean length of a leg, which can

be obtained in our case in two ways. The mean length of a
leg can be related to the normalization constant. On the other
hand, it can be expressed as a four-dimensional integral, which
we reduce to a two-dimensional one (in Appendix). Note that
the results for the mean leg length can be also found in the
literature (see, e.g., “line picking” problems in [16], [17] and
[18]).

More recently, independent of our work, the theory of Palm
calculus has been applied for analyzing RWP in [10] and [19].
The main result in [19] is that the stationary node distribution
is independent of the velocity distribution. This issue is also
discussed in [7], [11] and [9], and we take this property

established. In [10], a much more general class of mobility
models, of which RWP is a special case, is treated formally
using Palm calculus. The paper discusses both transient and
time stationary distributions of these processes, and the aim
is to develop simulation methods, where the process can be
initialized according to the stationary state of the system,
thus avoiding any special transient handling. However, the
formal results on the distributions cannot be readily applied
for obtaining explicit expressions of the node distribution, e.g.,
for RWP that can be numerically evaluated easily.

Also, we note that the properties of the RWP process are in
some sense related to the theory of Poisson line processes
studied in the field of stochastic geometry, see, e.g., [20].
Typically the processes in stochastic geometry are treated on
an infinite plane, but in RWP the region of motion is bounded.
To the best of our knowledge, results as explicit as ours are
not available from this field of science either.

We additionally derive the node distribution for the RWP
model inR

2 with the generalization that the waypoint distribu-
tion can be arbitrary (instead of the uniform distribution). As
a special case of that, we consider a modified RWP process
introduced in [12], where the waypoints are always on the
perimeter of the region. As mentioned earlier, this model,
referred to as the RWP on border (RWPB), has a node distri-
bution fundamentally different from the node distribution of
RWP. The RWPB model has been analyzed using simulations
in [12]. Again, the model fits in the framework as studied
in [10], but to utilize the results requires Palm calculus. We
derive our result using the same method as for RWP giving a
simple explicit numerically integrable expression for the node
distribution.

An application of the analysis presented in this paper is the
use of the results for the derivation of more efficient simulation
methods. Yoon et al. [11] have illustrated how, for a class
of mobility models, the transient time can be substantially
shortened by sampling the initial node speed from the known
stationary node speed distribution. However, in a simulation
of any mobility model, just initializing the speed appropriately
still leaves the transient corresponding to the time until the
node location obeys its stationary distribution. For the RWP
model, Navidi and Camp [8] have utilized their theoretical
results for deriving algorithms with which the entire state
(speed and location) of the RWP model (with and without
pause times) can be initialized according to its stationary
state. Le Boudec and Vojnovi´c [10] refer to this way of
initialization as perfect simulation, and they show how this
can be achieved for a large class of simulation models by
applying the insights from using Palm calculus. Our results
can be used to facilitate the generation of samples from the
stationary node distribution, and we comment on this briefly
later on.

As an application of our results with impact on ad hoc
networking, we consider connectivity properties of ad hoc
networks. More specifically, we concentrate on the probability
that a given network ofn nodes, each moving according to
RWP (or RWPB), is connected. As a part of our earlier work
in [21], we have derived a very accurate approximation for
connectivity under the assumption of nodes moving according
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Fig. 1. Zigzag movement of the RWP process.

to the RWP model. However, in this paper we use those results
to compare connectivity properties of RWP and RWPB. Our
approach to approximate the connectivity is similar to the one
in [22], with the distinction that our results have been obtained
using exact results for the node distribution. Finally, both our
approximation and the one used in [22] are motivated by the
theoretical results found in [5] and [23].

Another networking application of our analytical results
concerns evaluating the traffic load distribution in ad hoc
networks. An analytical model for this has been given in [24]
and [25], where it has been assumed that the node distribution
obeys a uniform distribution. We study how nodes moving
according to the RWP model affect the traffic load distribution
using a similar approach as in [24] and [25].

II. RANDOM WAYPOINT MOBILITY MODEL

The process representing the movement of a node within
a convex areaA ⊂ R

2 according to the RWP model can
be described as follows. Initially, the node is placed at the
point P1 chosen from a uniform distribution overA. Then
a destination point (also called waypoint)P2 is chosen from
a uniform distribution overA and the node moves along a
straight line fromP1 to P2 with constant velocityV1 drawn
independently of the location from a velocity distribution with
pdf fV (v). Once the node reachesP2, a new destination point,
P3, is drawn independently from a uniform distribution over
A and velocityV2 is drawn fromfV (v) independently of the
location andV1. The node again moves at constant velocityV2

to the pointP3, and the process repeats. Formally, the RWP
process is defined as an infinite sequence of triples [9],

(P0, P1, V1), (P1, P2, V2), (P2, P3, V3), . . . (1)

This is illustrated in Fig. 1. Thus, the path of a node consists
of straight line segments, called legs, defined by a sequence
of independently and uniformly distributed waypoints,{Pi},
in a convex setA ⊂ R

2. Furthermore, on each leg(Pi−1, Pi)
the node velocityVi is an i.i.d. random variable independent
of the node location having the pdffV (v). It is also possible
to extend the model by defining random pause times (i.i.d.
random variables) at the waypoints. The influence of this
generalization on the node distribution can be analyzed in a
rather straight forward manner as the process consists of two
independent and alternating modes, mobile and stagnant [9].

Next we introduce some notation used throughout our anal-
ysis of RWP. Let the random variableX denote the location of
a waypointP . The waypoints are uniformly and independently
distributed overA, i.e., the probability density function (pdf)
of X is

g(r) =

{ 1
A

, r ∈ A,

0, otherwise,

where A denotes the area of the setA ⊂ R
2. We denote

this uniform distribution byU(A) and writeX ∼ U(A). The
random variable representing the location of the node at an
arbitrary point of time is denoted byR and its pdf byf(r).

Note that two consecutive legs in the RWP process (see
(1)) share a common waypoint and thus are not independent.
However, many properties of the RWP process can be analyzed
by studying the corresponding independent leg process, where
the legs are, as the name suggests, independent and identically
distributed. Formally, for a given RWP process the correspond-
ing independent leg process can be obtained by considering,
e.g., every second leg (see [9] and [13])

(P0, P1, V1), (P2, P3, V3), (P4, P5, V5), . . . (2)

For example the stationary node distributions of both processes
are the same.

