
Optimizing the Degree Distribution of LT Codes
with an Importance Sampling Approach

Esa Hyytiä†
Centre for Quantifiable Quality of

Service in Communication Systems,
Norwegian University of Science and Technology,

Trondheim, Norway

Tuomas Tirronen‡
Networking Laboratory

Helsinki University of Technology
Finland

Jorma Virtamo‡
Networking Laboratory

Helsinki University of Technology
Finland

Abstract— Fountain coding principle introduced by Byers et al.
in 1998 describes an efficient way to transfer information over
erasure channels. In this paper, we focus on a particular class of
fountain codes, the LT codes. The key component of LT codes is
the so-called degree distribution used in the encoding procedure.
The degree distribution is the sole component responsible for the
efficiency of the LT codes. In general, the optimization of the
degree distribution is not a trivial problem. This paper describes
an algorithm for iterative optimization of parameterized degree
distributions for LT codes. In particular, we use methods utilized
in importance sampling theory to construct an objective func-
tion which eventually is optimized with non-linear optimization
methods. The proposed method is studied for message lengths of
a couple of hundred blocks and less. We present some examples
of degree distributions optimized with the proposed algorithm
with comparisons to the performance of previously proposed
distributions.

I. INTRODUCTION

Digital fountain coding is a relatively new concept for digi-
tal content distribution introduced in 1998 [1] and is based on
rateless error correcting codes for erasure channels. The name
originates from an analogy to a fountain spraying water drops,
which then are collected into a bucket. This translates into
servers spraying random pieces of data, e.g. packets, which
receivers then collect. When a sufficient number of packets is
collected the file can be decoded. With good fountain codes
the total size of the packets needed for decoding (on average)
is close to the original size of the file, although some overhead
is necessary due to the nature of these codes. An important
characteristic of a digital fountain is that it is irrelevant which
particular packets are received. As soon as a certain amount
of the packets are received the message can be decoded (with
high probability).

It should be noted that codes enabling such fountain coding
scenario have already existed for some time, namely the Reed-
Solomon codes [2] and LDPC [3] codes to some extent. The
key benefit of recently discovered codes is the efficiency:
with good fountain codes the computational complexity of the

†
“Centre for Quantifiable Quality of Service in Communication Systems,

Centre of Excellence” appointed by The Research Council of Norway, funded
by the Research Council, NTNU and UNINETT. http://www.ntnu.no/Q2S/
‡

This work was partially funded by the Finnish Funding Agency for
Technology and Innovation (projects PAN-NET and ABI).

encoding and decoding processes is low for even long message
lengths n.

The Reed-Solomon codes can be used as very efficient
fountain codes when the message length n is small, requiring
no overhead packets at all. The original data is divided into
n blocks and encoded into n + k symbol blocks, which are
then distributed. It is sufficient to collect any n encoded
blocks to retrieve the original data. The downside is that
for large n the Reed-Solomon codes are impractical due to
computational complexity. However, the optimization of other
fountain coding methods is still an interesting task for which
we give some insight in this paper.

In particular, our contribution in this paper is an algorithm
for iterative optimization of the degree distribution used in
LT codes by using an approach based on importance sam-
pling. We define two different objectives for the optimization.
Minimizing the mean number of packets needed for decoding
is perhaps the more natural goal but we also discuss the
maximization of the probability of successful decoding in
exactly n steps.

Samples of coding and decoding processes are generated
by simulation using some degree distribution. The samples are
then used to estimate the expectation of the objective function
that would result if another degree distribution had been used
by weighing the samples appropriately. This weighting is
accomplished by calculating the likelihood ratios in similar
fashion as in general importance sampling methods. Having an
estimate for the objective function as a function of the degree
distribution is the cornerstone for our optimization algorithm.

The results produced with the algorithm are approximative
but still turn out to show good performance when compared,
e.g., to previously published soliton distributions [4] in the
range of message lengths of couple of hundred packets and
less. A completely different study of the coding process based
on an analytical combinatorial approach is presented in [5].
However, this method is viable only for very small message
lengths n, while the method presented in this paper is suitable
for optimization of degree distribution for larger values of n.

