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Abstract
In this paper we analyse previously proposed MAC proto-
cols for optical ring networks under static traffic conditions.
The analytical models are developed for random order and
round-robin transmission policies in both slotted and unslot-
ted cases. The models predict the receiver efficiency, i.e. the
fraction of time each receiver is active. The models are also
verified by numerical simulations and some remarks are made
for improving the performance of the protocols.

INTRODUCTION
Optical ring network is a viable solution for metropolitan

area networks (MAN). In such a network optical bursts can be
used to transfer the data [1, 2]. Optical burst switching (OBS)
has been proposed both for regular (e.g. ring) networks as
well as general mesh networks. An optical burst consists of
several concatenated packets and can be seen as an interme-
diate step from the wavelength routed networks (i.e. circuit
switching) towards the optical packet switching. Generally in
OBS the source node first sends a control packet or frame to
inform the receiver (and possibly intermediate nodes) about
the upcoming burst. The burst is then sent after a certain off-
set time without waiting for any acknowledgment from the
receiver (or intermediate nodes). In this paper we will con-
sider OBS in a ring topology.

In [3, 4] Xu et al. have studied a cost effective single fi-
bre unidirectional OBS ring network, where each node has
a dedicated fixedhome wavelength channelfor transmitting
its bursts. In addition to data channels a shared control chan-
nel is used to inform the other nodes about the arriving bursts.
Thus, the number of wavelength channelsW is equal toN+1,
whereN is the number of nodes. Furthermore each node has
only one adjustable receiver. Consequently, no transmissions
collide in the fibre, but as each node can listen to at most one
channel at a time burst losses may occur at the receiver.

In [3, 4] several MAC protocols have been evaluated by
numerical simulations. In all cases a round-robin transmis-
sion policy is used, i.e. each node maintains one transmis-
sion queue for each destination node and those transmission
queues which have enough packets to form at least a mini-

mum size burst are served in round-robin fashion.
In this paper we study similar MAC protocols as proposed

in [3, 4] under static traffic conditions. In particular, we con-
sider both random order and round-robin transmission poli-
cies. When a node operates in random order policy the trans-
mission queue to be served next is chosen randomly among
the non-empty queues. In the analysis we consider an arbi-
trary receiver and derive formulae for the burst blocking prob-
ability and the so-called (receiver) efficiencyγ, i.e. the propor-
tion of the time the receiver is active. Note that in the ideal
case the blocking probability is zero and the efficiencyγ is
equal to the offered loadρ

A special attention is given to the performance under an
extremely heavy load where each source has always bursts to
be sent to allN−1 other destinations, i.e. the offered load is
ρ = 1. Although this symmetric heavy traffic scenario does
not hopefully exist, it gives us a lower bound on blocking
probability for each MAC protocol and allows us to compare
their worst case performance. Note that in an ideal case the
blocking probability is zero and each receiver is busy all the
time, leading to an average pairwise throughput of 1/(N−1)
times the capacity of one channel. However, it will be shown
that without any coordination between the nodes the actual
throughput will be considerably less, i.e. about a half of that.

The rest of the paper is organized as follows. In the next
two sections an analytical models are developed for a unslot-
ted protocol operating in both random order and round-robin
order transmission policies and for a slotted protocol with
random order transmission policy. Then we present some nu-
merical examples, which verify the derived analytical results.
In the fifth section some improvements to the protocols are
proposed, and the last section contains the conclusions.

UNSLOTTED PROTOCOL VERSION
First we consider an idealized protocol model, where trans-

missions of each node are independent of others. In particu-
lar, the nodes can transmit bursts at any point of time, i.e. the
system is unslotted [5]. Without a loss of generality, we can
consider the receiver at node 0. We assume a (quasi) static
scenario where, during a some reasonably long time inter-
val, there areK nodes sending bursts to node 0. Furthermore,
each nodej sends bursts toaj −1 other nodes, i.e.aj denotes
the number of destinations channelj source has. During this
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Figure 1. Unslotted protocol version illustrated.

global busy periodeach node sends bursts continuously to
all aj destinations inrandom order (RO) and consequently
there are no idle periods in the respective channels (see Fig.
1). Note that one or more destination can be virtual, i.e. such
bursts should be interpreted as real idle periods in the respec-
tive channel. Furthermore, the burst sizes are assumed to be
independent and exponentially distributed,S∼ Exp(µ).