In [1], the velocities were taken from a uniform distribution
in the range[vmin, vmax], but any distribution can be used (e.g.,
the beta distribution and a discrete distribution have been used
in [9]). Given the pdffV (v) from which the velocities at the
waypoints are drawn, the stationary distribution of the velocity
for a node moving according to the RWP model is given by
(1/v)fV (v) up to a normalization constant. This is because
the time spent on a leg is proportional to1/v, andV andX
are independent. From this it is also obvious that forfV (v) =
U[vmin, vmax] the stationary distribution is only defined for
vmin > 0. Hence, lettingvmin = 0 implies that stationarity is
never reached or, more precisely, in the stationary state all the
nodes are stopped, as pointed out by Yoon et al. in [7] and
later by others in [8] and [9]. Finally, note that the stationary
distribution of the location of a node and the stationary node
velocity distribution are independent of each other, as has been
formally shown in [19].

III. SPATIAL NODE DISTRIBUTION WITH ARBITRARY

WAYPOINTS

In this section the traditional RWP model is considered.
General expressions for the node distribution and the mean
length of a leg are derived. The results are then illustrated for
the RWP process in some regular geometries, for which also
accurate polynomial approximations are derived.

A. Approach and derivation

Consider a convex areaA and a node moving within this
area at a speedV according to the RWP from waypointP1 at
r1 to waypointP2 at r2. Our aim is to derive the probability
densityf(r) giving the probability per unit area of finding the
node atr.
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Fig. 2. Illustration of the variablesP1, dφ, r, ∆, dA anda1 (adapted from
[13]).

Similarly as in [13], we consider a small area elementdA
located atr. Let P1 andP2 be two consecutive points on the
path. Denote bỳ the length of legP1P2, ` = |P1P2|, and by
` ∩ dA the length of the leg inside a small area elementdA.
The desired probability density is the expected proportion of
time spent indA, divided bydA (probability per unit area),

f(r) =
E[(` ∩ dA)/V ]
E[`/V ] · dA

=
1

E[`]
E[` ∩ dA]

dA
,

i.e., as the speed on each leg is drawn independently of
the waypoints, the probability density equals the ratio of
expected length of the leg segment insidedA to the mean
leg lengthE[`]. The expectation in the numerator is calculated
by conditioning on the positionr1 of the pointP1,

E[` ∩ dA] =
1
A

∫
A

E [` ∩ dA |P1 = r1] d2r1.

The conditional expectation (expectation over all possible
locations ofP2) is written as

E [` ∩ dA |r1] =
1
A

∫
A

(`(r1, r2) ∩ dA) d2r2,

where we have made it explicit that the line segment` is from
r1 to r2. We note that these equations are already given in [13],
where the authors use an approximation forE [` ∩ dA |r1].
However, no approximation is necessary at this point.

Now refer to Fig. 2, and where the shape of the areadA has
been chosen in a special way to facilitate the derivation. (It is
easy to see that the result is the same irrespective of the shape
of dA.) The intersection of̀(r1, r2) anddA is ∆ whenr2 is
in the shaded area and 0 otherwise. So the integral equals∆
times the shaded area and we have with the notation of the
figure,

E [` ∩ dA |r1] =
1
A

∆
1
2

dφ ((r + a1)2 − r2)

=
dA

2 Ar
(2 r a1 + a2

1),

since dA = ∆ r dφ. Substitution into the original definition
gives,

r

a1

a2

φ

Fig. 3. Illustration of the integral over[0, 2π] in (3).

f(r) =
1

E[`]A2

∫
A

2 r a1 + a2
1

2 r
d2r1

=
1

E[`]A2

2π∫
0

dφ

a2∫
0

(r a1 +
1
2
a2
1) dr,

where, in the second form, polar coordinates have been used,
d2r1 = r dr dφ, anda2 denotes the distance to the boundary
in the opposite direction,φ+π, as shown in Fig. 3. The radial
integral can be evaluated explicitly, yielding the final result

f(r) =
1

E[`]A2

2π∫
0

1
2

a1a2(a1 + a2) dφ

=
1

E[`]A2

π∫
0

a1a2(a1 + a2) dφ,

(3)

where botha1 anda2 are functions ofr andφ, a1 = a1(r, φ)
anda2 = a2(r, φ). The latter form follows becausea2(r, φ) =
a1(r, φ + π), i.e., addingπ to φ interchanges the roles ofa1

anda2. The integration turns “the propeller” one turn around,
see Fig. 3. For future purposes, we denote the latter integral
in (3) by h(r),

h(r) =

π∫
0

a1a2(a1 + a2) dφ. (4)

Because f(r) is a distribution integrating to unity,∫
A

f(r) d2r = 1, we immediately obtain

E[`] =
1

A2

∫
A

h(r) d2r. (5)

An alternative expression forE[`] is given in Appendix A.

B. Example: unit disk

We calculate the node distribution in a unit disk withA = π.
Because of the symmetry the density is a function of the
distancer = |r| only and we write with slight abuse of
notationf(r) = f(r). We can take any pointr with |r| = r;
in particular we chooser = (0, r). Then we see from Fig. 4
that

a1(r, φ) =
√

1 − r2 cos2 φ − r sinφ,

a2(r, φ) =
√

1 − r2 cos2 φ + r sinφ.
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Fig. 4. Derivation ofa1 anda2 in a unit disk.

Thus,a1a2 = 1−r2 and(a1+a2) = 2
√

1 − r2 cos2 φ, whence

h(r) = 2(1 − r2)

π∫
0

√
1 − r2 cos2 φdφ. (6)

This is an elliptic integral of the second kind and cannot be
expressed in terms of elementary functions. However, one can
evaluate the normalization constant in a closed form,

C =
∫
A

h(r) d2r = 2π

1∫
0

r h(r) dr =
128 π

45
= 8.936.

