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Abstract—The random waypoint model (RWP) is one of the is the distribution of the node location (or shortly the node
most widely used mobility models in performance analysis of ad distribution), which may be far from uniform. On the other
hoc networks. We analyze the stationary spatial distribution of a hand, the uniform distribution is commonly assumed in many

node moving according to the RWP model in a given convex area. f tudies. f le in studi dh twork
For this we give an explicit expression, which is in the form of a performance studies, for exampie in studies on ad hoc networ

one-dimensional integral giving the density up to a normalization Ccapacity (see, e.g., [2] and [3]) and connectivity properties of
constant. This result is also generalized to the case where therandom networks (see, e.g., [4], [5], and [6]). Thus, knowledge
waypoints have a non-uniform distribution. As a special case, of the actual node distribution is often needed in order to study
we study a modified RWP model, where the waypoints are e jmnact of mobility on the performance measure of interest.
on the perimeter. The analytical results are illustrated through . . - .

In this paper, we derive an explicit expression for the

numerical examples. Moreover, the analytical results are applied 2 MAr ' ' -
to study certain performance aspects of ad hoc networks, namely nNode distribution of RWP in an arbitrary convex domain and

connectivity and traffic load distribution. demonstrate the use of the result for various shapes of the
Index Terms— mobility modeling, random waypoint model, ad domain. Accurate polynomial approximations for the density
hoc networking, connectivity function are derived for a regular triangle, square and hexagon.
We comment on the relation of our results to other related
|. INTRODUCTION work separately in Section I-A. Additionally, a generalized

Analysis of wireless systems, either via simulation or arRWP model is considered, where the waypoints may have

alytical modeling, often requires that the effect of node (&0 arbitrary distribution, for which a general expression for
user) mobility on system performance can be modelled. TH¥ node distribution is derived. As a special case of this,

construction and use of mobility models based on the actu§fe further study a variant of the RWP model, named as

say, measured characteristics of mobile nodes is difficff"VPB, where the waypoints are located on the perimeter

Instead, one often uses elementary synthetic mobility modé?§, the area. The motivation for introducing and analyzing

which still capture the essential impact of mobility on th&'¢ RWPB model is that, whereas the RWP model yields a

performance measure under study. The advantage of us(;Jri@ribution that concentrates more probability mass near the

synthetic models is that they can be more easily treated GANter of the domain, the RWPB model gives a distribution
analysis or implemented in simulations. with more probability mass near the edges than in the cen-
The most widely used synthetic mobility model is the Rarfér- Hence, these models serve as two elementary mobility
dom Waypoint model (RWP), which was originally proposeB‘OdelS with fundamentally different spatial characteristics,
for studying the performance of ad hoc routing protocols Fd any practical networking mechanism should be robust
Johnson and Maltz [1]. In this model, a mobile node moveith respect to different moblllty patterns. .A.s an appl|c_:at|on
in a convex domain along a zigzag path, where each of tAk our results, we consujer the connectivity properties of
straight line segments is callel leg At each turning point & hoc networks. In particular, we compare the impact of
the node chooses a new destination randomly and then mo{@des moving according to either RWP or RWPB against the
towards the destination at a constant speed, which is dra@#sumption of nodes being uniformly distributed in the area.
independently from a given speed distribution at each turniffgrowledge of the exact node distribution allows the derivation
point. The node may also remain stationary for a random pa¥eccurate polynomial approximations. Such approximations
time before starting its movement towards the next destinatid@cilitate numerical computations in another application, where
Analytical performance evaluation of ad hoc networks réve Study the impact of node mobility on the traffic load
quires analyzing the properties of the mobility models. For e£istribution in ad hoc networks with shortest path routing.

ample, one important intrinsic property of any mobility model The rest of the paper is organized as follows. Section Il
introduces the traditional RWP model together with some of

T Currently working at the Centre for Quantifiable Quality of Servicghe notation. The RWP model is analyzed in Section I
in Communication Systems, Centre of Excellence, Norwegian Universit . . N .
of Science and Technology, O.S. Bragstads plass 2E, N-7491 Trondhe\&here analytic expressions for the node distribution and its

Norway. polynomial approximations are derived and illustrated for
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several geometries. Correspondingly, the results for the genestablished. In [10], a much more general class of mobility
alized RWP model with an arbitrary waypoint distribution arenodels, of which RWP is a special case, is treated formally
given in Section IV. Applications of our results are given inising Palm calculus. The paper discusses both transient and
Section V. Section VI contains our conclusions. time stationary distributions of these processes, and the aim
is to develop simulation methods, where the process can be
initialized according to the stationary state of the system,
thus avoiding any special transient handling. However, the

The RWP model and its spatial properties have been aférmal results on the distributions cannot be readily applied
lyzed recently in a number of other papers. The observatifdr obtaining explicit expressions of the node distribution, e.g.,
that the initial definition of the speed distribution (i.e., théor RWP that can be numerically evaluated easily.
uniform distribution in the range0, vm..]) was indeed ill-  Also, we note that the properties of the RWP process are in
defined was made in [7]. Since then the same observatigsne sense related to the theory of Poisson line processes
have been made in several other papers as well, see, dardied in the field of stochastic geometry, see, e.g., [20].
example [8], [9] and [10]. The impact of the speed distributiomypically the processes in stochastic geometry are treated on
on simulations is further discussed in [11] for more generah infinite plane, but in RWP the region of motion is bounded.
mobility models. To the best of our knowledge, results as explicit as ours are

Concerning the derivation of the node distribution, resultsot available from this field of science either.
for some special shapes of the movement region have beelve additionally derive the node distribution for the RWP
given in [8], [9], [12], and [13]. Navidi and Camp [8] basicallymodel inR? with the generalization that the waypoint distribu-
give the definition of the node distribution in a rectangulaion can be arbitrary (instead of the uniform distribution). As
area, resulting in a four-dimensional integral over all po% special case of that, we consider a modified RWP process
sible locations of the starting and ending points. Using ointroduced in [12], where the waypoints are always on the
approach, we are able to simplify this expression consideralplgrimeter of the region. As mentioned earlier, this model,
(in an arbitrary convex domain). In [12] and [13], Bettstettereferred to as the RWP on border (RWPB), has a node distri-
et al. derive simple explicit results for the node distributiobution fundamentally different from the node distribution of
in circular and rectangular regions ([9] contains new resul®VP. The RWPB model has been analyzed using simulations
on temporal properties of RWP and repeats the results on the[12]. Again, the model fits in the framework as studied
node distribution from [13]), but the derivations have been [10], but to utilize the results requires Palm calculus. We
performed using approximations at certain steps resulting derive our result using the same method as for RWP giving a
slight inaccuracy in the results (as indicated in our numericgilmple explicit numerically integrable expression for the node
examples). distribution.

