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col, round-robin policy In this paper we study similar MAC protocols as proposed
in [3, 4] under static traffic conditions. In particular, we con-
Abstract sider both random order and round-robin transmission poli-

In this paper we analyse previously proposed MAC proto-cies. When a node operates in random order policy the trans-
cols for optical ring networks under static traffic conditions. mission queue to be served next is chosen randomly among
The analytical models are developed for random order anthe non-empty queues. In the analysis we consider an arbi-
round-robin transmission policies in both slotted and unslottrary receiver and derive formulae for the burst blocking prob-
ted cases. The models predict the receiver efficiency, i.e. thability and the so-called (receiver) efficiengy.e. the propor-
fraction of time each receiver is active. The models are alstion of the time the receiver is active. Note that in the ideal
verified by numerical simulations and some remarks are madease the blocking probability is zero and the efficiegdg
for improving the performance of the protocols. equal to the offered loag
A special attention is given to the performance under an
extremely heavy load where each source has always bursts to
INTRODUCTION be sent to aIN — 1 other destinations, i.e. the offered load is
Optical ring network is a viable solution for metropolitan p = 1. Although this symmetric heavy traffic scenario does
area networks (MAN). In such a network optical bursts can beot hopefully exist, it gives us a lower bound on blocking
used to transfer the data [1, 2]. Optical burst switching (OBShrobability for each MAC protocol and allows us to compare
has been proposed both for regular (e.g. ring) networks ageir worst case performance. Note that in an ideal case the
well as general mesh networks. An optical burst consists oblocking probability is zero and each receiver is busy all the
several concatenated packets and can be seen as an intermigre, leading to an average pairwise throughput GiNL— 1)
diate step from the wavelength routed networks (i.e. circuitimes the capacity of one channel. However, it will be shown
switching) towards the optical packet switching. Generally inthat without any coordination between the nodes the actual
OBS the source node first sends a control packet or frame throughput will be considerably less, i.e. about a half of that.
inform the receiver (and possibly intermediate nodes) about The rest of the paper is organized as follows. In the next
the upcoming burst. The burst is then sent after a certain offyyg sections an analytical models are developed for a unslot-
set time without waiting for any acknowledgment from the teq protocol operating in both random order and round-robin
receiver (or intermediate nodes). In this paper we will con-grder transmission policies and for a slotted protocol with
sider OBS in a ring topology. random order transmission policy. Then we present some nu-
In [3, 4] Xu et al. have studied a cost effective single fi- merical examples, which verify the derived analytical results.
bre unidirectional OBS ring network, where each node hasn the fifth section some improvements to the protocols are
a dedicated fixethome wavelength channfar transmitting  proposed, and the last section contains the conclusions.
its bursts. In addition to data channels a shared control chan-
nel is used to inform the other nodes about the arriving bursts.
Thus, the number of wavelength channslis equaltdN+1, UNSLOTTED PROTOCOL VERSION
whereN is the number of nodes. Furthermore each node has First we consider an idealized protocol model, where trans-
only one adjustable receiver. Consequently, no transmissiongissions of each node are independent of others. In particu-
collide in the fibre, but as each node can listen to at most onkar, the nodes can transmit bursts at any point of time, i.e. the
channel at a time burst losses may occur at the receiver.  system is unslotted [5]. Without a loss of generality, we can
In [3, 4] several MAC protocols have been evaluated byconsider the receiver at node 0. We assume a (quasi) static
numerical simulations. In all cases a round-robin transmisscenario where, during a some reasonably long time inter-
sion policy is used, i.e. each node maintains one transmissl, there ar&k nodes sending bursts to node 0. Furthermore,
sion queue for each destination node and those transmissi@ach nodg sends bursts taj — 1 other nodes, i.e; denotes
gueues which have enough packets to form at least a minthe number of destinations chanjedource has. During this
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all aj destinations irrandom order (RO) and consequently