The proposed method works directly for small message
lengths n. For larger n parameterized degree distributions
are used to obtain reasonable results and running times. The
use of parameterized distributions, however, turns out to be a



Algorithm 1 A general LT encoding algorithm
1: repeat
2: choose a degree d from degree distribution ρ(d).
3: choose uniformly at random d blocks m(i1), . . . ,m(id).
4: send m(i1)⊕m(i2)⊕ · · · ⊕m(id).
5: until enough output symbols are sent.

reasonable method. Note that the previously proposed, well-
working degree distributions called soliton distributions are
also parameterized.

The rest of the paper is organized as follows. In Section I
we give a brief introduction to LT codes, degree distributions
and the notation used in this paper. Section II compactly
reviews the principles of importance sampling and defines the
algorithm which we use to optimize the degree distribution. In
Section III we give numerical examples and results obtained
using the proposed algorithm. Section IV concludes the paper.

A. LT codes

LT codes were published by Michael Luby in 2002 [4].
These codes are rateless, meaning that the rate does not need
to be fixed beforehand, and encoding symbols can be generated
on the fly [6], [7]. LT codes are also the first class of codes
fully realizing the digital fountain concept presented in [1].

1) Encoding of LT code: The encoding process is extremely
simple. The key parameter for encoding is the so-called degree
distribution:

Definition 1 (Degree distribution): The degree distribution
ρ(i) of LT code is a probability distribution defining the
number of blocks combined in a packet.

The degree distribution is sampled to obtain the degree d
for the next output packet. The output packet is generated by
choosing d blocks from the original file uniformly at random
and calculating the sum of these blocks in GF(2) arithmetic,
i.e., by applying bitwise XOR operation. Algorithm 1 shows
the encoding algorithm for the LT code [4]. Stopping condition
for the encoding algorithm can be specified, e.g., by agreeing
on the number of packets beforehand, or the recipient(s) can
send an acknowledgement when enough packets have been
received. Note that it does not matter what the block (symbol)
length is. One input block could be just one bit or a larger
chunk, the encoding and decoding processes are the same
regardless. XOR operations are always done bitwise between
the whole blocks.

2) Decoding of LT codes: Decoding is done iteratively by
using information of which source blocks are added together
in a received packet. This information needs to be included
somehow in the encoding procedure; different implementation
alternatives are available but are not discussed here. First
the decoder removes the possible known blocks from each
received packet by taking a XOR between the packet and the
known block(s). If the degree of the packet is higher than 1
(after the removal of the known blocks) it consists of more
than one original blocks and it is stored in the buffer. If
a degree-1 packet has been recovered, it is identical to an

Algorithm 2 A general LT decoding algorithm
1: repeat
2: while no degree-1 packets in buffer B do
3: B ← received packet − known blocks.
4: end while
5: m(j)← degree-1 packet from B. {j discovered}
6: for all c ∈ B : c includes m(j) do
7: c← c⊕m(j)
8: end for
9: until original message is recovered.

original block, i.e., one new block has been discovered. Next
the newly discovered block is removed from the other buffered
packets including it. If this step reveals new degree-1 packets,
the decoding continues iteratively until the original message
is fully decoded. Otherwise the decoder moves to wait for
a next packet. The decoding process is sketched in listing
Algorithm 2.

Note that the decoding process is suboptimal in the sense
that not all the information in the received packets is used. For
example, if message consists of n = 3 blocks, the recipient
could decode the original message if he had three different
packets which each consists of two symbols. This, however,
would make the decoding algorithm computationally more
demanding, as this method equates to solving a linear system
of equations, which is a laborious operation in general case
for large message lengths.

B. Notation

As mentioned already, the number of blocks in the message
is denoted by n, i.e., n is the number of input symbols (or
blocks) in the message. The degree distribution is denoted by
ρ(d). When convenient, we also refer to the point probabilities
by pj , i.e., pj = ρ(j).

C. Degree distributions

Later in this paper we will consider several degree distribu-
tions and make some comparisons of their performance against
the optimized distributions obtained by the IS approach. The
reference distributions are the following:

Definition 2 (Uniform distribution):

pi = 1/n ∀ i = 1, . . . , n.

Definition 3 (Degree-1 distribution):

p1 = 1, and pi = 0 ∀ i = 2, . . . , n.

The degree-1 distribution is sometimes referred to as all-at-
once distribution in the literature.

Definition 4 (Soliton distribution):

p1 = 1/n,

pi =
1

i(i− 1)
, for i = 2, 3, . . . , n.