Our analysis is similar to that of Bettstetter et al. in [13]. An application of the analysis presented in this paper is the
However, we complete the analysis without using approximase of the results for the derivation of more efficient simulation
tions or a special shape for the region and derive an explimiethods. Yoon et al. [11] have illustrated how, for a class
analytical expression for the node distribution in an arbitraf mobility models, the transient time can be substantially
convex region. The point at which our analysis differs frorshortened by sampling the initial node speed from the known
[13] is indicated in our derivation in Section Ill. As mentionedtationary node speed distribution. However, in a simulation
earlier, the direct application of the definition for the nodef any mobility model, just initializing the speed appropriately
distribution results in a four-dimensional integral. We are ab#ill leaves the transient corresponding to the time until the
to simplify the expression to a one-dimensional integral, whiciode location obeys its stationary distribution. For the RWP
gives the distribution up to a normalization constant. Thaodel, Navidi and Camp [8] have utilized their theoretical
evaluation of the normalization constant requires integration @fsults for deriving algorithms with which the entire state
the density expression over the considered region. Our reqglieed and location) of the RWP model (with and without
was first given in report form in [14]. A generalization of thigpause times) can be initialized according to its stationary
result toR™ has been published in [15]. state. Le Boudec and Vojnavi[10] refer to this way of

We also give results on the mean length of a leg, which céamitialization as perfect simulation, and they show how this
be obtained in our case in two ways. The mean length ofcan be achieved for a large class of simulation models by
leg can be related to the normalization constant. On the otfagplying the insights from using Palm calculus. Our results
hand, it can be expressed as a four-dimensional integral, whign be used to facilitate the generation of samples from the
we reduce to a two-dimensional one (in Appendix). Note thatationary node distribution, and we comment on this briefly
the results for the mean leg length can be also found in ttater on.
literature (see, e.g., “line picking” problems in [16], [17] and As an application of our results with impact on ad hoc
[18]). networking, we consider connectivity properties of ad hoc

More recently, independent of our work, the theory of Palmetworks. More specifically, we concentrate on the probability
calculus has been applied for analyzing RWP in [10] and [1@hat a given network o nodes, each moving according to
The main result in [19] is that the stationary node distributioRWP (or RWPB), is connected. As a part of our earlier work
is independent of the velocity distribution. This issue is alsa [21], we have derived a very accurate approximation for
discussed in [7], [11] and [9], and we take this propertgonnectivity under the assumption of nodes moving according

A. Related work and our contribution
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Next we introduce some notation used throughout our anal-
ysis of RWP. Let the random variabl denote the location of
a waypointP. The waypoints are uniformly and independently
distributed overA4, i.e., the probability density function (pdf)

of X is .
g(r)—{ Za rGAv

0, otherwise

where A denotes the area of the sgt ¢ R?. We denote
this uniform distribution byU(.A) and writeX ~ U(A). The
random variable representing the location of the node at an
arbitrary point of time is denoted bR and its pdf byf(r).

Note that two consecutive legs in the RWP process (see

to the RWP model. However, in this paper we use those resdffd) share a common waypoint and thus are not independent.
to compare connectivity properties of RWP and RWPB. OfoWever, many properties of the RWP process can be analyzed
approach to approximate the connectivity is similar to the offy Studying the corresponding independent leg process, where
in [22], with the distinction that our results have been obtaindf€ 1€9S are, as the name suggests, independent and identically
using exact results for the node distribution. Finally, both ogistributed. Formally, for a given RWP process the correspond-

approximation and the one used in [22] are motivated by t{&d independent leg process can be obtained by considering,
theoretical results found in [5] and [23]. e.g., every second leg (see [9] and [13])

Another networking applica}tion of our .ana}lytic_al results (Py, Py, V1), (Py, P5,V3), (Pa, P5,Vs), ... )
concerns evaluating the traffic load distribution in ad hoc
networks. An analytical model for this has been given in [24or example the stationary node distributions of both processes
and [25], where it has been assumed that the node distributise the same.
obeys a uniform distribution. We study how nodes moving In [1], the velocities were taken from a uniform distribution
according to the RWP model affect the traffic load distributioim the rangdv.,in, vmax], but any distribution can be used (e.g.,
using a similar approach as in [24] and [25]. the beta distribution and a discrete distribution have been used
in [9]). Given the pdffy (v) from which the velocities at the
waypoints are drawn, the stationary distribution of the velocity
for a node moving according to the RWP model is given by
The process representing the movement of a node withilyv) fv(v) up to a normalization constant. This is because
a convex aread C R? according to the RWP model canthe time spent on a leg is proportional 1gv, andV and X
be described as follows. Initially, the node is placed at thare independent. From this it is also obvious thatfiefv) =
point P, chosen from a uniform distribution ove. Then Ulvmin, Umax] the stationary distribution is only defined for
a destination point (also called waypoir®) is chosen from wvmin > 0. Hence, lettingumin = 0 implies that stationarity is
a uniform distribution overd and the node moves along anever reached or, more precisely, in the stationary state all the
straight line fromP; to P, with constant velocityl; drawn nodes are stopped, as pointed out by Yoon et al. in [7] and
independently of the location from a velocity distribution witHater by others in [8] and [9]. Finally, note that the stationary
pdf fi-(v). Once the node reachés, a new destination point, distribution of the location of a node and the stationary node
P3, is drawn independently from a uniform distribution ovevelocity distribution are independent of each other, as has been
A and velocityV; is drawn fromfy (v) independently of the formally shown in [19].
location andV;. The node again moves at constant velogity

Fig. 1. Zigzag movement of the RWP process.