there are no idle periods in the respective channels (see Fi@symmetric Cases
1). Note that one or more destination can be virtual, i.e. such Consider first a case where eaghis some constant. i.e
bursts should be interpreted as real idle periods in the respec- . ! L
tive channel. Furthermore, the burst sizes are assumed to 5é — p/K. Itis easy to see that the system asymptotically

independent and exponentially distribut&dy Exp(). converges to an M/M/1/1-system, lm«B = p/(1+p).
; . : ; Consider next a case where each node constantly sends
An idle period at node O receiver begins when the cur-

rent burst ends and the next burst from the same source rflsjrStS to all other nodes, LK =N — 1. In this case the of-

another destination. On the other hand, the idle period en »% reg E) idf :%hir;%tﬂe(lilel—ags/n(?\rl@ ;)em?fhm;gaf o
when a new burst passing node 0 has node 0 as the destifa? © — -V - y '

tion. When the receiver is in the idle state new bursts arrive Vos(N) = N-1 or B— N-2
according to a Poisson process with intensifigs= pj - |, " 2N—-3’ ’ 2N-3’
wherep; = 1/a;. Thus, the total arrival rate is Thus, blocking probability increases from 0 to.B as the

number of nodedl goes from 2 to infinity.

o

K K
A=7>%Aj=u) pj=Hp, wherep= 75 pj, , .
=1 =1 =1 Round-Robin Transmissions
Assume that each node maintains one queue for each des-
tination. The previous model assumed that the destination of
Efidle] = 1 _ 1 each burst is randomly picked independently of others, i.e.
A each time a queue to be served next is picked randomly. An-

other alternative is to serve queues in round-robin fashion

The busy period consists of one or more consecutive bursiggy For simplicity let us consider the symmetric case with
originating from the same node and having the node 0 as thlg —aj = N — 1. One full period on each channel starts with a

destination. Next we will deduce the average length of th,angmission to node 0 and ends when the next burst to node
busy period of node 0 receiver. The mean length of channel  js apout to be sent (see. Fig. 2). As before, we assume that

and consequently,

busy period is I (1= py). Thus, burst lengths are independent and exponentially distributed
Pj 1 1 pj with parametep.. Hence, the busy period is clearly exponen-
Ebusyj =§ = ——— = —. : : L .
[busy 2 p u(l-p;) up 2 1-p tially distributed with parametgr,

E[busy =E[§=1/u

The idle time is harder to deduce. The system state consists
E[busy = B-Elidle], wheref = Z Pi (1)  of the states oN — 1 independent channels defined by the
]

which gives us,

1-pj destination of the bursts in progress. At the end of a busy
. , period a transmission has just ended on one channel, while
Let Yns den_ote eff|C|er_10y pf the_ unslotted protocol, i.e. theiha otherN — 2 channels can be in any phase. We make an
fraction of time a receiver is active. Eq. (1) yields assumption that the state of the other channels at the end of
E [busy] B 1 a busy period obeys the equilibrium distributiqn. This is not
Yns = Efbusy +Ejdlg  1+B 11p T (2)  exactly truet but serves as a good approximation.

- . . 1The fact that an active burst ends at a certain time gives some information
If all the offered traffic is SucceSfu”y received, the fraction of about the phases of the other channels. Thus, the end point of a burst does

time the receiver is active ¥gnax = p. Thus the fraction of not represent a random point of time.



Generally the time to the next arrival involves the determi-consider the respective embedded Markov chain and aggre-
nation of the residual times ®f — 2 random variables corre- gate the state space as follows. kgtj = 1,..., denote the
sponding to the times until the next burst to node 0 begins omumber of customers havingphases left to the end of ser-
the other channels. To be exact, one needs to find the miniice andxy the number of customers which already have left
mum of thoseN — 2 residual times and one full period, cor- the system. Thus, in each transition one customer moves from
responding to the channel in which the burst just ended. Lesomex; to xj_1 and initially we have,