An idle period at node 0 receiver begins when the cur-
rent burst ends and the next burst from the same source has
another destination. On the other hand, the idle period ends
when a new burst passing node 0 has node 0 as the destina-
tion. When the receiver is in the idle state new bursts arrive
according to a Poisson process with intensitiesλ j = ρ j · µ,
whereρ j = 1/aj . Thus, the total arrival rate is

λ =
K

∑
j=1

λ j = µ
K

∑
j=1

ρ j = µρ, whereρ =
K

∑
j=1

ρ j ,

and consequently,

E[idle] =
1
λ

=
1
µρ

.

The busy period consists of one or more consecutive bursts
originating from the same node and having the node 0 as the
destination. Next we will deduce the average length of the
busy period of node 0 receiver. The mean length of channelj
busy period is 1/(µ· (1−ρ j)). Thus,

E[busy] = ∑
j

ρ j

ρ
· 1
µ· (1−ρ j)

=
1
µρ

·∑
j

ρ j

1−ρ j
,

which gives us,

E[busy] = β ·E[idle] , whereβ = ∑
j

ρ j

1−ρ j
. (1)

Let γns denote efficiency of the unslotted protocol, i.e. the
fraction of time a receiver is active. Eq. (1) yields

γns =
E[busy]

E[busy]+E[idle]
=

β
1+ β

=
1

1+ β−1 . (2)

If all the offered traffic is succesfully received, the fraction of
time the receiver is active isγmax = ρ. Thus the fraction of

 1 N−1one epoch, X=S +...+ S

other destinationsdst=1

Figure 2. One epoch on each channel consists ofN−1 con-
secutive bursts.

the traffic transmitted succesfully is 1−B= γ
γmax

, and conse-
quently, the blocking probabilityB is

B = 1− 1
ρ
· β
1+ β

, where β = ∑
j

ρ j

1−ρ j
. (3)

Symmetric Cases
Consider first a case where eachaj is some constant, i.e.

ρ j = ρ/K. It is easy to see that the system asymptotically
converges to an M/M/1/1-system, limK→∞ B = ρ/(1+ ρ).

Consider next a case where each node constantly sends
bursts to all other nodes, i.e.K = N−1. In this case the of-
fered loadρ = 1 and the relationship betweenγ andB is sim-
ply B = 1− γ. Thusβ = (N−1)/(N−2) which yields,

γns(N) =
N−1
2N−3

, or, B =
N−2
2N−3

.

Thus, blocking probabilityB increases from 0 to 0.5 as the
number of nodesN goes from 2 to infinity.

Round-Robin Transmissions
Assume that each node maintains one queue for each des-

tination. The previous model assumed that the destination of
each burst is randomly picked independently of others, i.e.
each time a queue to be served next is picked randomly. An-
other alternative is to serve queues in round-robin fashion
(RR). For simplicity let us consider the symmetric case with
K = aj = N−1. One full period on each channel starts with a
transmission to node 0 and ends when the next burst to node
0 is about to be sent (see. Fig. 2). As before, we assume that
burst lengths are independent and exponentially distributed
with parameterµ. Hence, the busy period is clearly exponen-
tially distributed with parameterµ,

E[busy] = E[S] = 1/µ.

The idle time is harder to deduce. The system state consists
of the states ofN− 1 independent channels defined by the
destination of the bursts in progress. At the end of a busy
period a transmission has just ended on one channel, while
the otherN− 2 channels can be in any phase. We make an
assumption that the state of the other channels at the end of
a busy period obeys the equilibrium distribution. This is not
exactly true,1 but serves as a good approximation.

1The fact that an active burst ends at a certain time gives some information
about the phases of the other channels. Thus, the end point of a burst does
not represent a random point of time.