II. RANDOM WAYPOINT MOBILITY MODEL

to the pointP, and the process repeats. Formally, the RWP ||| gpaTiAL NODE DISTRIBUTION WITH ARBITRARY
process is defined as an infinite sequence of triples [9], WAYPOINTS
(Py, P, V1), (Py, Po,V3), (P2, Ps,V3), ... (1) In this section the traditional RWP model is considered.

o o ~General expressions for the node distribution and the mean
This is illustrated in Fig. 1. Thus, the path of a node consisfgngth of a leg are derived. The results are then illustrated for
of straight line segments, called legs, defined by a sequerise RWP process in some regular geometries, for which also

of independently and uniformly distributed waypoin{®;}, accurate polynomial approximations are derived.
in a convex setd C R2. Furthermore, on each le@_1, P;)

the node velocity; is an i.i.d. random variable independent o

of the node location having the pdt-(v). It is also possible A- APProach and derivation

to extend the model by defining random pause times (i.i.d.Consider a convex ared and a node moving within this
random variables) at the waypoints. The influence of th&wea at a speed according to the RWP from waypoit, at
generalization on the node distribution can be analyzed inrato waypointP, atr,. Our aim is to derive the probability
rather straight forward manner as the process consists of tdensity f(r) giving the probability per unit area of finding the
independent and alternating modes, mobile and stagnant [@pde atr.



Fig. 2.
[13)).

lllustration of the variable$’;, d¢, r, A,dA anda; (adapted from

Similarly as in [13], we consider a small area elemént

located atr. Let P; and P, be two consecutive points on the

path. Denote by the length of legP, P, ¢ = | P, P,|, and by
£NdA the length of the leg inside a small area elemént
The desired probability density is the expected proportion
time spent indA, divided bydA (probability per unit area),

1

~ E[]

_ E[(¢ndA)/v] _

B[N dA]
J&) = v aa

dA 7’

i.e., as the speed on each leg is drawn independently of
the waypoints, the probability density equals the ratio of

expected length of the leg segment insidé to the mean

leg lengthE[¢]. The expectation in the numerator is calculated

by conditioning on the position; of the pointP;,

E[¢ N dA] 1/E[£ﬂdA|P1:r1] d?r;.

A
A
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Fig. 3. lllustration of the integral ovelo, 27] in (3).

2ra 2
! +a1 d21‘1
2r

1

A
2m

1 i 1,
e /dgf)/(ral + §a1)dr,
of 0 0

where, in the second form, polar coordinates have been used,
d*r; = rdrd¢, anda, denotes the distance to the boundary
in the opposite directiorp+ 7, as shown in Fig. 3. The radial
integral can be evaluated explicitly, yielding the final result

27

/

0
™

/a1a2(a1 + az) dg,

0

where bothe; andas are functions ok and¢, a1 = a1(r, @)
andas = as(r, ¢). The latter form follows because(r, ¢) =
a1(r,¢ + ), i.e., addingr to ¢ interchanges the roles af

1

B[] A2

f(r) % araz(a1 + az) do
(3)
1

B[] A2

The conditional expectation (expectation over all possibdndas. The integration turns “the propeller” one turn around,

locations of ) is written as

1
E[fﬂdA|r1] = Z /(f(rl,rg) ﬂdA) Cl21'27
A

where we have made it explicit that the line segmistfrom

r; tor,. We note that these equations are already given in [1

where the authors use an approximation o/ N dA|r].
However, no approximation is necessary at this point.
Now refer to Fig. 2, and where the shape of the atéahas

been chosen in a special way to facilitate the derivation. (It is
easy to see that the result is the same irrespective of the shgﬁ

of dA.) The intersection of(ry,rs) anddA is A whenr; is
in the shaded area and 0 otherwise. So the integral equal

times the shaded area and we have with the notation of t

figure,

E[(NdA|r]

%A%d(b((?ﬂralf —r?)

= m(ZT’Gl +(]J?),

sincedA = Ardg¢. Substitution into the original definition
gives,

see Fig. 3. For future purposes, we denote the latter integral
in (3) by A(r),
h(r) = /alag(al + ag) do.

0

4

?ecause f(r) is a distribution integrating to unity,

f(r) d?r = 1, we immediately obtain

/h(r) d°r.

A
Clternative expression fdi[¢] is given in Appendix A.

1

Bl = =

®)

e Example: unit disk

We calculate the node distribution in a unit disk with= 7.
Because of the symmetry the density is a function of the
distancer = |r| only and we write with slight abuse of
notation f(r) = f(r). We can take any point with |r| = r;
in particular we choose = (0,r). Then we see from Fig. 4

that
ay(r,¢) = 1 —1r2cos? ¢ — rsin ¢,
as(r,¢) = /1 —12cos?p+ rsing.
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n=3 n=4 n=6

1 Fig. 6. lllustration of the regular triangle, square and hexagon, and the
respective symmetric areas.

TABLE Il
NORMALIZATION CONSTANT FORRWP MODEL IN REGULAR POLYGONS

no. of edges n = 3, triangle n = 4, square n = 6, hexagon
E[(] 1.26368 1.04281 0.954082
C 34.1193 16.685 11.449

Fig. 4. Derivation ofa; andaz in a unit disk. wherea;’s and B are some (relatively) small integers. As a
goodness of fit criterion we use the mean square error,

Thus,aias = 1—72 and(a;+az) = 24/1 — r2 cos? ¢, whence MSE = %/(f(r) — P(r))® d*r. 9)
A

h(r) =2(1 —r?) / V1 =12 cos? ¢ do. (6) Some reasonably good polynomials of this form are listed in

5 Table I.

This is an elliptic integral of the second kind and cannot 3g. Example: polynomial approximations for regular polygons
expressed in terms of elementary functions. However, one Cakirst we note that it is straightforward to evaluate (3)

evaluate the normalization constant in a closed form, numerically for any convex polygon. Here our aim is to derive
1 reasonably accurate polynomial approximations for the exact
C = /h(r) Pr = 277/7«]1(7«) dr = 128 — 8.936. pdf of the node location in the regular polygons illustrated
2 ) 45 in Fig. 6. The center of each polygon is chosen so that the
polygon is symmetrical relative to the-axis (and possibly to
the y-axis also) and the distance from the center to the base is
hir oy T equal tol. Table Il contains the numerical values for the mean
flr) = (r) _ 45(1—r7) /\/mddl (7) leg lengthE[¢] and the normalization constaat for regular
C 647 triangle, square and hexagon.
0 Polynomial approximations can be motivated by different