Thus, the pdf of the node locationr is simply

f(r) =
h(r)
C

=
45(1 − r2)

64 π

π∫
0

√
1 − r2 cos2 φdφ. (7)

Then we have the average length of a leg from (3),

E[`] =
C

π2
=

128
45π

≈ 0.905, (8)

in agreement with [16].
In Fig. 5, f(r) is depicted as a function ofr along with

the probability density function,fR(r) = 2πr h(r)/C, of the
random variableR = |r|. For comparison, the approximation
for the node distribution from [12] is illustrated in the same
figure with dashed curves (see Table I).

C. Example: polynomial approximation for unit disk

Evaluation of the exact pdf requires numerical integration,
which can be too time consuming, e.g., in simulations. For
example, when using the rejection method one chooses a
point (x, y) uniformly from a unit disk and accepts it with
a probability of f(

√
x2 + y2). With this in mind one can

consider approximating the exact pdf by polynomials of the
form

P (r) =
(1 − r2) · (∑i air

2i)
2π · C ,

1

n=6

1

n=4n=3

1

Fig. 6. Illustration of the regular triangle, square and hexagon, and the
respective symmetric areas.

TABLE II

NORMALIZATION CONSTANT FOR RWPMODEL IN REGULAR POLYGONS.

no. of edges n = 3, triangle n = 4, square n = 6, hexagon
E[`] 1.26368 1.04281 0.954082
C 34.1193 16.685 11.449

whereai’s and B are some (relatively) small integers. As a
goodness of fit criterion we use the mean square error,

MSE =
1
A

∫
A

(f(r) − P (r))2 d2r. (9)

Some reasonably good polynomials of this form are listed in
Table I.

D. Example: polynomial approximations for regular polygons

First, we note that it is straightforward to evaluate (3)
numerically for any convex polygon. Here our aim is to derive
reasonably accurate polynomial approximations for the exact
pdf of the node location in the regular polygons illustrated
in Fig. 6. The center of each polygon is chosen so that the
polygon is symmetrical relative to thex-axis (and possibly to
they-axis also) and the distance from the center to the base is
equal to1. Table II contains the numerical values for the mean
leg lengthE[`] and the normalization constantC for regular
triangle, square and hexagon.

Polynomial approximations can be motivated by different
reasons. For one, they can be used to generate efficiently
samples from the stationary node distribution by using the
rejection method. The speed improvement over the existing
algorithms (see, e.g., [8] and [10]) is roughly by a factor of
two. Secondly, computation of performance quantities based
on the stationary node distribution requires integration over all
locations, which can be a rather tedious task if the integrand
itself is an integral expression. A similar application for
polynomial approximations with non-zero even coefficients is
discussed later in Section V-B.

To clarify our approach let us first consider a square having
corner points at(−1,−1), (1,−1), (1, 1) and (−1, 1). As
already mentioned, by choosing the corner points this way the
resulting pdf is symmetric relative to both axes and diagonals.
It turns out that polynomials of the form∑

i,j

aij(x2 + y2)i(x2y2)j ,

exhibit this symmetry. Furthermore, we know that the pdf is
zero at the border of the domain and hence the respective lines,

x ± 1 = 0 andy ± 1 = 0,



6 TO APPEAR IN TRANSACTIONS ON MOBILE COMPUTING

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Fig. 5. The pdf of the node location,f(r), (left) and the pdf of the distance of a node from the origin,fR(r), (right) for a unit disk. The solid curves
correspond to our exact results and the dashed curves to approximationP1(r) (see Table I).

TABLE I

POLYNOMIAL APPROXIMATIONS OF THE SPATIAL RWPNODE DISTRIBUTION IN UNIT DISK.

degree polynomial MSE max. absolute error

n=2 P1(r) =
2

π

`
1 − r2

´
6.5 · 10−4 0.067 (from [12])

n=4 P2(r) =
6(1 − r2)(27 − 8r2)

73π
3.1 · 10−6 0.0033

n=6 P3(r)=
3(1−r2)(189−44r2−18r4)

257π
1.3 · 10−7 0.00086

should be factors in the polynomial approximation. The sym-
metry and the boundary requirements lead us to consider
polynomials of the form

P4(x, y) = (1 − x2)(1 − y2)
∑
i,j

aij(x2 + y2)i(xy)2j .

Similarly, for (regular) triangle and hexagon the suitable
polynomials must be even functions ofx and invariant under
rotations by120◦ and 60◦ for triangle and hexagon, respec-
tively. Hence,

P3(x, y) = (1 + y)((2 − y)2 − 3x2) ·∑
i,j

aij(x2 + y2)i(y (3x2 − y2))j ,

P6(x, y) = (1 − y2)((y + 2)2 − 3x2)((y − 2)2 − 3x2) ·∑
i,j

aij(x2 + y2)i(y (3x2 − y2))2j .

First we fix the degree of the polynomial, i.e., decide on a finite
set of coefficientsaij to be determined. As a fitting criterion
we use the mean square error (MSE) given by (9). To ease the
computational burden we exploit the symmetry and evaluate
the MSE integral only over the shadowed areas in Fig. 6.
Table III contains the numerically obtained coefficients. In
all cases the obtained polynomial approximation differs from
the exact pdf mainly near the corners, where the maximum
absolute error is in the range of0.01− 0.02. Fig. 7 illustrates
the results for the regular triangle. The fitted polynomial
consists of5 terms resulting in a polynomial of the 8th degree.
The MSE is about0.004, and the maximum absolute error is
about0.014.

For the square we have chosen to fit a polynomial of the
6th degree. The resulting approximation has a MSE of about
1.4 · 10−3 and a maximum absolute error of about0.010

which is obtained near the corners. In [13] Bettstetter et al.
give an approximation, which is almost as accurate as ours.
It turns out that their approximation has a MSE of about
7.1 · 10−3 and a maximum absolute error of about0.012,
which is obtained in the middle of the region. However, the
approximation proposed in [13] has two deficiencies. Firstly,
it is defined piecewise in eight symmetrical areas and is
not completely smooth across the borders of those areas.
Secondly, the expression is rather complex when compared to
our polynomial. Fig. 8 illustrates the exact pdf (solid line), our
polynomial approximation (dotted line) and the approximation
by Bettstetter et al. (dashed line). Note that, the spatial pdf of
the node location, e.g., in an arbitrary rectangle with sidesa
and b, cannot be obtained by simple scaling of the pdf of a
square. Hence, if one is considering an arbitrary rectangle, one
should evaluate (3) using appropriate expressions fora1 (and
a2).