X denote the length of one period,= S + ...+ Sy-1, and

— N
G(t) = P{X > t}. Then, XJ:.leaFJ and xg=0.
1=

o N-1 N-2 (i
G(t) :/ M N2 gy ght, 20 @
t( i=

N—2)! il Let s(x*) denote the mean number of steps to the first depar-
ture from statex* = (xo, X1, ) Due to the memoryless
Generally the tail distribution of the residual times is property it holds that
1 *° 0 if x>0
G (t):—~/ G(x) dx . - :
i EX] Ji s(x*) = 1+z%-s(x*—ej+l+ej), if xo=0, (6)

The tail probability function of the time to the next arrival, .

i.e. the probability that the idle time is greater thars, wheree; is a vector withjth component equal to 1 while the

N2 rest are zeroes. For example, far= 3 andx; = 1,
P{idle >t} = G(t) - (Gres(t))"

o0 N-2 _ 3 1
L5 G)- </t G(x) dx> , s({0,3,1}) =1+ 7 -s({1,2,1}) + 7 -s({0,4,0})

- EXN? 1/ 4 5
=1+0+> <1+—s({1,3,0})) ==,
which yields, 4 4 4
) CH Finally, the mean time to the first departure is simply,
Elidle] = / P{idle >t} dt
0

1
1 " " N-2 m(x) = —-s({0x}), wherex=(x1, X2, ...). (7)
- W/ G(t)- (/ G(x) dx) dt. (4) uN
0 t
X A similar derivation could be applied to the discrete time
For efficiencyynsr One obtains case where thgth customer’s service time consistsagfge-

ometrically distributed time intervals. However, the recursion
becomes more complex as more than one service period may
end at the same time.

N E[busy

Yosr ™ Elbusy + Eidie] ®)

Minimum of Gamma Distributions Recursive Algorithm for Idle Time

In the case of gamma distribution one can avoid the evalua- Next we return to the original problem of determining the
tion of the integrals in Eq. (4) by using the memoryless propimean idle time of receiver in case of round-robin transmission
erty of exponential distribution [6, 7]. Thus, we need to deter-policy. First, enumerate the states of each channel with num-
mine the mean value of the minimum Nfrandom variables bers 1...,N — 1, so that statg means that thgth burst in
Gj ~ Gammada,, ), wherej = 1,...,N, anda; are some in- the channel will have node 0 as the destination. For instance,
teger constants. In other words, determirjei®; G;]. Next  in stateN — 1 the channel is currently transmitting a burst to
we re-formulate the problem as a Markov process and thenode 0 and it takeN — 1 epochs until the next burst to node 0
describe a recursive solution for it. Consider a system wherstarts. At the start of the idle period the channel the transmis-
N customers are served concurrently andithecustomer’s  sion of which just ended is in stalé— 2 and the otheN — 2
service time consists & exponentially distributed phases. channels were assumed to obey the nodeary distribution, i.e.
The quantity we are interested in is the average time untieach of them is equally likely to be in any state.1,N — 1.
the first customer leaves the system. As long as no customer Similarly as in the previous section we use the aggregate
has left the system the instants of transitions from one phasstate space. Let; denote the number of channels being in
to another constitute a Poisson process with a constant irstate j, so that the vectork = (xl, X2, ... ,xN,l) de-
tensity of N - . Thus, it is sufficient to determine the mean scribes the essential information about the state of the sys-
number of transitions to the first departure. To this end waem. Consider next the othdr— 2 channels. The stationary
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Calculate the mean idle period using Eq. (7),

Elidle] = Z( p(X) - M(X+en_2).
Xe S:(X—U)AT7
Calculate the estimate for the efficiency using Eq. (5).