Generally the time to the next arrival involves the determi-
nation of the residual times ofN−2 random variables corre-
sponding to the times until the next burst to node 0 begins on
the other channels. To be exact, one needs to find the mini-
mum of thoseN−2 residual times and one full period, cor-
responding to the channel in which the burst just ended. Let
X denote the length of one period,X = S1 + . . .+ SN−1, and
G(t) = P{X > t}. Then,

G(t) =
Z ∞

t

µN−1

(N−2)!
·xN−2 ·e−µx dx= e−µt ·

N−2

∑
i=0

(µt)i

i!
.

Generally the tail distribution of the residual times is

Gres(t) =
1

E[X]
·
Z ∞

t
G(x) dx.

The tail probability function of the time to the next arrival,
i.e. the probability that the idle time is greater thant, is,

P{idle > t} = G(t) · (Gres(t))N−2

=
1

E[X]N−2 ·G(t) ·
(Z ∞

t
G(x) dx

)N−2

,

which yields,

E[idle] =
Z ∞

0
P{idle > t} dt

=
1

E[X]N−2

Z ∞

0
G(t) ·

(Z ∞

t
G(x) dx

)N−2

dt. (4)

For efficiencyγns,rr one obtains

γns,rr ≈ E[busy]
E[busy]+E[idle]

. (5)

Minimum of Gamma Distributions
In the case of gamma distribution one can avoid the evalua-

tion of the integrals in Eq. (4) by using the memoryless prop-
erty of exponential distribution [6, 7]. Thus, we need to deter-
mine the mean value of the minimum ofN random variables
Gj ∼ Gamma(aj ,µ), where j = 1, . . . ,N, andaj are some in-
teger constants. In other words, determine E[minj Gj ]. Next
we re-formulate the problem as a Markov process and then
describe a recursive solution for it. Consider a system where
N customers are served concurrently and theith customer’s
service time consists ofai exponentially distributed phases.
The quantity we are interested in is the average time until
the first customer leaves the system. As long as no customer
has left the system the instants of transitions from one phase
to another constitute a Poisson process with a constant in-
tensity ofN ·µ. Thus, it is sufficient to determine the mean
number of transitions to the first departure. To this end we

consider the respective embedded Markov chain and aggre-
gate the state space as follows. Letxj , j = 1, . . ., denote the
number of customers havingj phases left to the end of ser-
vice andx0 the number of customers which already have left
the system. Thus, in each transition one customer moves from
somexj to xj−1 and initially we have,

xj =
N

∑
i=1

1ai= j and x0 = 0.

Let s(x∗) denote the mean number of steps to the first depar-
ture from statex∗ =

(
x0, x1, . . .

)
. Due to the memoryless

property it holds that

s(x∗) =




0, if x0 > 0,

1+∑
j

xj

N
·s(x∗ −ej+1+ej), if x0 = 0, (6)

whereej is a vector withjth component equal to 1 while the
rest are zeroes. For example, forx1 = 3 andx2 = 1,

s({0,3,1}) = 1+
3
4
·s({1,2,1})+

1
4
·s({0,4,0})

= 1+0+
1
4

(
1+

4
4

s({1,3,0})
)

=
5
4
.

Finally, the mean time to the first departure is simply,

m(x) =
1

µN
·s({0 x}), wherex =

(
x1, x2, . . .

)
. (7)

A similar derivation could be applied to the discrete time
case where thejth customer’s service time consists ofaj ge-
ometrically distributed time intervals. However, the recursion
becomes more complex as more than one service period may
end at the same time.

Recursive Algorithm for Idle Time
Next we return to the original problem of determining the

mean idle time of receiver in case of round-robin transmission
policy. First, enumerate the states of each channel with num-
bers 1, . . . ,N− 1, so that statej means that thejth burst in
the channel will have node 0 as the destination. For instance,
in stateN−1 the channel is currently transmitting a burst to
node 0 and it takesN−1 epochs until the next burst to node 0
starts. At the start of the idle period the channel the transmis-
sion of which just ended is in stateN−2 and the otherN−2
channels were assumed to obey the nodeary distribution, i.e.
each of them is equally likely to be in any state 1, . . . ,N−1.