This is sometimes also referred to as the ideal soliton dis-
tribution [6]. This is the distribution which yields optimal



performance in expectation. However, it is not practical to use
the soliton distribution in the LT coding process. Its improved
counterpart, the so-called robust soliton distribution has two
additional parameters and is defined as follows:

Definition 5 (Robust soliton distribution [6]): First, define

S = c ln(n/δ)
√

n,

where c and δ are the extra parameters. Then, define

τi =





S
i·n , for i = 1, 2, . . . , (n/S)− 1,

n
S ln(S/δ), for i = (n/S),

0, otherwise.

Then, the robust soliton distribution is obtained by a linear
combination of the (ideal) soliton distribution and τi,

pi =
p∗i + τi

C
,

where p∗i corresponds to ideal soliton distribution (Def. 4)
and C is the normalization constant. Further discussion and
reasoning for this distribution can be found in the references.

II. IMPORTANCE SAMPLING APPROACH

Importance sampling (IS) belongs to the family of Monte
Carlo methods, which are simulation methods used to either
generate samples from a (usually complicated) probability dis-
tribution or to efficiently estimate the expectations of functions
of a random variable X. IS is used for the latter task as
a variance reduction technique to decrease the number of
samples needed for a successful estimation of the desired
expectation as is explained in [8, Chapter 4]. However, this
property is not interesting in our scenario. What we want to
borrow from the IS theory is the general concept of importance
sampling: samples generated with one probability distribution
can be used to estimate some expectation with a different
probability distribution. It should be noted, however, that the
use of a distribution completely different from the original one
results in a poor estimate, i.e., the used distribution should have
some resemblance to the original distribution.

Let us consider the situation where we want to calculate
the expectation of a function h(X) of the random variable X,
with probability density function p(x):

E[h(X)] =
∫

h(x)p(x) dx. (1)

By drawing samples {X(i)}mi=1 from p(x), we could calculate
an estimate for the expectation:

ĥ =
1
m

m∑

i=1

h(X(i)). (2)

In IS, p(x) is replaced by another probability distribution
g(x). Let the random variable obeying this distribution be X̃.
We can write (1) equally as

E[h(X)] =
∫

h(x)
p(x)
g(x)

g(x) dx. (3)

This shows that we can generate samples {X̃(i)}mi=1 from g(x)
and use these to calculate the estimate (2)

ĥ =
1
m

m∑

i=1

w(X̃(i))h(X̃(i)), (4)

where w(X̃(i)) denotes the importance ratio (also likelihood
ratio in some references)

w(x) =
p(x)
g(x)

, (5)

where we assume that g(x) > 0 ∀ x : p(x)h(x) 6= 0. The
variance of estimate (4) can be lower than that of in (2) with
an appropriate choice of the sampling function g(x).

The concept of importance ratio and the general idea behind
imporance sampling is exploited in the following sections to
generate an optimization strategy.

A. Objectives of Optimization

Let random variable T denote the number of received
packets required to decode a message. The natural goal in
optimizing the degree distribution of LT code is to make the
mean number of overhead packets,

overhead =
E [T ]− n

n
, (6)

needed as small as possible. On the other hand, in some
scenarios we might also be interested in the probability for
decoding in exactly n sent packets. This reasoning leads to two
mutually exclusive optimization goals pursued in this work.

Definition 6 (MinAvg, MaxPr): Optimization objectives:
1) Objective MinAvg corresponds to finding a degree distri-

bution which minimizes the average number of packets
E [T ] needed for a successful decoding.

2) Objective MaxPr corresponds to finding a degree distri-
bution which maximizes the probability of decoding a
message with exactly n sent packets, P {T = n}.

The second objective above can also be generalized to consider
the probability of decoding with n + k packets, where k > 0.

B. Simulation of the LT process

As already mentioned, our goal is to optimize a given quan-
tity by choosing the degree distribution ρ(d) appropriately. Let
random variable R denote the outcome of a single transmission
of a message. With MinAvg the objective was to minimize the
mean number of packets needed for a successful decoding
a message. Thus, in this case R corresponds to the number
of packets required to decode the message, R = T , and the
objective can be written as

MinAvg: min E [R] .

Similarly, when the objective is MaxPr, i.e., the maximization
of the decoding probability after receiving n packets, we can
assign random variable R value 1 if the decoding is succesful
after receiving n packets, and 0 otherwise, i.e., R = 1(T = n).
Then the objective can be written as

MaxPr: max E [R] .