Finally, Fig. 9 contains the results for a regular hexagon
area. The resulting pdf is already rather close to the pdf in a
unit disk. The fitted polynomial was chosen to consist of terms
up to the 9th degree, which yields a satisfactory approximation
with a MSE of about0.0012 and a maximum absolute error
of about0.016.

IV. SPATIAL NODE DISTRIBUTION WITH ARBITRARY

WAYPOINTS

In this section, we first analyze the RWP model with an
arbitrary waypoint distribution. As a special case of this we
study a modified RWP model, where the waypoints are always
on the perimeter. For this model, we also provide explicit
results for the unit disk area and the unit square area.
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TABLE III

COEFFICIENTS FOR THE POLYNOMIAL APPROXIMATIONS OF THE NODE DISTRIBUTION IN REGULAR POLYGONS.

case
n = 3 a00 = 0.0904092, a10 = 0.0131599, a01 = 0.00944523, a20 = 0.0209075, a11 = 0.000570773
n = 4 a00 = 0.551066, a10 = −0.133986, a01 = 1.20532, a20 = 0.172301, a11 = −1.48645, a02 = 3.32898
n = 6 a00 = 0.039526, a10 = 0.0193813, a20 = −0.0159052, a30 = 0.0406354, a01 = −0.0236053
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Fig. 8. Equivalue contours and cross sections of the node distribution in a regular square. The middle figure corresponds to the cross section along thex-
or y-axis and the right figure corresponds to the cross section along the diagonal. The dashed line corresponds to the approximation given in [13], the dotted
line to our polynomial approximation and the solid line to the exact result. The small right-most figures correspond to zoomed areas of the diagonal cross
section.
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Fig. 9. Equivalue contours and cross sections of the node’s location pdf in a hexagonal area. The middle figure corresponds to the cross section along the
y-axis and the right figure to the cross section along thex-axis. The difference between the exact pdf and the approximation is very small.
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Fig. 7. Equivalue contours, and the exact and approximate pdf in the cross
section along they-axis for a regular triangle (n = 3).

A. Approach and derivation

The traditional RWP model is based on the assumption that
the waypoints are uniformly distributed in a given areaA. In
some cases this may not be justified. In [12] a simulation-
based approach is used to study the node distribution in the
presence of a hot spot. In the model domainA is divided into
two subdomains having waypoint intensitiesµ1 andµ2, with
µ1 > µ2, so that(A1µ1 + A2µ2)/(A1 + A2) (normalization).
Domain1 is referred to as the “attraction area” or hot spot.

In general, we may consider the RWP model with an arbi-
trary waypoint distribution with pdfg(r). A similar analysis
as is done in Section III for the uniform waypoint distribution
yields that the spatial node distribution of a non-uniform

random waypoint process is given by

f(r) =
1

E[`]

2π∫
0

dφ

a(φ+π)∫
0

dr2

a(φ)∫
0

dr1 (r1 + r2) · g(r1, φ) · g(r2, φ + π),

(10)

wherea(φ) = a(r, φ) is the distance to the boundary from
point r in directionφ andg(ri, φ) is the pdf of the waypoints
at pointr+ri·(cos φ, sin φ). Leta1 = a(φ) anda2 = a(φ+π).
Then, Eq. (10) can be written as

f(r) =
1

E[`]

2π∫
0

dφ

[ a1∫
0

dr1 r1 · g(r1, φ) ·
a2∫
0

dr2 g(r2, φ + π) +

a1∫
0

dr1 g(r1, φ) ·
a2∫
0

dr2 r2 · g(r2, φ + π)
]
,

which, due to symmetry, is equal to

f(r) =
2

E[`]
·

2π∫
0

dφ


 a1∫

0

dr1 r1 · g(r1, φ) ·
a2∫
0

dr2 g(r2, φ + π)


 .

(11)
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Fig. 10. Notation for analysis of RWPB.

Note that for the uniform waypoint distributiong(r, φ) = 1/A
the general form (11) reduces to (3).

Similarly as in the case of a uniform waypoint distribution,
the mean leg length can be obtained by normalisation,

E[`] = 2
∫
A

dA

2π∫
0

dφ ·

 a1∫

0

dr1 r1 · g(r1, φ) ×
a2∫
0

dr2 g(r2, φ + π)


 .

(12)

B. Random waypoint on border

Let us next consider a special case of RWP with arbitrary
waypoints, i.e., the random waypoint on border (RWPB)
model introduced in [12], where the destination points are
chosen uniformly on the borderB of the area. This model
leads to a fundamentally different stationary node distribution
than the RWP model, as will be shown later.

The stationary node distribution for the RWPB model can
be derived by starting from the results of the non-uniform
RWP model. Choosing the waypoint distribution as zero in
points which are further thanε from the perimeter and some
appropriate constantCε near the perimeter and lettingε → 0
one obtains the RWPB model and the respective stationary
node distribution.

However, also in this case, it is possible to perform a similar
analysis as in Section III for the traditional RWP model. This is
probably more illustrative and we have chosen this approach.
First the case of a general convex area is treated and then we
consider two special cases, namely unit disk and unit square.

Curvilinear border: Consider first the case where the area
A is convex and the curvature of the perimeter is positive
everywhere. Hence, the perimeter does not contain any straight
line segments and the probability of finding a node on the
border is zero. To derive an expression for the node location
distribution in this case, the initial steps in the analysis for the
general convex area are basically the same as in the previous
section for the standard RWP model, only the integrals are
not over an areaA but over a curveB with the length of the
curve denoted byB. Now refer to Fig. 10, wherer1 and r2

are two waypoints on the border. In the figuredA = a2 ·dφ ·∆
andn2 denotes the unit normal vector atr2. To compute the
conditional expectationE [` ∩ dA |P1 = r1], it can be seen that

the integral equals∆ times the length of the line segmentds
along the edge. Using the notation of the figure we obtain

E [` ∩ dA |P1 = r1] =
1
B

∆ ds2 =
∆
B

(a1 + a2) · dφ

cos θ

=
1
B

dA · a1 + a2

a2
· 1
cos θ

.