length distribution is

whereX is a geometrically distributed random variable with
parameteiq corresponding to the number of slots burst re-

distribution ofN — 2 channels in the aggregated state Spaceserves, antll is uniformly distributed random variable in the

denoted byX, is straightforward to obtain. As each channel nterval[0, 1] and corresponds to the residual time to the start
. . L of the next slot. Thus, an active burst ends during the next
was equally likely to be in any state.1.,N — 1, the situation

is equivalent to placingl — 2 balls (channels) t — 1 urns time slot with probabilityg and the mean number of slots in

o . . . a burst is
(states). Thus, this is a classical combinatorial setup and the

total number of states iX is simply||X|| = (3

From this point onwards the solution is straightforward and
is presented in Algorithm 1. Note that addiag » in step 3 ~ Whereq = 2/(2-E[S/+ 1). Once a burst ends at receiver the
takes into account the channel whose reception just endefi€xt possible burst can start in the next slot. Yebe the
The a|gorithm can bhe imp|emented efﬁcienﬂy using recur_number of idle slots in receivé’, = O, 1, 2, .... Assume that a

sive functions, where both the states and the respective propeception of a burst on channgknds. Then the probability
abilities are obtained at the same time. that no new burst starts during the following slot is

E[X] = E[burst length in slofs= 1/q,

1 q
1-=)n(1-2).
SLOTTED PROTOCOL VERSION ( aj) L:!( ai)

The previous model neglected the fact that in the OBS ringp lIv. lettindy denote the idle i it holds that
network, in addition to data bursts, also a certain number o enerally, letting’ denote the idle time, it holds tha

control frames circulate (see, e.g. [3, 4]). The control frames ) 1 q
are separated by a fixed time intervA[E, P{Y > 0| ch. j was the last = <1 gj) |;| <1 g) ,
1#]

_D+N-T P{Y > k+1]Y >k} = (1—3).

whereD is the total propagation delay around the ringghe ~ Hence,

number of nodes]y, the control frame processing time and P{Y = Kk/channelj was the last

H the total number of control frames. The receiving node is () henk — 0

acknowledged of arriving burst in the previous control frame — Bo i) 1 whenk =0,

so that bursts always arrive exaclly+ Ts time units after the (1* Bo ) B (1-B), whenk>0,

corresponding control frame, whéfgis the so-called switch-
ing delay reserved for the destination node to setup the recephere
tion. For our analysis it is sufficient to consider the control q -
: - : : B=(1-2) and B)=1-

frames, which arrive, as described above, at constant inter- |_| a 0
vals resulting a slotted model as illustrated in Fig. 3. '

Similarly as before, assunrandom order transmission Thus, the mean idle period[¥] is
policy and that during some considerably long time interval

nodej, j = 1,....K, hasaj dest_lnatlons of which one is node E[Y] = 1 ) Z (17 B(()J)) .P{channelj was the las}.
0 we are interested in. In particular, we assume that the burst 1-B &

aj—1
aj—(q
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In particular, 1— Bé” ~ B whena; > 1 and we get Especially foN >> 1 we haveaj = K > 1, and hence
B 1
Similarly as in the unslotted case we get for the efficiency thafind consequently the efficiency is
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Note that when determining the blocking probability we From Eq. (12) itis easy to see (the obvious fact) {hab) <
should consider only the slots and neglect the residual timé. and hence the slotted version is never better than the un-

U. Thus,slot efficiencys slotted one. Furthermore, for large values pd Icorrespond-
ing to very long burst sizes, we hayge) — 1/2, i.e. at the
V= EX] — 1/q . limit E [§ — o the efficiencies converge to the same point,
E[X]+E[Y] 1/q+E[Y] Ys(0) = Yns(0) = 1/2.