In particular, we use m simulated samples Sk, k = 1, . . . , m,
of the LT process to construct an estimator for a chosen
objective. Each of the samples Sk describes one simulated
transmission of a message of length n. Thus, Sk consists
of the outcome of the transmission, Rk, and the numbers
of how many packets of a particular degree were sent, i.e.,
Sk = {Rk,n(k)}, where Rk depends on the objective and n(k)

denotes a vector with component i describing the number of
degree i packets sent during the transmission.

C. Estimator for the Objective Function

The first step is to construct an estimator R̂ for the cho-
sen objective function using the available information of m
simulated samples Sk, k = 1, . . . , m. The goal is to construct
an algorithm, which takes some degree distribution vector p,
defined by the point probabilities p1, . . . , pn, as input and
outputs a better one. To this end we use the idea of importance
sampling in a sense in the opposite direction. We generate
samples with a given distribution vector p and use (4) to
estimate what the expectation R̂(q) of the objective function
would be if another degree distribution q had been used. Thus
we obtain an estimate for the interesting expectation as a
function of the degree distribution, allowing us to use this
for optimization studies. In particular, we have

R̂ (q) =
1
m

m∑

k=1

Rk

∏

i

(
qi

pi

)n
(k)
i

, (7)

where m is the number of samples generated, and Rk and n
(k)
i

specify the observed objective function and number of degree-
i packets generated in the kth sample. An important point to
note here is that, given the degree i of an encoded packet,
the i source blocks are chosen at random, each combination
being equally probable. Thus, when the degree distribution
is changed only the numbers of packets of different degrees
matter in defining the probability of a sample with respect to
the new measure.

Note that, as explained in Section II-B, both objectives in
Definition 6 can be taken into account; for objective MinAvg
Rk represents the number of packet needed for successful
decoding, for objective MaxPr we define Rk to be one when
the decoding succeeds in the defined number of steps and zero
otherwise.

While the estimate R̂(q) could be directly optimized, the
problem is that with a finite number of samples the estimate
is not exact, especially when q is far from p, i.e., the estimate
has large variance. The problem of the number of samples
is the downside of this optimization strategy, especially when
the number of optimized parameters is large. First of all the
generation of samples is not immediate, and secondly for
larger values of n the computation and memory requirements
become an obstacle.

Alternatively, by derivation of (7) it is possible to get an
estimate for the gradient of the objective function with respect
to q at q = p allowing us to use, for example, the method
of steepest descent (gradient method) [9] for optimization.

The estimate for the gradient has roughly the same statistical
accuracy as the estimate for the expecation itself because it
is evaluated at q = p where all the likelihood ratios are
equal to one. In the steepest descent method the gradient
defines the direction where the next candidate for a degree
distribution would lie. For instance line search can be used to
find the optimal point in this direction. When we have taken
the step towards the optimal point (according to the estimate),
new set of samples can be generated using the simulator and
thus the algorithm proceeds iteratively by calculating new
points (degree distributions) until some convergence criterion
is met. For brevity, we call the developed algorithm ISG-
algorithm, the acronym ISG standing for the initials of the
words importance sampling and gradient.

1) Gradient and Projection Vectors: The component i of
the gradient of the estimate R̂(q) is:

ĝi =
∂R̂

∂qi
=

1
m

m∑

k=1

Rkn
(k)
i

1
pi

(
qi

pi

)n
(k)
i −1

. (8)

When this is evaluated at point q = p ⇔ qi = pi ∀ i we
have: (

∂R̂

∂qi

)

q=p

=
1
m

m∑

k=1

Rk
n

(k)
i

pi
. (9)

Next we have to ensure that if we actually take the step
suggested by the gradient (9), i.e., we calculate pnew =
p + λg for some parameter λ, the resulting point pnew is a
proper probability distribution. This means that all components
(pnew)i ∈ [0, 1] and the sum of the components is one.

Projecting gradient (9) to hyperplane g · e = 0, where e is
a vector of ones guarantees that the sum of the components is
equal to one. To take care of the other requirement, we limit
the change of each component relatively so that the value does
not decrease below zero. This combined with the hyperplane
projection guarantees that every component (pnew)i ∈ [0, 1].
By using these restrictions, we ensure that the gradient points
in the right direction in space, where each point corresponds
to a probability distribution.