Similarly, as in the case of the RWP process, the above yields

f0(r) =
1

E[`]
· E[` ∩ dA]

dA
=

1
E[`]B2

∫
B

a1 + a2

a2 cos θ
ds, (13)

wherea1 = |r − r2|, a2 = |r − r1| and cos θ = n2 · (r2 −
r1)/|r2 − r1| with r1 = r1(s) andr2 = r2(r1, r). For a given
r, let a1 = a1(s) = r − r2 and a2 = a2(s) = r − r1. With
these, (13) can be written in a symmetric form,

f0(r) =
1

E[`]B2

B∫
0

|a2 − a1|
a2 · n2

ds

=
1/2

E[`]B2

B∫
0

|a2−a1| ·
(

1
a1 · n1

+
1

a2 · n2

)
ds, (14)

wheren1 = n1(s) denotes the normal vector of the border at
r1(s).

General border: Now let us return to the question of an
area A, the perimeter of which may contain straight line
segments. Assume that there arek line segments on the border
B with lengthsBi, i = 1, . . . , k, while the total length of the
border isB. There is clearly a strictly positive probability that
two consecutive waypoints reside on the same line segment
and, consequently, that the node is on the border, i.e.,R ∈
B. Thus, the system can be seen to be in two alternating
states: “border mode” and “interior mode”. The border mode
corresponds to legs along some straight line segment and the
interior mode corresponds to legs passing through the area. In
particular, letpi denote the probability that an arbitrary leg
occurs on line segmenti,

pi = P{two consecutive waypoints on line segmenti}

=
(

Bi

B

)2

,

and p0 the probability that a transition belongs to interior
mode, for which we have

p0 = 1 −
k∑

i=1

pi.

As the arriving point and the departing point on any line
segmenti are uniformly distributed, the two modes (inte-
rior/border) can be treated separately. Thus, pointR has a
one-dimensional pdf on each line segment on the borderB,
which are simply weighted versions of the one-dimensional
RWP model pdf. However, in the interior mode the probability
density of the nodes still obeys (13).

The one-dimensional RWP model has been studied in [12]
and [13]. The results therein show that given that a node lies
on a line segment(0, L), its pdf is given by

f(x) =
6x(L − x)

L3
. (15)
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Determination of the weights for modes:The appropriate
weights for the interior mode and the border modes are equal
to the respective time proportions. Letπ0 denote the proportion
of time the node spends in the interior mode andπi, i =
1, . . . , k, the proportion of time it spends on line segmenti.
For theπi we have the obvious relation,

πj =
pjE[`j]∑k
i=0 piE[`i]

, (16)

where theE[`i], i = 1, . . . , k, correspond to the mean leg
length on segmenti, andE[`0] corresponds to the mean leg
length in the interior mode. The mean leg length of the whole
processE[`] is the weighted sum,

E[`] = p0E[`0] + p1E[`1] + . . . + pkE[`k]. (17)

The mean leg length on line segmenti is E[`i] = Bi/3 (see,
e.g., [12] and [13]), and thus

π0 =
p0E[`0]

E[`]
=

p0E[`0]

p0E[`0] +
∑k

i=1 piBi/3
. (18)

In order to complete the analysis one still needs to determine
the mean transition length in the interior mode,E[`0], which
can be achieved by a straightforward integration. Alternatively,
integral of (13) overA is equal toπ0, which together with (18)
allows us to determineE[`0] and thenE[`] by (17).

In summary, the RWPB node distribution can be character-
ized as follows. With probabilityπ0 the node lies in the interior
of A having a conditional two-dimensional density given by
(13), and with probabilityπi the node is on the border line
segmenti, i = 1, . . . , k, having a conditional one-dimensional
density given by (15) withL = Bi,


f0(r) = π0 · 1

p0E[`0]B2

∫
B

a1 + a2

a2 cos θ
ds,

fi(x) = πi · 6x(Bi − x)/B3
i , i = 1, . . . , k.

(19)

C. Example: unit square

Consider next a unit square in which a node moves ac-
cording to the RWPB model. Due to the symmetry we can
concentrate on thex-axis first. The mean transition length
in the interior mode,E[`0], can be obtained from (19) by
integration over the area. However, in this caseE[`0] can be
obtained by a straightforward integration,

E[`0] =
2
3

1∫
0

1∫
0

√
x2 + y2 dx dy

+
1
3

1∫
0

1∫
0

√
(x − y)2 + 1 dx dy

=
1
9

(
2 +

√
2 + 5 ln(1 +

√
2)

)
≈ 0.869,

and

E[`] = (3/4)E[`0] + (1/4) · (1/3)

= (1/12) ·
(
3 +

√
2 + 5 ln(1 +

√
2)

)
≈ 0.735.

r

d

2φφ

`

Fig. 12. Notation for analysis of RWPB in a unit circle.

Thus, the proportion of time the node spends in the interior
mode is

π0 =
2 +

√
2 + 5 ln(1 +

√
2)

3 +
√

2 + 5 ln(1 +
√

2)
≈ 0.887,

and similarly, the proportion of time spent on each border line
segment is,

πi =
1/4

3 +
√

2 + 5 ln(1 +
√

2)
≈ 0.0283, i = 1, . . . , 4.

Substituting the above in (19) gives the one-dimensional pdf
on each border line segment,

fi(x) = πi · 6x(1 − x) =
3x(1 − x)

6 + 2
√

2 + 10 ln(1 +
√

2)
,

wherei = 1, . . . , 4. The two-dimensional pdf corresponding to
interior points can be obtained by evaluating (19), as illustrated
in Fig. 11.

D. Example: unit circle

In Section IV-B we have derived a general result (13) for the
distribution of a node inside a given area when the waypoints
are evenly distributed on the perimeter. Here we generalize
the model a bit and derive the result in a more direct way for
the unit circle. Instead of assuming that the next waypoint
is chosen uniformly on the perimeter, we assume that the
direction of the leg from the present waypoint to the next,
defined by the angleφ between the radius to the current
waypoint and the leg (see Fig. 12), also called the “bouncing
angle”, is randomly drawn from a distribution with a given
pdf fφ(φ). For clarity, we assume that pdf of the bouncing
angle is an even function,fφ(φ) = fφ(−φ). It is easy to see
that the uniform distributionφ ∼ U(−π/2, π/2) corresponds
to a uniform distribution of the waypoint on the perimeter.