Symmetric Cases NUMERICAL EXAMPLES

For a large number of active sourdésvith a; ~ a - K, Vj, Asymmetric Trafflc _ .
the offered load i® = 1/a andp ~ e, Thus the mean idle For the numerical examples we consider first an asymmet-

period, given by Eq. (8), becomes ric traffic with two active channels. In Fig. 4 the blocking
probability B given by (3) is pIotted for three different sets.
E[Y] ~ 1 : On thex-axis is the offered load = —1 +% and on theg-axis
ea—1 is the blocking probability. Each curve represents a situation
and the blocking probabilit is consequently, a={ay,az}, where parametes, = x is varied, x = 2,3,.
while the parameten; is kept constantg; = 10,20,30 (from
B PY¥s 4 1 1/q top to bottom). In each case the curve is convex and has
p p 1/9+1/(ef9—-1)’ a unigue maximum point. Furthermore, the bigger the dif-

ference between the channel loads is, the lower the overall

hich i f. Eq.
which can be rewritten as (cf. Eq. (3)), blocking probability is. Hence, it is advantageous to have in-

q_ .
B A 1_% = z . Wherez — e 1. (10) homogenous traffic load.
Note also thar ~ p whenpq < 1, i.e. Symmetric He_avy Traffic )
Next we consider the symmetric cases where each node
B~ L7 whenpq < 1. (11)  sends constantly bursts to all other nodes,g.e- 1. In Fig.
1+p 5 the efficiency given by Eqgs. (2) and (9) is depicted as a
Hence, Egs. (3) and (10) are asymptotically equivalent. function of mean burst size fdd = 10 andN = «. The con-

For the symmetric heavy traffic load case each node send@nt lines represent the unslotted protocol versjag @nd
continuously bursts to all other nodes, Ke=aj = N—1 and the lower increasing curves the slotted versig). (In both
cases the upper curve corresponds to the Nasel 0.

qg \ N? From Fig. 5 it can be seen, as expected, that the slotted ver-
p=(1- N—1 sion is generally less efficient than the unslotted one. When



0.5
0. 65\ simulated results 2
0.4
0.6\
RO
~— 0.3
0.55 RRY_| e
0.5 — 0.2
3 4 5 6 7 8 9 10 0.1 02 04 06 08 1

Figure 6. Efficiency of unslotted MAC protocol with ran- Figure 7. Blocking probability given by Eq. (10) for/q =
dom order (upper curve) and round-robin (lower curve) trans2,4,16 (solid curves) and an upper bound (dashed curve)
mission policies as function of the number of notles given by Eq. (11) as a function of total offered lopd

the mean burst size is roughly 5 times the control frame in- Realistic Scenario
terarrival timeAT or more, the performance of the slotted  The final example is a realistic scenario where 1. The
version comes quite close to that of the unslotted one. By insimulation parameters were as follows:
creasing the mean burst size one can increase the efficiency, N — 10 nodes anéi — 30 control frames
arbitrarily close to that of the unslotted version. However, this o 4ata channel link speed of2Gbps,
also leads to an increase in burstification delay and thus can- § 1 rst sizes from 16kB to 112kB (1.8 EXp(H)),
not be made arbitrarily high. o . e T, = 13ps andTs = 1 s (processing/switching time)

In Fig. 6 the efficiency of the unslotted version is depicted
for random order (upper curve) and round-robin (lower curve)ConsequentiyAT = T, =~ 13 s, and the mean burst size was
transmissions as a function the number of ndde¥he ran-  about 16 AT, i.e. 16 time slots. In Fig. 7 the blocking prob-
dom order policy is clearly better when the number of nodesbility B given by Eq. (10) is plotted for three different mean
is moderate. In the limiN — o both versions will converge burst sizes. The mean burst size does not seem to affect much

to the same pointy=0.5. on the blocking probability. The three dots in the figure at
p = 0.2, 0.5 and 08 correspond to actual simulated results.
Simulated Results From Fig. 7 it can be seen that the respective curve matches