The projection of the gradient vector is

gproj = g − 1
n

(g · e)e. (10)

For component i, i = 1, . . . , n:

(gproj)i = gi − 1
n

n∑

i=1

gi

=
1
m

m∑

k=1

Rk

(
n

(k)
i

pi
− 1

n

n∑

i=1

n
(k)
i

pi

)

︸ ︷︷ ︸
s
(k)
i

. (11)

The expression s
(k)
i can be considered as one sample of

the projected gradient. The estimated value of the gradient
projection is then the calculated sample mean as given in (11).
As the estimate (7) is calculated from simulation samples, we
need a criterion for the number of samples we want to use for



calculating the actual estimate. In our optimization algorithm
we use the standard deviation of the projected gradient vector
as a measure for the number of samples to be generated.
We need to calculate the sample standard deviation for the
projected gradient, and use this value to control the accuracy.
By modifying the criterion for the accuracy we can strike at the
balance between the accuracy of the calculated distributions
and practical running times of the algorithm.

We generate the samples s
(k)
i as one long simulation run,

where the sample variance is given by:

σ2
i = E

[
(X− µ)2

]
=

1
m

m∑

k=1

(
s
(k)
i − (gproj)i

)2

, (12)

and the sample standard deviation:

σi =

√√√√ 1
m− 1

m∑

k=1

(
s
(k)
i − (gproj)i

)2

. (13)

To calculate the standard error of the mean (11), we use the
following result:

Var
[
X̄

]
=

σ2
i

m
, (14)

where m is the number of samples and X̄ is the sample mean
of the random variable X. Hence, the standard error of the
mean value of the samples of the projected gradient is:

σgi =

√√√√ 1
m(m−1)

m∑

k=1

[
Rk

(
n

(k)
i

pi
− 1

n

n∑

i=1

n
(k)
i

pi

)
− (gproj)i

]
.

On the other hand this estimate can be represented in a way
more convenient for this algorithm:

σgi =

√√√√ 1
m(m− 1)

m∑

k=1

(
s
(k)
i

)2

− 1
m

(
m∑

k=1

s
(k)
i

)2

. (15)

This latter form is used when generating new samples. The
form (15) is faster to use because both sums are easy to cal-
culate as running sums during the execution of the algorithm
and thus is more practical.

2) Line Search for Step Length Calculation: When we have
the projected gradient we still need to do a line search to find
the optimum in the direction of the gradient. This means that
we want to find a λ such that

f(λ) = R̂ (p + λg) , (16)

is optimized, where p is the starting point and g the calculated
(projected) gradient. Thus f represents the one-dimensional
function in the direction of the gradient.

We have chosen a simple bisection search to do the line
search as presented in [9]. Bisection search works on a
specified interval for convex functions by calculating the value
of the derivate of the function to be optimized in the middle
point of the target interval by halving the target interval based
on the sign of the derivative.

As an example case of how the bisection search works, we
look into the maximization of a differentiable function f on

Algorithm 3 A general bisection search algorithm
Require: a0 < b0, k = 0

1: repeat
2: ck ← 1

2 (ak + bk)
3: if f ′(ck) > 0 then
4: ak+1 ← ck, bk+1 ← bk {update left bound}
5: else
6: ak+1 ← ak, bk+1 ← ck {update right bound}
7: end if
8: k ← k + 1
9: until k = N

interval [a, b]. Let f ′(λ) denote the derivative at (middle) point
λ. Then,

i) if f ′(λ) = 0, then maximum (or minimum) is at λ,
ii) if f ′(λ) < 0, then the maximum is left of λ,

iii) if f ′(λ) > 0, then the maximum is right of λ.

These cover all possible cases and lead to Algorithm 3.
The execution of the algorithm is controlled through param-

eter N , which describes the maximum number of iterations
executed in the algorithms. Usually we want to define a
threshold value l so that the algorithm will stop when the
length of the interval [ak+1, bk+1] is less than l. The number
of steps needed to achieve this can be easily calculated:

(
1
2

)N

≤ l

b− a

N log
1
2
≤ log l − log(b− a)

N ≤ log(b− a)− log l

log 2

⇒ N =
⌈

log(b− a)− log l

log 2

⌉
. (17)

3) General Parameterized Distributions: The idea in Sec-
tion II-B can be extended to include parameterized distribu-
tions instead of a general one where point probabilities are the
parameters.