Similarly as in the previous section we use the aggregate
state space. Letxj denote the number of channels being in
state j, so that the vectorx =

(
x1, x2, . . . ,xN−1

)
de-

scribes the essential information about the state of the sys-
tem. Consider next the otherN−2 channels. The stationary



Algorithm 1 Unslotted protocol with round-robin policy
Let X denote the state space ofN−2 channels,

X = {(x1, . . . ,xN−1
)

: xj ≥ 0 and∑
j

xj = N−2}.

Let p(x) denote the probability of the statex ∈ X ,

p(x) =
1

(N−1)N−2 ∏
i

(
N−∑i−1

j=1 xj

xi

)
.

Calculate the mean idle period using Eq. (7),

E[idle] = ∑
x∈X

p(x) ·m(x+eN−2).

Calculate the estimate for the efficiency using Eq. (5).

distribution ofN−2 channels in the aggregated state space,
denoted byX , is straightforward to obtain. As each channel
was equally likely to be in any state 1, . . . ,N−1, the situation
is equivalent to placingN−2 balls (channels) toN−1 urns
(states). Thus, this is a classical combinatorial setup and the
total number of states inX is simply||X || = (2N−4

N−2

)
.

From this point onwards the solution is straightforward and
is presented in Algorithm 1. Note that addingeN−2 in step 3
takes into account the channel whose reception just ended.
The algorithm can be implemented efficiently using recur-
sive functions, where both the states and the respective prob-
abilities are obtained at the same time.

SLOTTED PROTOCOL VERSION
The previous model neglected the fact that in the OBS ring

network, in addition to data bursts, also a certain number of
control frames circulate (see, e.g. [3, 4]). The control frames
are separated by a fixed time intervals∆T,

∆T =
D+N ·Tµ

H
,

whereD is the total propagation delay around the ring,N the
number of nodes,Tµ the control frame processing time and
H the total number of control frames. The receiving node is
acknowledged of arriving burst in the previous control frame
so that bursts always arrive exactlyTµ+Ts time units after the
corresponding control frame, whereTs is the so-called switch-
ing delay reserved for the destination node to setup the recep-
tion. For our analysis it is sufficient to consider the control
frames, which arrive, as described above, at constant inter-
vals resulting a slotted model as illustrated in Fig. 3.

Similarly as before, assumerandom order transmission
policy and that during some considerably long time interval
node j, j = 1, . . . ,K, hasaj destinations of which one is node
0 we are interested in. In particular, we assume that the burst

idle time for
receiver 1

2

2

2

23

4

4

3

433

3

4

1

1

1

1

1

Figure 3. Slotted version of MAC protocol illustrated.

length distribution is

S= (X−U) ·∆T,

whereX is a geometrically distributed random variable with
parameterq corresponding to the number of slots burst re-
serves, andU is uniformly distributed random variable in the
interval[0,1] and corresponds to the residual time to the start
of the next slot. Thus, an active burst ends during the next
time slot with probabilityq and the mean number of slots in
a burst is

E[X] = E[burst length in slots] = 1/q,

whereq = 2/(2 ·E[S]+1). Once a burst ends at receiver the
next possible burst can start in the next slot. LetY be the
number of idle slots in receive,Y = 0,1,2, . . .. Assume that a
reception of a burst on channelj ends. Then the probability
that no new burst starts during the following slot is(

1− 1
aj

)
·∏

i 6= j

(
1− q

ai

)
.

Generally, lettingY denote the idle time, it holds that

P{Y > 0| ch. j was the last} =
(

1− 1
aj

)
·∏

i 6= j

(
1− q

ai

)
,

P{Y ≥ k+1|Y ≥ k} = ∏
i

(
1− q

ai

)
.

Hence,

P{Y = k|channelj was the last}

=

{
β( j)

0 , whenk = 0,(
1−β( j)

0

)
·βk−1 · (1−β), whenk > 0,

where

β = ∏
i

(
1− q

ai

)
and β( j)

0 = 1− aj −1
aj −q

·β.