We wish to calculate the radial distribution,FR(r), of the
distanceR = |R|,

FR(r) = P{|R| ≤ r}.
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Fig. 11. The pdf resulting from the RWPB model in unit square. The left figure corresponds to pdf of the interior mode,f0(r), and the right figure
corresponds to pdf of the border mode,fi(r).

To this end, let̀ (φ) be the length of a random leg andd(r, φ)
the length of the segment of`(φ) inside the circle of radiusr,
see Fig. 12. Both̀(φ) andd(r, φ) are functions of the random
variableφ. The required probabilityFR(r) is now given by
d̄(r)/E[`], whered̄(r) = E[d(r, φ)] andE[`] = E[`(φ)],

For a givenφ we have from Fig. 12,


d(r, φ) = 2
√

r2 − sin2 φ,

`(φ) = 2
√

1 − sin2 φ = 2 cosφ.

Denote byφ0 the angle at whichd(r, φ) = 0,

φ0(r) = arcsin r.

With the pdffφ(φ) we then have the expected values,


d̄(r) = 2

φ0∫
0

d(r, φ)fφ(φ) dφ,

E[`] = 2

π/2∫
0

`(φ)fφ(φ) dφ,

which lead to the result

FR(r) =
d̄(r)
E[`]

=

φ0∫
0

√
r2 − sin2 φ fφ(φ) dφ

π/2∫
0

√
1 − sin2 φ fφ(φ) dφ

.

For the uniform distribution,fφ(φ) = 1/π for φ ∈
(−π/2, π/2) and 0 otherwise, the expressions simplify:

E[`] =
2
π

π/2∫
0

2 cosφdφ =
4
π

in accordance with [17], and

FR(r) =

φ0∫
0

√
r2 − sin2 φdφ, (20)

which is an elliptic integral of the second kind.

The RWPB model with a uniform angle distribution in a unit
disk is illustrated in Fig. 13, where the left graph shows the
cumulative distribution function (cdf)FR(r) of the distance
from the center, and the center and right graphs show the
probability density function of the node’s location at distancer
in any direction,f(r) = f(r) = F ′

R(r)/2πr. From the center
(and right) figure it can be seen that the density increases
towards the perimeter. Recall that for the ordinary RWP model
the density decreases to zero towards the border (cf. Fig. 5).
This suggests that it should be possible to devise a RWP model
with a non-uniform distribution of waypointsX, which leads
to a uniform distribution of the node locationR.

V. A PPLICATIONS

A. Connectivity in ad hoc networks

Connectivity properties are an essential reliability perfor-
mance characteristic of ad hoc networks because of the use of
multi-hop paths for communication. As part of earlier work
in [21], we studied a network consisting ofn nodes moving
according to RWP within the unit circle and we have derived
a very accurate approximation for the probability that the
network is k-connected, i.e., that there are at leastk node
disjoint paths in the network. Here we apply Approximation 1
from [21] to compare the connectivity properties of RWP and
RWPB, which have very different spatial properties.

Below we restate the approach used in [21] for the special
case of 1-connectivity (i.e., probability that all nodes can
reach all other nodes), since we will only concentrate on that.
We considern nodes moving within the unit disk. To define
when two nodes are directly connected it is assumed that the
coverage area of each node is circular with a radius ofd and
is denoted byBd(r), and that two nodes can hear each other’s
transmissions if they are within a distance ofd from each other
(i.e., we assume the so-called Boolean network model). Also,
we denote byp(r, d) the probability that a given node is within
Bd(r), where we emphasize that this probability depends only
on the distancer = |r| from the center. We can expressp(r, d)
as

p(r, d) =
∫

x∈Bd(r)

f(|x|) dA,
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Fig. 13. The cdfFR(r) of the distance of the node from the origin (left) and the pdff(r) = f(|r|) of the node location (middle and right) for the RWPB
model in a unit disk.

wherex denotes the vector for the location of a point inside
Bd(r), andf(·) is the density of the RWP or RWPB process
in a unit disk. The approximation is based on computing the
probability that a given node has at least one neighbor,Qn(d).
Since all nodes are independent and the probability that a node
is at a distancer from the center equals2πrf(r), Qn(d) is
given by

Qn(d) = 2π

1∫
0

rf(r)
(
1 − (1 − p(r, d))n−1

)
dr,

which is an exact result. Motivated by results in [23], we
approximate1-connectivity by

Cn(d) = P{n-node network is1-connected}
≈ (Qn(d))n

.
(21)

Next we compare the impact of a uniform node location dis-
tribution, the RWP node location distribution, and the RWPB
node location distribution on 1-connectivity. The results are
shown in Fig. 14. The graphs show the probability of the
network being 1-connected as a function of the transmission
ranged of each node for networks withn = 20 (left figure),
n = 100, (middle figure), andn = 500 nodes (right figure).
In each figure, the result for the RWP model is shown with
dashed lines, the result for the RWPB model is shown with
solid lines and the result for the uniform distribution is shown
with dotted lines. To evaluate (21), for RWPf(r) is given by
(7), for RWPBf(r) = F ′(r)/(2πr) with F (r) given by (20),
and for the uniform distributionf(r) = 1/π.

As can be seen from the figure, for a small number of
nodes the connectivity properties are better for RWP than
RWPB or the uniform distribution. As the number of nodes is
increased, the situation changes and RWPB and the uniform
distribution yield better connectivity characteristics. Also note
that the results for RWPB and the uniform distribution are
close to each other, which is understandable as the RWPB
node distribution is indeed quite close to uniform except near
the border, see Fig. 13 (right).

It is worth noting that the minimum transmission range
required to achieve a high connectivity probability increases
slower with the RWP model than with the other two cases,
i.e., adding one additional node has a smaller effect to con-
nectivity with the RWP model than with the other two. This
behavior is due to the different stationary node distributions
and can be explained as follows. Roughly speaking, with the
uniform node distribution and the RWPB model, the nodes are
evenly distributed and the disconnected node may be located

anywhere. Also, an additional node is equally likely to appear
in the neighborhood of the disconnected node, thus resolving
the disconnected state of the network. With the RWP model
the nodes are concentrated near the center of the area and a
disconnected node is likely to be near the border. At the same
time an additional node is more likely to be located in the
center of the area and thus contributes less to the connectivity
than is the case with uniformly distributed nodes or the RWPB
model.