Thus, the pdf of the node locatianis simply

Then we have the average length of a leg from (3), reasons. For one, they can be used to generate efficiently
C 128 samples from the stationary node distribution by using the
Elf] = — = 45 = 0.905, (8) rejection method. The speed improvement over the existing

algorithms (see, e.g., [8] and [10]) is roughly by a factor of
two. Secondly, computation of performance quantities based

In Fig. 5_’ ,f(r) is _depicteq as a function of along with on the stationary node distribution requires integration over all
the probability density functionfr(r) = 2xr h(r)/C, of the |,0atigns which can be a rather tedious task if the integrand

random variable? = |r|. For comparison, the approximationse ¢ js an integral expression. A similar application for

fpr the r_10de distribution from [12] is illustrated in the Sam%olynomial approximations with non-zero even coefficients is
figure with dashed curves (see Table ). discussed later in Section V-B

To clarify our approach let us first consider a square having
C. Example: polynomial approximation for unit disk corner points at(—1,-1), (1,-1), (1,1) and (-1,1). As
. : L ._already mentioned, by choosing the corner points this way the
Evaluation of the exact pdf requires numerical integration . . . ; .
: : . S : resulting pdf is symmetric relative to both axes and diagonals.
which can be too time consuming, e.g., in simulations. F?r .
: o t turns out that polynomials of the form
example, when using the rejection method one chooses a . ‘
point (z,y) uniformly from a unit disk and accepts it with > aii(@® +y?) (%P,
a probability of f(y/z2 + y2). With this in mind one can i
consider approximating the exact pdf by polynomials of thexhibit this symmetry. Furthermore, we know that the pdf is

form 1= (3 20) zero at the border of the domain and hence the respective lines,
—7re)- § Q5T
P(r) = o O ; z+1=0andy+1=0,

in agreement with [16].
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0.8 2
0.7— | 1.75
0.6 ——=F-> 1.5 e
0.5 ™ 1.25 /e \\
0.4 1 4 N
N 4 \
0.3 X 0.75 7 \
N 4 \\
0.2 < 0.5 -
0.1 N 0.25 / \
N\
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Fig. 5. The pdf of the node locatiory,(r), (left) and the pdf of the distance of a node from the origig.(r), (right) for a unit disk. The solid curves
correspond to our exact results and the dashed curves to approxinfation (see Table 1).

TABLE |
POLYNOMIAL APPROXIMATIONS OF THE SPATIALRWP NODE DISTRIBUTION IN UNIT DISK.
degree  polynomial MSE max. absolute error
2
n=2 Pi(r)==(1-r?) 6.5-10"*  0.067 (from [12])
s

_ 601 —r?)(27 —8r?)

n=4 DPa(r) 3.1-107%  0.0033
731w
3(1—72)(189—44r2 —18r4
n=6 Pg(r)=( X 557 4 ) 1.3-10~7  0.00086
s

should be factors in the polynomial approximation. The symvhich is obtained near the corners. In [13] Bettstetter et al.
metry and the boundary requirements lead us to considgve an approximation, which is almost as accurate as ours.

polynomials of the form It turns out that their approximation has a MSE of about
) ) ) o % 7.1 - 1073 and a maximum absolute error of abdubi2,
Py(w,y) = (1—2”)(1—9*) Y ai(@® +y°) (a)¥. which is obtained in the middle of the region. However, the
i,j

approximation proposed in [13] has two deficiencies. Firstly,
Similarly, for (regular) triangle and hexagon the suitablé is defined piecewise in eight symmetrical areas and is
polynomials must be even functions efand invariant under not completely smooth across the borders of those areas.
rotations by120° and 60° for triangle and hexagon, respec-Secondly, the expression is rather complex when compared to

tively. Hence, our polynomial. Fig. 8 illustrates the exact pdf (solid line), our
polynomial approximation (dotted line) and the approximation
Ps(z,y) = (1+y)(2—y)* —327) - by Bettstetter et al. (dashed line). Note that, the spatial pdf of
Zaij (2 + ) (y (322 — y)), the node location, e.g., in an arbitrary rectangle with sides
07 and b, cannot be obtained by simple scaling of the pdf of a
. (12 2.2 C0\2 9.2y . square. Hence, if one is considering an arbitrary rectangle, one
Polw,y) =1 =y )y +2) Sx_)((y 2) 31/, ) should evaluate (3) using appropriate expressionsfofand
> aije® +y7) (y (327 — )% a2).
]

Finally, Fig. 9 contains the results for a regular hexagon
First we fix the degree of the polynomial, i.e., decide on a finiea. The resulting pdf is already rather close to the pdf in a
set of coefficients:;; to be determined. As a fitting criterionunit disk. The fitted polynomial was chosen to consist of terms
we use the mean square error (MSE) given by (9). To ease theto the 9th degree, which yields a satisfactory approximation
computational burden we exploit the symmetry and evaluatdth a MSE of abou®0.0012 and a maximum absolute error
the MSE integral only over the shadowed areas in Fig. 6f about0.016.
Table IIl contains the numerically obtained coefficients. In
all cases the obtained polynomial approximation differs from
the exact pdf mainly near the corners, where the maximum
absolute error is in the range 0f01 — 0.02. Fig. 7 illustrates
the results for the regular triangle. The fitted polynomial
consists ob terms resulting in a polynomial of the 8th degree.
The MSE is abou0.004, and the maximum absolute error is In this section, we first analyze the RWP model with an
about0.014. arbitrary waypoint distribution. As a special case of this we
For the square we have chosen to fit a polynomial of ttetudy a modified RWP model, where the waypoints are always
6th degree. The resulting approximation has a MSE of abaut the perimeter. For this model, we also provide explicit
1.4 - 1073 and a maximum absolute error of abowd10 results for the unit disk area and the unit square area.

IV. SPATIAL NODE DISTRIBUTION WITH ARBITRARY
WAYPOINTS



HYYTIA et al: SPATIAL NODE DISTRIBUTION OF THE RANDOM WAYPOINT MOBILITY MODEL WITH APPLICATIONS 7

TABLE IlI
COEFFICIENTS FOR THE POLYNOMIAL APPROXIMATIONS OF THE NODE DISTRIBUTION IN REGULAR POLYGONS

case
n =3 | app = 0.0904092, a0 = 0.0131599, ap1 = 0.00944523, azo = 0.0209075, a11 = 0.000570773
n=4 | apo = 0.551066, ajp = —0.133986, ap1 = 1.20532, ago = 0.172301, a1 = —1.48645, ap2 = 3.32898
n=6 | apo = 0.039526, aijp = 0.0193813, azo = —0.0159052, a3zp = 0.0406354, ap1 = —0.0236053
IS 0.5 /’/ \\
0.4 / / \
~ o / N\ A —
/ \ 0.2 zz:
0. 1 0.04
70.750.50.25 0 0.250.50.75 1 105 0 0.5 1 T

Fig. 8.