Thus, the mean idle period E[Y] is

E[Y] =
1

1−β
·

K

∑
j=1

(
1−β( j)

0

)
·P{channelj was the last}.
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In particular, 1−β( j)
0 ≈ β whenaj � 1 and we get

E[Y] ≈ β
1−β

. (8)

Similarly as in the unslotted case we get for the efficiency that

γs =
E[S]

E[X]+E[Y]
=

1/q−1/2
1/q+E[Y]

. (9)

Note that when determining the blocking probability we
should consider only the slots and neglect the residual time
U . Thus,slot efficiencyis

γ∗s =
E[X]

E[X]+E[Y]
=

1/q
1/q+E[Y]

.

Symmetric Cases
For a large number of active sourcesK with aj ≈ α ·K, ∀ j,

the offered load isρ = 1/α andβ ≈ e−ρq. Thus the mean idle
period, given by Eq. (8), becomes

E[Y] ≈ 1
eρq−1

,

and the blocking probabilityB is consequently,

B≈ ρ− γ∗s
ρ

= 1− 1
ρ
· 1/q
1/q+1/(eρq−1)

,

which can be rewritten as (cf. Eq. (3)),

B≈ 1− 1
ρ
· z
1+z

, wherez=
eρq−1

q
. (10)

Note also thatz≈ ρ whenρq� 1, i.e.

B≈ ρ
1+ ρ

, whenρq� 1. (11)

Hence, Eqs. (3) and (10) are asymptotically equivalent.
For the symmetric heavy traffic load case each node sends

continuously bursts to all other nodes, i.e.K = aj = N−1 and

β =
(

1− q
N−1

)
.
N−1
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Figure 5. Efficiency of the unslotted (ns) and slotted (s) pro-
tocols forN = 10 andN = ∞ as a function of E[S].

Especially forN � 1 we haveaj = K � 1, and hence

E[Y] ≈ 1
eq−1

,

and consequently the efficiency is

γs(∞) =
E[S]

E[X]+E[Y]
=

1/q−1/2
1/q+1/(eq−1)

. (12)

From Eq. (12) it is easy to see (the obvious fact) thatγs(∞) ≤
1
2, and hence the slotted version is never better than the un-
slotted one. Furthermore, for large values of 1/q, correspond-
ing to very long burst sizes, we haveγs(∞) → 1/2, i.e. at the
limit E [S] → ∞ the efficiencies converge to the same point,
γs(∞) = γns(∞) = 1/2.

NUMERICAL EXAMPLES
Asymmetric Traffic

For the numerical examples we consider first an asymmet-
ric traffic with two active channels. In Fig. 4 the blocking
probabilityB given by (3) is plotted for three different sets.
On thex-axis is the offered loadρ = 1

a1
+ 1

a2
and on they-axis

is the blocking probability. Each curve represents a situation
a = {a1,a2}, where parametera2 = x is varied,x = 2,3, . . .,
while the parametera1 is kept constant,a1 = 10,20,30 (from
top to bottom). In each case the curve is convex and has
a unique maximum point. Furthermore, the bigger the dif-
ference between the channel loads is, the lower the overall
blocking probability is. Hence, it is advantageous to have in-
homogenous traffic load.

Symmetric Heavy Traffic
Next we consider the symmetric cases where each node

sends constantly bursts to all other nodes, i.e.ρ = 1. In Fig.
5 the efficiency given by Eqs. (2) and (9) is depicted as a
function of mean burst size forN = 10 andN = ∞. The con-
stant lines represent the unslotted protocol version (γns) and
the lower increasing curves the slotted version (γs). In both
cases the upper curve corresponds to the caseN = 10.

From Fig. 5 it can be seen, as expected, that the slotted ver-
sion is generally less efficient than the unslotted one. When
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dom order (upper curve) and round-robin (lower curve) trans-
mission policies as function of the number of nodesN.

the mean burst size is roughly 5 times the control frame in-
terarrival time∆T or more, the performance of the slotted
version comes quite close to that of the unslotted one. By in-
creasing the mean burst size one can increase the efficiency
arbitrarily close to that of the unslotted version. However, this
also leads to an increase in burstification delay and thus can-
not be made arbitrarily high.