Let θ and η be vectors of n parameters, which define a
degree distribution. We define the estimate in (7) again using
parameterized probability distributions:

R̂ (η) =
1
m

m∑

k=1

Rk

∏

i

(
pi(η)
pi(θ)

)n
(k)
i

, (18)

where η denotes the starting point in parameter space, serving
similar function as q, in Sections II-B and II-C.1. The gradient
can be computed by differentiating with respect to parameters



ηi, using the chain rule for product differentiation:

ĝj =
∂R̂

∂ηj
=

1
m

m∑

k=1

Rk

∑

i

n
(k)
i

pi(θ)

(
pi(η)
pi(θ)

)n
(k)
i −1

∂pi(η)
∂ηj

∏

l 6=i

(
pl(η)
pl(θ)

)n
(k)
l

. (19)

When this is evaluated at η = θ we arrive at a simpler form:
(

∂R̂

∂ηj

)

η=θ

=
1
m

m∑

k=1

Rk

∑

i

n
(k)
i

pi(η)
∂pi(η)
∂ηj

. (20)

This closely resembles the form in (9), but in addition the
information of the derivative of the parameterized distribution
is included.

4) Stopping Condition: The estimate R̂ is calculated from
simulation results as shown in (7). When considering the
convergence of the algorithm, we take into account the "noise"
in the simulation, that is, the fact that this is only an estimate
based on some finite number of simulation results. We can
approximate this noise as the standard deviation of the estimate
of the average number of the packets needed for decoding R̂.
The calculation is performed in the same way as presented in
Section II-C.1 with the projected gradient vector:

σ bR =

√√√√√ 1
m(m− 1)

m∑

i=1


Rk

∏

i

(
qi

pi

)n
(k)
i

− R̂




2

. (21)

Now, after every iteration of the ISG-algorithm, we calculate
the estimate for the average number of packets R̂ needed for
a successful decoding. We compare the last two values of R̂
and if their absolute difference is smaller than the standard
deviation σ bR, we stop the algorithm.

This means that we stop the algorithm when the approx-
imated noise in the simulation is larger than the difference
between the last two calculated estimates. The noise over-
whelms the difference, accordingly we can conclude that the
last two estimates are calculated using degree distributions as
near the optimal ones as we can get to with the given number
of samples.

D. ISG-Algorithm

1) Overview of the Algorithm: This section will present a
general framework of the ISG-algorithm. The actual algorithm
consists of several sub-algorithms, most of which are well-
known (bisection search, gradient based optimization etc.).
The actual idea of the algorithm is simple as discussed earlier,
some complexity occurs from the many parameters which
needs to be set to control the convergence of the algorithm
and the generation of the samples.

In the case of point distribution optimization, the dimension
of the problem at hand is the number n of the blocks in the
message to be transferred. The vectors manipulated during the
execution are thus of length n in the case where point distribu-
tions are optimized directly. The optimization then takes place

in space where points are degree distributions. Criteria for a
point to belong to this space is that all components are positive
and all components sum up to one.

With parameterized degree distributions, the number of
vector components is the number of parameters used. The
space is now the parameter space, each point corresponding
to different values of parameters. It might be reasonable to
restrict this space somewhat in certain scenarios, for example
not allowing negative values for parameters.

The following description summarizes both point and pa-
rameterized distribution optimization. The algorithm takes as
an input some degree distribution, defined by point probabili-
ties p1, . . . , pn, threshold ε for sample generation, and interval
and threshold for bisection search.

1) Use the given probability distribution (either point or
parameterized form) as a starting distribution p.

2) Generate samples S using the degree distribution p.
Generate samples until accuracy is less than ε as de-
scribed in Section II-C.1.

3) Use the samples S to calculate the gradient g. This is,
in the case of point distribution, the projection of the
gradient vector (11) or, when optimizing parameterized
distributions, the gradient (20).

4) Optional: divide the gradient g by its length, g← g
‖g‖ .

5) Do a bisection search in the direction of the gradient, as
described is Section II-C.2. This means that we optimize
R̂ (p + λg), either finding a minimum or maximum
depending on the goal (Definition 6). As a result we
have the step length λ.

6) The step towards a better distribution is: step← λ · g.
7) Limit the change of each component to 90% of the

previous value. This percentage can also be varied. This
ensures that the conditions

∑
pi = 1 and pi ∈ [0, 1]

are met for point distributions and for parameterized
distributions retains the parameters on positive side.

8) Move in the direction of the gradient: p← p + step.
9) Calculate the value of R̂ using (7) and the standard de-

viation σ bR using (21). If the absolute difference between
the last two estimates is less than the standard deviation,
then stop. Otherwise continue and go back to step 2.