B. Traffic load in dense ad hoc network

Our next example considers network load in an idealized
ad hoc network. The aim is to determine the pdf for the
location of an arbitrary packet. The obtained pdf can then
be interpreted as the traffic load distribution in the network
with an appropriate scaling. Our initial assumptions and steps
are similar to the ones in Pham and Perreau’s work in [24]
where the primary motivation has been to compare single-
path routing to multi-path routing. The comparison between
single-path and multi-path approaches is further extended in
[25]. Both [24] and [25] assume a uniform node distribution
in a disk. Here our aim is to apply the RWP formuæ to give an
estimate for the traffic load in an ad hoc network with single-
path routing where the network nodes may not be uniformly
distributed [26].

Let λ(r) denote the traffic rate experienced by a node
located r units away from the center of a unit disk. The
expression derived in [24] states that

λ(r) = (πδ − 1) · λ +
(
π(1 − r2)δ2β

)
/2 · λ, (22)

whereδ is the node density,λ the mean pairwise transmission
rate andβ some small positive constant reflecting the fact that
the routes are not straight lines [24]. The first term corresponds
to the node’s own traffic, asπδ is equal the average number
of nodes in a unit disk. The second term corresponds to
the relayed traffic, which will be also our focus here. Thus,
according to (22) the volume of the relayed traffic is some
constant times(1 − r2).

In our idealized model we mean by traffic load the amount
of (relayed) traffic passing through a differential area element
around the node’s location. We assume that the number of
nodes is large and hence a typical route a packet takes consists
of several hops and is roughly a straight line segment [24]. Fur-
thermore, we assume that the average time it takes for a packet
to travel from one location to another is directly proportional
to the distance between the locations. This approximation
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Fig. 14. Comparison ofCn(d) with RWP node distribution (dashed lines), RWPB node distribution (solid lines), and uniform node distribution (dotted
lines) for n = 20, 100, 500 nodes (from left to right). .

is justified for straight line routes when the network load
is low and queueing delays can be neglected. With these
assumptions the process defining the location of a randomly
chosen packet corresponds to the independent leg process (2)
where the waypoints, i.e., the locations of the source and the
destination node, are drawn from a given distribution. Hence,
the stationary distribution of the packet location obeys the
stationary node distribution of the corresponding non-uniform
RWP process and can be obtained by evaluating (10) or (11).

Note that obtaining the mean number of packets residing in
a given area is a matter of simple scaling. Consider a network
with n nodes each with a (constant) transmission range ofd.
Let µ denote the mean transmission time of a packet andλ
the average pairwise packet sending rate. Furthermore, letΛ
denote the total sending rate of packets,Λ = n(n − 1)λ. On
average, the multi-hop route consists ofE[`]/d hops and the
packet transmission time at each hop is equal to1/µ. Thus,
for the mean sojourn time of a packet in the network we have
T̄ ≈ E[`]/(d·µ). By Little’s result there arēN = Λ·E[`]/(d·µ)
packets under transmission on average. The mean number of
packets in a given area is then obtained by multiplying the
probability that a single packet moving according to the RWP
model is in the area bȳN .

As an example we consider two cases. In the first example,
similarly as in [24], the nodes are assumed to be uniformly
distributed in a unit disk. In the second example the nodes
are assumed to be moving according to the (uniform) RWP
process in a unit disk. When the nodes are uniformly dis-
tributed in a unit disk the stationary distribution of the location
of the packet is clearly the same as the node distribution in
the (uniform) RWP model, i.e., it is given by (7). Note that
the polynomial approximationP1(r) of Table I for the node
location in a unit disk is in fact equal to the relayed traffic
term in (22) with an appropriate scaling.

Next, let us assume that the nodes move according to
the (uniform) RWP process in a unit disk. Consequently,
their stationary distribution is given by (7). Without loss of
generality we can consider point(0, h), for which the distance
to the border in directionφ is given by

a(h, φ) =
√

1 − h2 cos2 φ − h sin φ.

The waypoint distribution, resulting from the underlying uni-
form RWP process, depends only on the distance from the
center of the disk, i.e., with a slight abuse of notation, we
haveg(r) = g(r) with r = |r|. It turns out that if the waypoint
distribution is a function ofr2 the integrand in (11) (or (10))

simplifies considerably. In particular, in this case (11) can be
written as

f(h) =
2

E[`]

2π∫
0

dφ

[ a1∫
0

dr1 r1 · g∗(h2 + r2
1 + 2hr1 sinφ) ·

a2∫
0

dr2 g∗(h2 + r2
2 − 2hr2 sin φ)

]
,

where g∗(r2) = g(r), a1 = a(h, φ) and a2 = a(h, φ + π).
Substituting to the above expression any polynomial approx-
imation P (r) with non-zero coefficients for the even degree
terms yields an integral expression that can be easily evaluated.

Here we have chosen to useP2(r) from Table I, for which
the normalization condition gives the mean leg length,E[`] ≈
0.715. For the uniform waypoint distribution the mean leg
length in a unit disk is considerably higher,E[`] ≈ 0.905. Note
that the mean leg length corresponds to the mean route length
in our ad hoc network model. The resulting pdf’s are illustrated
in Fig. 15. On the left figure the (initially) lower curve
corresponds to the packet distribution with a uniform network
node distribution, and the upper curve corresponds to the
packet distribution when the network nodes move according to
the (uniform) RWP mobility model. From the figure it can be
seen that with the RWP mobility model probability mass gets
more concentrated around the center of the area than in the
case of uniform node distribution. Hence, as intuition suggests,
the relayed traffic load with nodes moving according to the
(uniform) RWP model is considerably higher in the center of
the area than is the case with uniformly distributed nodes.