In Fig. 6 the efficiency of the unslotted version is depicted
for random order (upper curve) and round-robin (lower curve)
transmissions as a function the number of nodesN. The ran-
dom order policy is clearly better when the number of nodes
is moderate. In the limitN → ∞ both versions will converge
to the same point,γ = 0.5.

Simulated Results
The symmetric heavy traffic scenario was also analyzed by

numerical simulations. For both the slotted and unslotted ver-
sion we considered the two transmission policies, i.e. random
order and round-robin. The ring consisted ofN = 10 nodes
and the mean burst length E[S] was chosen to be 4 time slots.
Thus, in the unslotted versionµ = 1/4, while in the slotted
versionq = 2/9. Consequently, the mean number of slots re-
served by a single burst was 4.5.

The simulation results together with the respective analyti-
cal results are presented in Table 1. It can be noted that the an-
alytical formulae are accurate. Furthermore, the introduction
of round-robin transmission policy does not seem to degrade
the performance much in this case.

We also simulated another variant of the slotted protocol
version, where the receiver chooses the longest arriving burst
in case of concurrent arrivals. With this modification the effi-
ciency of the random order protocol improved from 0.490 to
0.504, and for the round-robin version from 0.478 to 0.492.

Table 1. Simulation results withN = 10 and E[S] = 4.
scenario unslotted slotted

RO analytical 0.529 0.488
RO simulated 0.531±0.002 0.490±0.003
RR analytical 0.500 −
RR simulated 0.514±0.002 0.478±0.001
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simulated results

Figure 7. Blocking probability given by Eq. (10) for 1/q =
2,4,16 (solid curves) and an upper bound (dashed curve)
given by Eq. (11) as a function of total offered loadρ.

Realistic Scenario
The final example is a realistic scenario whereρ < 1. The

simulation parameters were as follows:

• N = 10 nodes andH = 30 control frames
• data channel link speed of 2.5 Gbps,
• burst sizes from 16kB to 112kB (i.e.S� Exp(µ)),
• Tµ = 13µs andTs = 1 µs (processing/switching time)

Consequently,∆T = Tµ ≈ 13µs, and the mean burst size was
about 16·∆T, i.e. 16 time slots. In Fig. 7 the blocking prob-
ability B given by Eq. (10) is plotted for three different mean
burst sizes. The mean burst size does not seem to affect much
on the blocking probability. The three dots in the figure at
ρ = 0.2, 0.5 and 0.8 correspond to actual simulated results.
From Fig. 7 it can be seen that the respective curve matches
well with the simulated results.

SYSTEM PARAMETERS
Feasible control interarrival times,∆T, are bounded by the

processing timeTµ, i.e. ∆T > Tµ. Thus, the shorter the pro-
cessing time is, more control frames can be used and the bet-
ter performance we can expect.

Assuming that the mean burst size is moderate the slot-
ted MAC protocol model describes the system approriately.
Note that in the limit∆T/E[S] → 0 one gets the unslotted
protocol version. Based on the previous observations one can
improve the standard MAC protocol without introducing any
new complex mechanisms for coordination of the transmis-
sions between different nodes. The following modifications
will not bring any dramatic improvement in the performance,
but nonetheless, they are inexpensive to implement.

Burstification
A typical burstification process sends a burst after a timeTb

from the arrival of the first packet, or when the queue length
grows above a certain limitSthres, whichever occurs first.

It is clearly advantageous to have a long mean burst size,
which minimizes the effect from the burst lengths not being
integer multiples of the control frame interarrival times. How-
ever, long bursts lead to a longer burstification delay, which



means that packets also experience a longer transmission de-
lay in the network. Thus, deciding on the burst length is a
compromise between the throughput and the mean transmis-
sion delay and one should choose the burstification process
so that the mean burst length is the maximum for which the
mean delay still stays under a certain limit given by the de-
sign criteria. From Fig. 5 one can see that a mean burst length
of 5 ·∆T or more gives a reasonable throughput.