Equivalue contours and cross sections of the node distribution in a regular square. The middle figure corresponds to the cross sectian along the

or y-axis and the right figure corresponds to the cross section along the diagonal. The dashed line corresponds to the approximation given in 8], the dott
line to our polynomial approximation and the solid line to the exact result. The small right-most figures correspond to zoomed areas of the diagonal cro

section.

) 0.6 s 0.6 -]
T TN o TN
0.5
0.4 0.4
/ \ / \
0 0.3 0.3
o,/ \ ol / \
0.5 / \
0.1 0.1
. '/ \ o/ \
R 1 0.5 0 0.5 1 1 Cos 0 0.5 1

Fig. 9.

Equivalue contours and cross sections of the node’s location pdf in a hexagonal area. The middle figure corresponds to the cross seeion along t

y-axis and the right figure to the cross section alongatkexis. The difference between the exact pdf and the approximation is very small.

0-35 =T random waypoint process is given by
0.3
0.25 \ 27 a(p+m)
0.2 / AN f(r) _ L/dfb / dro
0.15 / N E[/]
0.1 0 0 (10)
0.05 // \\ a(9)
-1.5 -1 -0.5 0 0.5 1 1.5 0.1 -0.5 0 0.5 1 1.5 2 / dTl (Tl+7’2)'g(7"1,¢)'g(7’2,¢+ﬂ'),

Fig. 7.

section along they-axis for a regular trianglen{ = 3).

0
Equivalue contours, and the exact and approximate pdf in the creghere a(¢) = a(r, ¢) is the distance to the boundary from
pointr in direction$ andg(r;, ¢) is the pdf of the waypoints
at pointr+r;-(cos ¢, sin¢). Leta; = a(¢) andas = a(d+m).
Then, Eg. (10) can be written as

A. Approach and derivation o a1 as

The traditional RWP model is based on the assumption thJ;(tr) - E[/]
0

i/d¢ [O/dh rl'g(r1,¢)~0/dr2 g(ray b+ 1) +

the waypoints are uniformly distributed in a given ardaln
some cases this may not be justified. In [12] a simulation-

based

approach is used to study the node distribution in the /dm g(ri, é) - /d’l“g ro - g(re, & + 77)},
0 0

presence of a hot spot. In the model domédiris divided into

two subdomains having waypoint intensitigg and j2, with
p1 > pa, SO that(Aypy + Aaps) /(A1 + As) (normalization).

which, due to symmetry, is equal to

Domain1 is referred to as the “attraction area” or hot spot. flr) = 2
In general, we may consider the RWP model with an arbi- E[/]
trary waypoint distribution with pdf(r). A similar analysis 2m a1 a2 (11)

as is done in Section Il for the uniform waypoint distribution /d(;b /dr1 r1-g(r, ) - /dr2 g(ra, ¢+ m)

yields

that the spatial node distribution of a non-uniform F 0
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the integral equalé\ times the length of the line segmedit
along the edge. Using the notation of the figure we obtain

1 A (a1 + ag) . d¢
Ef(NdA|P,=11]= = Adsg = =~——2-
[fndAl P =] B 52 B cos
1 a1 + as 1
= —dA- . .
B as cos
Similarly, as in the case of the RWP process, the above yields
1 E[g n dA] 1 a1 + asg
= . = d 13
Jol) = g7~ A B[] B2 / mooss @ (13
B
Fig. 10. Notation for analysis of RWPB. wherea; = |r — r2|, ag = |r — r1| andcosf = ns - (r2 —

r1)/|ra —r1| with ry = rq(s) andry = ro(ry, r). For a given
r,leta; = a;(s) =r —ry andas = as(s) = r — ry. With
Note that for the uniform waypoint distributias(r, ) = 1/A  these, (13) can be written in a symmetric form,
the general form (11) reduces to (3).

B
Similarly as in the case of a uniform waypoint distribution, 1 |az — ay | d
the mean leg length can be obtained by normalisation, folr) = E[(| B2 a, - Ny 5
2 OB
_ 1/2 1 1
E[/] _2/dA /d¢- = E[@{B? /|a2—a1|~ (a + o > ds, (14)
-n -n
" ‘’ 0 - (12) 0 1 1 2 2
/dn r - gl 6) % /dr2 g(ra 6+ 7)) . wtze)renl = n;(s) denotes the normal vector of the border at
ri(s).
0 0 General border: Now let us return to the question of an
_ area A, the perimeter of which may contain straight line
B. Random waypoint on border segments. Assume that there arkine segments on the border
Let us next consider a special case of RWP with arbitrafy With lengthsB;, i = 1,.... k, while the total length of the

waypoints, i.e., the random waypoint on border (Rwpg)orderisB. There is clearly a strictly positive probability that
model introduced in [12], where the destination points af#/0 consecutive waypoints reside on the same line segment
chosen uniformly on the bordes of the area. This model @nd, consequently, that the node is on the border, Reg
leads to a fundamentally different stationary node distributid® Thus, the system can be seen to be in two alternating
than the RWP model, as will be shown later. states: “border mode” and “interior mode”. The border mode

The stationary node distribution for the RWPB model cafrresponds to legs along some straight line segment and the
be derived by starting from the results of the non-unifordRterior mode corresponds to legs passing through the area. In
RWP model. Choosing the waypoint distribution as zero jparticular, I_etpi denote the probability that an arbitrary leg
points which are further thaa from the perimeter and some©CCuUrs on line segmen

appropriate constan®. near the perimeter and letting— 0 p; = P{two consecutive waypoints on line segmeht
one obtains the RWPB model and the respective stationary B2
node distribution. = (_Z) ,

However, also in this case, it is possible to perform a similar B

analysis as in Section 1l for the traditional RWP model. This i8nd po the probability that a transition belongs to interior
probably more illustrative and we have chosen this approa¢hode, for which we have
First the case of a general convex area is treated and then we k
consider two special cases, namely unit disk and unit square. po=1-— Zpi.