VI. CONCLUSIONS

One of the most widely used mobility models is the RWP
model. We have analyzed the spatial distribution of a node
moving according to the RWP model. The main result of our
paper is the general expression giving the node distribution up
to a normalization constant. While the approach shares some
similarities with the work in [13], we directly consider an ar-
bitrary convex domain and are able to perform the derivations
without any approximations. The resulting expression consists
of a one-dimensional integral, which is easy to evaluate numer-
ically for any given geometry. The results have been illustrated
for several geometries (unit circle, unit square, and hexagon)
for which also accurate polynomial approximations have been
given. In general the shape of the node distribution for any
geometry is such that the probability mass is concentrated
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Fig. 15. On the left figure the lower curve corresponds to the pdf of the node location according to RWP model, and the upper curve the pdf of the packet
location in a dense ad hoc network. The figures on the right illustrate the respective pdfs in3-dimensions.

in the center of the area, where the equivalue contours are
circular/elliptical, and the density decreases roughly linearly
towards the borders with the equivalue contours gradually
transforming to curves resembling the geometry of the con-
sidered area.

We have also provided results on a generalization of the
basic RWP model where the locations of the waypoints are
drawn from an arbitrary distribution. As a special case we
have analyzed the RWPB model, where the waypoints are
located on the border of the area. If the border contains
straight line segments, the distribution of the location of the
node is composed of two components corresponding to the
border mode and the interior mode. We have given general
expressions for both components of the node distribution. An
explicit result was derived for the unit circle, having only the
interior component. In general, the node distribution in the
RWPB model differs from the RWP model by concentrating
the probability mass near the border of the area and, eventually,
yielding a non-zero probability mass on the border if it
contains straight line segments.

In addition to the application to efficient sample generation,
our results can also be applied to study certain performance
quantities in a wireless multihop network with mobile users.
In this paper, we have given two such applications. As a first
application, we have considered connectivity properties of an
ad hoc network with nodes moving according to different
patterns The connectivity of the network has been studied,
e.g., in [21] and [22] where it is assumed that the nodes are
either uniformly distributed or move according to (basic) RWP
process. The performance quantity of interest has been the
probability that a network is (1-)connected, for which accurate
approximations have been given. In this paper we have used
the same approach to evaluate the difference between the
RWP model, RWPB model and the assumption that nodes are
uniformly distributed in the region. The comparison showed
that the connectivity properties of RWP and RWPB yield very
different results; connectivity properties under RWP are better
than with RWPB or the uniform distribution when the number
of nodes is small, and vice versa for a large number of nodes.

As a second application, the results were used to quantify
and we were able to analyze the traffic load in a dense
ad hoc network. Under certain assumptions we are able to

derive an expression for the network load in an ad hoc
network with an arbitrary node distribution. As an example
we have studied the traffic load with the node distribution
resulting from the RWP model and compared it with the load
resulting from the uniform node distribution. The result has
been obtained by using the integral expression for spatial
node distribution of non-uniform RWP model together with
a polynomial approximation for the node pdf according to the
uniform RWP model. The results show that due to the mobility
the traffic load increases even more in the center of the area
than in the case of uniformly located nodes.

Regarding future work, the RWP mobility model itself per-
haps offers limited scope for further extensions and new useful
analytical results. However, some of the methods developed in
this work may be found useful also in the analysis of more
elaborate and realistic mobility models.
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APPENDIX

A. Alternative expression for mean leg length in RWP with
uniform waypoint distribution

Alternatively, we can calculateE[`] directly based on its
definition as the average distance between two points randomly
located in the areaA,

E[`] =
1

A2

∫
A

d2r1

∫
A

d2r2 |r2 − r1|.

Instead ofr2 we use a new variable of integration,r = r2−r1,

E[`] =
1

A2

∫
d2r1

∫
d2r 1r1∈A 1r1+r∈A r,

and define

r

B( )r

Fig. 16. Illustration of the translation operation.

φ= arccos(r/2)

1

r/2

B(r)/2

Fig. 17. Illustration of the translation for unit disk.

B(r) =
∫

d2r1 1r1∈A 1r1+r∈A =
∫

d2r1 1r1∈A∩(A−r)

as the area of the intersection ofA and its copy translated by
the vector−r, yielding

E[`] =
1

A2

∫
d2r rB(r) =

1
A2

D∫
0

dr

2π∫
0

dφ r2B(r, φ). (23)

It is obvious thatB(r) = B(−r) as the area of the inter-
section depends only on the relative positions. The translation
operation and the functionB(r) are illustrated in Figure 16.
The integration in (23) is formally over the whole plane. Note,
however, thatB(r) = B(r, φ) is zero for any translation longer
than the greatest diameterD of the areaA. The new expression
(23) for E[`] is equivalent to (5), though this is not apparent
by just looking at the expressions.

Unit disk : In this case the area of the intersectionB(r)
does not depend on the direction of the translation but is just
a function ofr, the length of the translation,B(r) = B(r),
and equals twice the area of the segment of a unit disk as
shown in Figure 17. Thus we have

E[`] =
2π

A2

2∫
0

dr r2B(r),
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where

B(r) = 2 arccos
(r

2

)
− r

√
1 −

(r

2

)2

.

The integral can again be evaluated explicitly and we obtain

E[`] =
128
45π

≈ 0.905,

in accordance with (8).
Rectangular Area: In the case of a rectangular area with

a andb denoting the lengths of the sides, we haveB(r, φ) =
(a− r cosφ)+(b− r cosφ)+. Due to symmetry it is sufficient
to considerφ ∈ [0, π/2]. We change the order of integration
in (23) and eliminate the+-operator inB(r, φ) by introducing
the functiong(φ) which gives the proper integration range for
r up to which the areas of the rectangles still overlap in a
given directionφ,

g(φ) =

{
a

cos φ , 0 ≤ φ < arctan b
a ,

b
sin φ , arctan b

a ≤ φ < π
2 .

Hence, (23) can be expressed as

E[`] =
4

a2b2

2π∫
0

dφ

g(φ)∫
0

r2(a − r cosφ)(b − r cosφ) dr

=
1

a2b2

π/2∫
0

g(φ)3 ·
(

4
3
ab−

g(φ)(b cos φ + a sin φ) +
2
5
g(φ)2 sin 2φ

)
dφ.

The above integral can be easily evaluated numerically. For
example for a unit square witha = b = 1 the above yields
E[`] = 0.521 in accordance with results from [13].
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