The symmetric heavy traffic scenario was also analyzed byell with the simulated results.
numerical simulations. For both the slotted and unslotted ver-
sion we considered the two transmission policies, i.e. randoYSTEM PARAMETERS
order and round-robin. The ring consistedMf= 10 nodes Feasible control interarrival timeAT, are bounded by the
and the mean burst length{§ was chosen to be 4 time slots. processing timdy,, i.e. AT > T,. Thus, the shorter the pro-
Thus, in the unslotted versign= 1/4, while in the slotted cessing time is, more control frames can be used and the bet-
versiong = 2/9. Consequently, the mean number of slots re+ter performance we can expect.
served by a single burst wasb4 Assuming that the mean burst size is moderate the slot-
The simulation results together with the respective analytited MAC protocol model describes the system approriately.
cal results are presented in Table 1. It can be noted that the anote that in the limitAT /E[S| — O one gets the unslotted
alytical formulae are accurate. Furthermore, the introductiomrotocol version. Based on the previous observations one can
of round-robin transmission policy does not seem to degradgnprove the standard MAC protocol without introducing any
the performance much in this case. new complex mechanisms for coordination of the transmis-
We also simulated another variant of the slotted protocokions between different nodes. The following modifications
version, where the receiver chooses the longest arriving bursiill not bring any dramatic improvement in the performance,
in case of concurrent arrivals. With this modification the effi- but nonetheless, they are inexpensive to implement.
ciency of the random order protocol improved frord@0 to
0.504, and for the round-robin version fromi@8 to 0492. Burstification

A typical burstification process sends a burst after a figne

Table 1. Simulation results wittN = 10 and HS = 4. from the arrival of the first packet, or when the queue length
scenario unslotted slotted grows above a certain limfy,es Whichever occurs first.
RO analytical %29 0488 It is clearly advantageous to have a long mean burst size,
RO  simulated ($31+0.002 Q490+0.003 which minimizes the effect from the burst lengths not being
RR  analytical (00 - integer multiples of the control frame interarrival times. How-

RR__simulated %14+ 0.002 0478+ 0.001 ever, long bursts lead to a longer burstification delay, which




means that packets also experience a longer transmission daeedels were derived for static traffic load conditions, where a
lay in the network. Thus, deciding on the burst length is acertain number of nodes are continuously sending bursts to a
compromise between the throughput and the mean transmigiven node as well as to some other destinations. During this
sion delay and one should choose the burstification proceggobal busy periodt was assumed that each node has con-
so that the mean burst length is the maximum for which thestantly bursts in queues ready to be sent. As a special case a
mean delay still stays under a certain limit given by the de-heavy traffic scenario was considered, where each node sends
sign criteria. From Fig. 5 one can see that a mean burst lengtbursts to all other nodes constantly. This heavy load scenario
of 5-AT or more gives a reasonable throughput. serves as a worst case performance scenario for comparing
Furthermore, it is beneficial to send bursts the lengths oflifferent MAC protocols and also gives an upper bound for
which are integer multiples of the control frame interarrival efficiency in case of uniform traffic load.
times AT, i.e. S= X-AT whereX = 1,2,.... However, in The analytical models and simulation results all showed
practice this is not possible unless the arriving packets arsimilar performance figures. With a low and moderate traf-
splitinto several bursts, which would require complex storingfic loads the performance figures predicted by the analytical
and packet reassembly capabilities in the receiver. models matched well with the simulated results. Furthermore,
We propose additional rules for burstification process sdn an extremely heavy load scenario the overall efficiency was
that the burst lengths become close to integer multiples off the order of 048— 0.53, corresponding to a blocking prob-
AT while not exceeding it. In particular, upon sending a burstability of 47—52%. In order to reach a higher efficiency (i.e. a
node adds as many packets to burst as possible without elewer blocking probability) one needs to consider some kind
ceeding the next multiple dT, or alternatively leaves some of global coordination of transmissions, e.g. as suggested in
packets out. With a uniform burst length distribution half of [3, 4].
the last slot capacity is wasted on average. Thus, the possible
improvement in efficiencys cannot be more thamalf a slot  ACKNOWLEDGEMENTS
time. In the previous example casé € 10 and ES| = 4) this The authors would like to thank professor Jorma Virtamo

corresponds to improvement fron¥@ to 053 in efficiency,  or his comments and valuable help during the work.
i.e. about 8% decrease in the blocking probability.
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