Curvilinear border: Consider first the case where the area i=1
A is convex and the curvature of the perimeter is positive As the arriving point and the departing point on any line
everywhere. Hence, the perimeter does not contain any straigkgment: are uniformly distributed, the two modes (inte-
line segments and the probability of finding a node on th@r/border) can be treated separately. Thus, p&nhas a
border is zero. To derive an expression for the node locatione-dimensional pdf on each line segment on the boRjer
distribution in this case, the initial steps in the analysis for thehich are simply weighted versions of the one-dimensional
general convex area are basically the same as in the previBMgP model pdf. However, in the interior mode the probability
section for the standard RWP model, only the integrals aglensity of the nodes still obeys (13).
not over an aread but over a curve with the length of the ~ The one-dimensional RWP model has been studied in [12]
curve denoted byB. Now refer to Fig. 10, where; andr, and [13]. The results therein show that given that a node lies
are two waypoints on the border. In the figuté = a;-dé-A on a line segmenf0, L), its pdf is given by
andny denotes the unit normal vector st. To compute the 6z(L — )
conditional expectatioRt [¢ N dA| P, = ry], it can be seen that fl@)=—735—" (15)
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Determination of the weights for modes:The appropriate
weights for the interior mode and the border modes are equal
to the respective time proportions. Lt denote the proportion
of time the node spends in the interior mode andi =
1,...,k, the proportion of time it spends on line segment
For thew; we have the obvious relation,

p;El4]

k ?
>izo PiE[l]
where theE[¢(;], ¢ = 1,...,k, correspond to the mean leg
length on segment, and E[¢y] corresponds to the mean leg

length in the interior mode. The mean leg length of the whole
processE[/] is the weighted sum,

E[{] = poE[lo] + pr1E[61] + ... + prE[lx]. (17)
The mean leg length on line segmens E[¢;] = B;/3 (see,
e.g., [12] and [13]), and thus Fig. 12. Notation for analysis of RWPB in a unit circle.
_ poE[lo] poE[lo] (18)

E[f] kB /3 . : . o
4] poE[lo] + 32—, piBi/3 Thus, the proportion of time the node spends in the interior
In order to complete the analysis one still needs to determimode is

(16)

.= 2
T = ¢

To

the mean transition length in the interior mod#/{,], which 9 5 4+ 51n(1 5

can be achieved by a straightforward integration. Alternatively, Ty = i ? +5n(l+ g) ~ (0.887,

integral of (13) ovetA is equal torg, which together with (18) 3+ v2+5n(l+v2)

allows us to determin&[¢y] and thenE[¢] by (17). and similarly, the proportion of time spent on each border line

In summary, the RWPB node distribution can be charactesegment is,
ized as follows. With probabilityr; the node lies in the interior

of A having a conditional two-dimensional density given by 7; = 1/4 ~ (0.0283, i=1,...,4.
(13), and with probabilityr; the node is on the border line 3+vV2+5In(1 ++v2)
segment, i = 1,..., k, having a conditional one-dimensionalSubstituting the above in (19) gives the one-dimensional pdf
density given by (15) withl, = B;, on each border line segment,
1 aj + as 3z(1 —x)
fO(r) = To- / dS, I3 = L6 1-— = s
poE[lo] B2 ) az cos (19) fi@) =m 62l ) = ¢ +2v2+10In(1 +v/2)
filx) = m-6x(B;i—x)/B}, i=1,... k. wherei = 1, ..., 4. The two-dimensional pdf corresponding to
interior points can be obtained by evaluating (19), as illustrated
C. Example: unit square in Fig. 11.

Consider next a unit square in which a node moves ac-
cording to the RWPB model. Due to the symmetry we cad. Example: unit circle

concentrate on the-axis first. The mean transition length | section IV-B we have derived a general result (13) for the

in the interior mode E[(y], can be obtained from (19) by gjstribution of a node inside a given area when the waypoints
integration over the area. However, in this ca#é)] can be are evenly distributed on the perimeter. Here we generalize

obtained by a straightforward integration, the model a bit and derive the result in a more direct way for
11 the unit circle. Instead of assuming that the next waypoint

E[to] :2// /22 + 42 dz dy is chosen uniformly on the perimeter, we assume that the

3 - direction of the leg from the present waypoint to the next,

defined by the angle) between the radius to the current

1 1
1 \/721d i waypoint and the leg (see Fig. 12), also called the “bouncing
T3 (@ —y)*+ldvdy angle”, is randomly drawn from a distribution with a given
0 0 pdf f,(¢). For clarity, we assume that pdf of the bouncing
=— (2 +vV2+5mIn(1+ \/5)) ~ 0.869, angle is an even f_ungno%(@ = fo(—¢). It is easy to see
9 that the uniform distributiony ~ U(—=/2,7/2) corresponds
and to a uniform distribution of the waypoint on the perimeter.
We wish to calculate the radial distributiofiz(r), of the
E[(] = (3/4)E[lo] + (1/4) - (1/3) distanceR = |R|,

=(1/12) - (3 +V2+5In(1 + \/5)) ~ 0.735. Fr(r) = P{|R| < r}.
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Fig. 11.
corresponds to pdf of the border modg(r).

To this end, let’(¢) be the length of a random leg add-, ¢)
the length of the segment éf¢) inside the circle of radius,

0.05
0.04 S
0.03
0.02
0.01
0.2 0.4 0.6 0.8 1

The pdf resulting from the RWPB model in unit square. The left figure corresponds to pdf of the interior finade,and the right figure

The RWPB model with a uniform angle distribution in a unit
disk is illustrated in Fig. 13, where the left graph shows the

see Fig. 12. Botti(¢) andd(r, ¢) are functions of the random cumulative distribution function (cdffz(r) of the distance

variable ¢. The required probability’z(r) is now given by
d(r)/E[¢], whered(r) = E[d(r, ¢)] andE[{] = E[¢(¢)],
For a giveng we have from Fig. 12,

{d(r,(b) = 2+/r2 —sin? ¢,
o) = 2

Denote byg, the angle at whichi(r, ¢) = 0,

1—sin®¢p = 2coso.

¢o(r) = arcsinr.