2) Implementation Issues of the Algorithm: For the goal
MaxPr an automatic implementation is easy to make. The line
search (maximization) behaves well and has a clear maximum
to which the algorithm converges.

This is, however, not the case with the goal MinAvg. The in-
terval for the line search has to be chosen carefully, otherwise
the minimization can converge into a non-feasible region. The
limited amount of samples causes the form of the estimate R̂
to have some peculiarities. For example, when optimizing the
point distribution, there always exists a minimum of zero at
point q = 0, as can easily be seen from (7). This means that
in order to generate the results, visual inspection of the line
search and proper convergence is advisable. Proper interval
[a0, b0] for starting point of Algorithm 3 can be selected either
by visual inspection or by trial and error. In any case it



10 20 30 40 50 60 70 80 90 100
n

0.1

0.2

0.3

0.4

0.5
Η

Fig. 1. Optimized parameter values for form (22).

is easy to check the results of the algorithm (i.e., proposed
distributions) to discard the poor intermediate results.

III. NUMERICAL RESULTS

A. Parameterized Form e−ηi

Let us consider the next parameterized distribution,

pi =
e−ηi

∑
i e−ηi

(22)

which is actually a geometric distribution for which the
optimal parameters can be computed efficiently. We consider
both of the objectives given in Definition 6.

1) Maximizing the Decoding Probability: There are some
issues when optimizing for maximum decoding probability.
The probability for the decoding to succeed in exactly n steps
approaches zero as n grows. In point distribution optimization,
this is not a major problem, although in the cases where
n is near 10, major part of the simulation results produce
coefficient Rk = 0 in (7), thus rendering a large part of the
simulation results useless.

With the parameterized form (22) results were calculated
for cases n = 10, 20, 30 and 40, maximizing the probability
of decoding in exactly n steps. The algorithm was ran with a
hard limit of 106 samples per round, 10 rounds at maximum.
Generation threshold ε was set at ε = 0.1. Line search interval
was [0, 0.05] with stopping threshold of 0.0001.

The optimization results for these cases are presented in
Table I. There is no point to continue this for larger values
of n, as even for n = 40 only approximately 0.01% of the
simulation results generate successful decoding in 40 steps,
when the simulations are started from parameter value η =
0.33. This would mean that even with large amount of samples,
say 107, only 1000 samples would give successful decoding,
resulting in high inefficiency of the ISG-algorithm.

For maximization of large values of n we can relax the
requirement of decoding in exactly n steps to n + k steps,
where k can be anything k ≥ 1. Of course, the larger the
value of k, the more samples will take part in forming the
estimate of R̂, thus giving more accurate optimization results.
The situation however is not analogous to maximizing the

probability of decoding in at most n steps, as the algorithm
maximizes for the conditions asked for, that is, decoding in at
most n + k steps.

Because of this inefficiency when maximizing the decoding
probability, we will focus on the minimization of the average
number of packets needed for decoding for the rest of this
paper.

2) Minimizing the Average Number of Needed Packets:
The optimization was performed using ISG-algorithm with
generation threshold ε = 0.1, with a hard limit of 106 samples.
The bisection search was performed on interval [0, 0.1] with
threshold 0.001, which translates to 10 iterations in (II-C.2).
The resulting parameters for n = 10, 20, . . . , 100 are presented
in Fig. 1. The values which produced the lowest overheads
were chosen.

Using the parameters plotted in Fig. 1, we did 10000
simulations of the LT process in order to get a final estimate
for the performance of the optimized degree distributions. That
is, for each message length n we have first optimized the
parameter ν. Then, using this optimized degree distribution
we have ran another set of simulations from which we have
estimated both the sample mean T̂ and standard deviation
σ̂(T ) of random variable T (for each n). The resulting sample
means for the number of packets needed for decoding are
presented in Fig. 2 . In Fig. 3 we have plotted values of T̂
and σ̂(T ). The sample standard deviations are illustrated by
“error bars” corresponding to values T̂ ± ˆσ(T ). The dotted
line represents reference performance of T = n.

Thus, Fig. 3 corresponds to the same situation as Fig. 2
but the representation is in absolute values of T̂ with added
bars to illustrate how the standard deviation behaves. Fig. 2
shows that as n increases the overhead decreases a little. Still
the overhead of nearly 40% is probably not satisfactory for
applications.