Furthermore, it is beneficial to send bursts the lengths of
which are integer multiples of the control frame interarrival
times ∆T, i.e. S= X · ∆T whereX = 1,2, . . .. However, in
practice this is not possible unless the arriving packets are
split into several bursts, which would require complex storing
and packet reassembly capabilities in the receiver.

We propose additional rules for burstification process so
that the burst lengths become close to integer multiples of
∆T while not exceeding it. In particular, upon sending a burst
node adds as many packets to burst as possible without ex-
ceeding the next multiple of∆T, or alternatively leaves some
packets out. With a uniform burst length distribution half of
the last slot capacity is wasted on average. Thus, the possible
improvement in efficiencyγs cannot be more thanhalf a slot
time. In the previous example case (N = 10 and E[S] = 4) this
corresponds to improvement from 0.49 to 0.53 in efficiency,
i.e. about 8% decrease in the blocking probability.

Transmission Policy
Under a heavy load the round-robin policy decreases the

system performance. However, under a normal traffic load it
guarantees a close to constant transmission delay, which is
generally beneficial for example to TCP flows. Thus, an ideal
solution would dynamically switch from round-robin policy
to random policy when the system load increases. The local
queue lengths or burst blocking probability could be used to
decide on the current traffic conditions.

Contention at Receiver
When contention occurs at the receiver the proposed pro-

tocols choose randomly one of the bursts. We propose that
the receiver, instead of choosing a random burst, chooses the
longest one. The benefit from this is obvious. In the example
case (N = 10 and E[S] = 4) this modification improves the
efficiency from 0.49 to 0.50.

CONCLUSIONS
In this paper we have derived analytical formulae for

blocking probability and so-called efficiency in an optical
burst switching ring network operating under two different
MAC protocols. By efficiency we mean the proportion of
time a given receiver is active, which is clearly related to
the throughput from the receiver point of view. The analytical

models were derived for static traffic load conditions, where a
certain number of nodes are continuously sending bursts to a
given node as well as to some other destinations. During this
global busy periodit was assumed that each node has con-
stantly bursts in queues ready to be sent. As a special case a
heavy traffic scenario was considered, where each node sends
bursts to all other nodes constantly. This heavy load scenario
serves as a worst case performance scenario for comparing
different MAC protocols and also gives an upper bound for
efficiency in case of uniform traffic load.

The analytical models and simulation results all showed
similar performance figures. With a low and moderate traf-
fic loads the performance figures predicted by the analytical
models matched well with the simulated results. Furthermore,
in an extremely heavy load scenario the overall efficiency was
of the order of 0.48−0.53, corresponding to a blocking prob-
ability of 47−52%. In order to reach a higher efficiency (i.e. a
lower blocking probability) one needs to consider some kind
of global coordination of transmissions, e.g. as suggested in
[3, 4].

ACKNOWLEDGEMENTS
The authors would like to thank professor Jorma Virtamo

for his comments and valuable help during the work.

REFERENCES
[1] C. Qiao and M. Yoo. 1999. “Optical burst switching

(OBS) - a new paradigm for an optical internet.”Journal
of High Speed Networks (JHSN). Vol. 8, No. 1:69–84.

[2] T. Battestilli and H. Perros. 2003. “An Introduction to Op-
tical Burst Switching.”IEEE Optical Communications.
August:S10–S15.

[3] L. Xu, H. G. Perros, and G. N. Rouskas. 2002. “A simula-
tion study of protocols for optical burst-switched rings.”
In Proceedings of Networking 2002(Pisa, Italy, May 19-
24). Springer, 863–874.

[4] L. Xu, H. G. Perros, and G. N. Rouskas. 2003. “A simula-
tion study of optical burst switching and access protocols
for WDM ring networks.”Comput. Networks. Vol. 41,
No. 2:143–160.

[5] D. Bertsekas and R. Gallager. 1992.Data Networks.
Prentice-Hall. 2nd ed.

[6] D. Gross and C. M. Harris. 1998.Fundamentals of
Queueing Theory. John Wiley & Sons. 3rd ed.

[7] S. M. Ross. 2000.Introduction to Probability Models.
Academic Press. 7th ed.