With the pdf f,(¢) we then have the expected values,

from the center, and the center and right graphs show the
probability density function of the node’s location at distance

in any direction,f(r) = f(r) = Fy(r)/2nr. From the center
(and right) figure it can be seen that the density increases
towards the perimeter. Recall that for the ordinary RWP model
the density decreases to zero towards the border (cf. Fig. 5).
This suggests that it should be possible to devise a RWP model
with a non-uniform distribution of waypointX, which leads

to a uniform distribution of the node locatidR.

V. APPLICATIONS

i %d p A. Connectivity in ad hoc networks
r = 2 T, ) .. . . L
") / (. 9)Jo(9) do Connectivity properties are an essential reliability perfor-
0 /2 mance characteristic of ad hoc networks because of the use of
B multi-hop paths for communication. As part of earlier work
Elg = 2 / 1(9)fo(¢) do, in [21], we studied a network consisting ef nodes moving

0

b0
[\ s o paté)as
0

FR(T): [E] == /2 .

[ Visinto fote)as
0

For the uniform distribution, f;(¢) = 1/x for ¢ €
(—m/2,7/2) and O otherwise, the expressions simplify:

which lead to the result

~I
=
~—

&=

w/2
E[{] = % / 2 cospdo = 4

™
0

in accordance with [17], and

o)
Fr(r) = /\/7"2 — sin? ¢ do,
0

which is an elliptic integral of the second kind.

(20)

according to RWP within the unit circle and we have derived
a very accurate approximation for the probability that the
network is k-connected, i.e., that there are at leashode
disjoint paths in the network. Here we apply Approximation 1
from [21] to compare the connectivity properties of RWP and
RWPB, which have very different spatial properties.

Below we restate the approach used in [21] for the special
case of 1-connectivity (i.e., probability that all nodes can
reach all other nodes), since we will only concentrate on that.
We considem nodes moving within the unit disk. To define
when two nodes are directly connected it is assumed that the
coverage area of each node is circular with a radiug ahd
is denoted byB,(r), and that two nodes can hear each other’s
transmissions if they are within a distanceddfom each other
(i.e., we assume the so-called Boolean network model). Also,
we denote by(r, d) the probability that a given node is within
By(r), where we emphasize that this probability depends only
on the distance = |r| from the center. We can express:, d)
as

p(r.d) = / £(Ix[) dA,

xEBy(r)
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Fig. 13. The cdfFr(r) of the distance of the node from the origin (left) and the féf) = f(|r|) of the node location (middle and right) for the RWPB
model in a unit disk.

wherex denotes the vector for the location of a point insidanywhere. Also, an additional node is equally likely to appear
By(r), and f(-) is the density of the RWP or RWPB processn the neighborhood of the disconnected node, thus resolving
in a unit disk. The approximation is based on computing thhe disconnected state of the network. With the RWP model
probability that a given node has at least one neighgfd). the nodes are concentrated near the center of the area and a
Since all nodes are independent and the probability that a natieconnected node is likely to be near the border. At the same
is at a distance from the center equal®rrf(r), Q.(d) is time an additional node is more likely to be located in the
given by center of the area and thus contributes less to the connectivity
1 than is the case with uniformly distributed nodes or the RWPB

Qn(d) = 27T/rf(7“) (1 — (1 = p(r, d))n—l) dr, model.

L X . . B. Traffic load in dense ad hoc network
which is an exact result. Motivated by results in [23], we

approximatel -connectivity by Our next example cor_lsid_ers network !oad in an idealized
_ ad hoc network. The aim is to determine the pdf for the

Cn(d) = P{n-node network isl-connectey (21) location of an arbitrary packet. The obtained pdf can then

~ (Qn(d))" . be interpreted as the traffic load distribution in the network

Next we compare the impact of a uniform node location didvith an appropriate scaling. Our initial assumptions and steps
tribution, the RWP node location distribution, and the RwpBre similar to the ones in Pham and Perreau’s work in [24]
node location distribution on 1-connectivity. The results adshere the primary motivation has been to compare single-
shown in Fig. 14. The graphs show the probability of th@ath routing to multi-path routing. The comparison between
network being 1-connected as a function of the transmissigitgle-path and multi-path approaches is further extended in
ranged of each node for networks with = 20 (left figure), [25]. Both [24] and [25] assume a uniform node distribution
n = 100, (middle figure), anch = 500 nodes (right figure). in a disk. Here our aim is to apply the RWP formuee to give an
In each figure, the result for the RWP model is shown witgstimate for the traffic load in an ad hoc network with single-
dashed lines, the result for the RWPB model is shown wiftgth routing where the network nodes may not be uniformly
solid lines and the result for the uniform distribution is showfistributed [26].
with dotted lines. To evaluate (21), for RWR~) is given by ~ Let A(r) denote the traffic rate experienced by a node
(7), for RWPB f(r) = F'(r)/(2nr) with F(r) given by (20), located r units_away from the center of a unit disk. The
and for the uniform distributiorf (r) = 1/7. expression derived in [24] states that

As can be seen from the figure, for a small number of _ 1. 2\ 52 .
nodes the connectivity properties are better for RWP than Alr) = (@ =1)- A+ (W(l )0 6) /2 A (22)
RWPB or the uniform distribution. As the number of nodes i&hered is the node densityy the mean pairwise transmission
increased, the situation changes and RWPB and the uniforaite ands some small positive constant reflecting the fact that
distribution yield better connectivity characteristics. Also notiéhe routes are not straight lines [24]. The first term corresponds
that the results for RWPB and the uniform distribution ar® the node’s own traffic, asé is equal the average number
close to each other, which is understandable as the RWBBnodes in a unit disk. The second term corresponds to
node distribution is indeed quite close to uniform except netire relayed traffic, which will be also our focus here. Thus,
the border, see Fig. 13 (right). according to (22) the volume of the relayed traffic is some

It is worth noting that the minimum transmission rangeonstant timeg1 — r?).
required to achieve a high connectivity probability increasesIn our idealized model we mean by traffic load the amount
slower with the RWP model than with the other two casesf (relayed) traffic passing through a differential area element
i.e., adding one additional node has a smaller effect to ccaround the node’s location. We assume that the number of
nectivity with the RWP model than with the other two. Thiswodes is large and hence a typical route a packet takes consists
behavior is due to the different stationary node distributior$ several hops and is roughly a straight line segment [24]. Fur-
and can be explained as follows. Roughly speaking, with tiieermore, we assume that the average time it takes for a packet
uniform node distribution and the RWPB model, the nodes ati@ travel from one location to another is directly proportional
evenly distributed and the disconnected node may be locatedthe distance between the locations. This approximation
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Fig. 14. Comparison oy, (d) with RWP node distribution (dashed lines), RWPB node distribution (solid lines), and uniform node distribution (dotted
lines) forn = 20, 100, 500 nodes (from left to right).

is justified for straight line routes when the network loadimplifies considerably. In particular, in this case (11) can be
is low and queueing delays can be neglected. With theseitten as
assumptions the process defining the location of a randomly a

2m
chosen packet corresponds to the independent leg process (Jzeh) _ 2 /d¢ [/ dry 1 - g* (B2 + 12 + 2hry sin @) -
0

where the waypoints, i.e., the locations of the source and the E[/]

destination node, are drawn from a given distribution. Hence, as 0

the stationary distribution of the packet location obeys the drs g*(h? + 12 — 2hro sin (b)}
stationary node distribution of the corresponding non-uniform

RWP process and can be obtained by evaluating (10) or (11). °

Note that obtaining the mean number of packets residingWwhere g*(r?) = g(r), a1 = a(h,¢) andas = a(h, ¢ + ).
a given area is a matter of simple scaling. Consider a netwdskibstituting to the above expression any polynomial approx-
with » nodes each with a (constant) transmission rangé ofimation P(r) with non-zero coefficients for the even degree
Let ;. denote the mean transmission time of a packet andterms yields an integral expression that can be easily evaluated.
the average pairwise packet sending rate. Furthermorey, let Here we have chosen to usg(r) from Table I, for which
denote the total sending rate of packets= n(n — 1)A. On the normalization condition gives the mean leg lendift] ~
average, the multi-hop route consistskf¥]/d hops and the 0.715. For the uniform waypoint distribution the mean leg
packet transmission time at each hop is equal to. Thus, lengthin a unit disk is considerably high&li/] ~ 0.905. Note
for the mean sojourn time of a packet in the network we hateat the mean leg length corresponds to the mean route length
T =~ E[¢f]/(d-u). By Little’s result there aréV = A-E[¢]/(d-p) in our ad hoc network model. The resulting pdf’s are illustrated
packets under transmission on average. The mean numbeinofig. 15. On the left figure the (initially) lower curve
packets in a given area is then obtained by multiplying tie®rresponds to the packet distribution with a uniform network
probability that a single packet moving according to the Rwiode distribution, and the upper curve corresponds to the
model is in the area by . packet distribution when the network nodes move according to

As an example we consider two cases. In the first exampllee (uniform) RWP mobility model. From the figure it can be
similarly as in [24], the nodes are assumed to be uniform$gen that with the RWP mobility model probability mass gets
distributed in a unit disk. In the second example the nodg¥re concentrated around the center of the area than in the
are assumed to be moving according to the (uniform) RWase of uniform node distribution. Hence, as intuition suggests,
process in a unit disk. When the nodes are uniformly dighe relayed traffic load with nodes moving according to the
tributed in a unit disk the stationary distribution of the locatiofuniform) RWP model is considerably higher in the center of
of the packet is clearly the same as the node distribution tife area than is the case with uniformly distributed nodes.
the (uniform) RWP model, i.e., it is given by (7). Note that
the polynomial approximatiod; (r) of Table | for the node VI. CONCLUSIONS

location in a unit disk is in fact equal to the relayed traffic One of the most widely used mobility models is the RWP
term in (|22) with an approhprlatﬁ scaling. . model. We have analyzed the spatial distribution of a node
Next, let us assume that the nodes move according . ing according to the RWP model. The main result of our
the_ (umfprm) RWP process in a unit disk. _Consequentl aper is the general expression giving the node distribution up
their stationary distribution is given by (7). Without l0ss o}, 3 1\ormalization constant. While the approach shares some
generality we can consider poifit, ), for which the distance gjijarities with the work in [13], we directly consider an ar-

to the border in direction is given by bitrary convex domain and are able to perform the derivations
a(h, ¢) = /1 — h2 cos? & — hsin ¢. without any approxim_ations. The_res_ulting expression consists

of a one-dimensional integral, which is easy to evaluate numer-

The waypoint distribution, resulting from the underlying uniically for any given geometry. The results have been illustrated
form RWP process, depends only on the distance from tfoe several geometries (unit circle, unit square, and hexagon)
center of the disk, i.e., with a slight abuse of notation, wier which also accurate polynomial approximations have been
haveg(r) = g(r) with » = |r|. It turns out that if the waypoint given. In general the shape of the node distribution for any
distribution is a function of? the integrand in (11) (or (10)) geometry is such that the probability mass is concentrated
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Fig. 15. On the left figure the lower curve corresponds to the pdf of the node location according to RWP model, and the upper curve the pdf of the packe
location in a dense ad hoc network. The figures on the right illustrate the respective gefniensions.

in the center of the area, where the equivalue contours aerive an expression for the network load in an ad hoc
circular/elliptical, and the density decreases roughly linearhetwork with an arbitrary node distribution. As an example
towards the borders with the equivalue contours graduaie have studied the traffic load with the node distribution
transforming to curves resembling the geometry of the coresulting from the RWP model and compared it with the load
sidered area. resulting from the uniform node distribution. The result has
We have also provided results on a generalization of tleen obtained by using the integral expression for spatial
basic RWP model where the locations of the waypoints ap@de distribution of non-uniform RWP model together with
drawn from an arbitrary distribution. As a special case w& polynomial approximation for the node pdf according to the
have analyzed the RWPB model, where the waypoints arsiform RWP model. The results show that due to the mobility
located on the border of the area. If the border contaitize traffic load increases even more in the center of the area
straight line segments, the distribution of the location of thi@an in the case of uniformly located nodes.
node is composed of two components corresponding to theRegarding future work, the RWP mobility model itself per-
border mode and the interior mode. We have given genelaps offers limited scope for further extensions and new useful
expressions for both components of the node distribution. Amalytical results. However, some of the methods developed in
explicit result was derived for the unit circle, having only théhis work may be found useful also in the analysis of more
interior component. In general, the node distribution in thelaborate and realistic mobility models.
RWPB model differs from the RWP model by concentrating
the probability mass near the border of the area and, eventually, ACKNOWLEDGMENT
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