B. Parameterized Form e−η1i + η2e
−η3i

The parameterized form

pi = e−η1i + η2e
−η3i, (23)

with normalization, is an enhanced form of (22). The added
term should allow finetuning the form of the distribution, and
if possible, generate better results especially when n ≈ 100.

However, while the ISG-algorithm works nicely with the
added number of parameters, we did not find the results any
better than with the optimized case with one parameter. One
problem might be existing local minima, which were found by
using different sets of starting parameters. Table II lists some

TABLE I
FRACTION OF USEFUL SAMPLES WITH MaxPr OBJECTIVE

n η useful samples
10 0.476 4.6%
20 0.387 0.44%
30 0.350 0.06%
40 0.33 0.01%



10 20 30 40 50 60 70 80 90 100
n

10

20

30

40

50
pe

rc
en

ta
ge
H%
L

Fig. 2. Percentages of overhead packets when optimization is done to
minimize the average number of packets needed for decoding for form (22).

10 20 30 40 50 60 70 80 90 100
n

20

40

60

80

100

120

140

160

A
ve

ra
ge

T

Fig. 3. Standard deviations of simulations shown with error bars for
form (22). The dotted line below simulation results represents the reference
performace T = n.

results for the case n = 100. We see that many of the tested
cases produce similar results. Also, it seems that parameter
η2 does not change much, if at all, during the optimization.
The best results achieved, with overhead percent around 37%
match the results generated with only one parameter. This
means that in order to produce better distributions, the form
of the parameterized distribution should be changed.

C. Sparse Degree Distributions

In [5] it was found out that there are only few conditions
to be satisfied in order to get close to optimal degree dis-
tribution and thus we will next consider heuristically chosen
sparse distributions. In particular, we consider distributions
where positive probabilities are assigned to components whose

TABLE II
RESULTS FOR THREE PARAMETER EXAMPLE WITH n = 100.

Start parameters Optimized parameters Average T Std σ̂(T )
{0.4, 0.1, 0.4} {0.26, 0.1, 0.38} 136.8 19.4
{0.4,−0.3, 0.4} {0.27,−0.26, 0.42} 137.5 17.6
{0.4,−1.5, 0.4} {0.44,−1.52, 0.24} 158.0 17.9
{0.9,−2.0, 0.4} {0.90,−2.0, 0.29} 137.5 19.0
{0.4, 1.5, 0.23} {0.34, 1.5, 0.23} 136.6 17.9

TABLE III
OPTIMIZED SPARSE DEGREE DISTRIBUTIONS

n 16 32 64 128
p1 0.21 0.12 0.09 0.18
p2 0.47 0.51 0.49 0.33
p4 0.16 0.28 0.2 0.26
p8 0.16 0 0.13 0.14
p16 - 0.09 0.02 0.05
p32 - - 0.07 0.01
p64 - - - 0.03

Avegage T 22.5 43.6 81.9 159.8
Std σ̂(T ) 4.2 6.8 7.7 12.1
Ovhd-% 0.41 0.36 0.28 0.25

Ovhd-% for (22) 0.43 0.40 0.37 -

TABLE IV
SPARSE DISTRIBUTIONS FOR n = 100

Max i 32 64
p1 0.18 0.19
p2 0.34 0.34
p4 0.27 0.27
p8 0.12 0.13
p16 0.01 0.03
p32 0.08 0.01
p64 - 0.03

Average T 126.6 126.5
Std σ̂(T ) 10.9 11.2

indices are powers of two and less than n, i.e., for i = 2j , j =
0, . . . , jmax, with imax = 2jmax being the highest indice and
less than the number of blocks, imax < n.

First we test the algorithm for four different sparse dis-
tributions with n = 16, 32, 64 and 128. Numerical results
for objective MinAvg are presented in Table III. The number
of simulation samples was limited to one million and the
other simulation parameters were similar as before. Initially
each non-zero probability was given the same value. For
comparison purposes, in the last two rows of Table III we
have given the estimated overhead percentage for the sparse
degree distributions and geometrical form (22). We see that
the performance of the sparse distributions is better. There
is great insensitivity in the optimized distributions, i.e., slight
perturbation of the probabilities results in similar performance.
This is typical for most forms of different degree distributions,
which is also easy to confirm by manual tests. For further
discussion on this kind of insensitivity see [5].

Next we optimize distributions for n = 100, where the
last non-zero components are imax = 32 and imax = 64.
The results are presented in Table IV. We see that both of
the optimized distributions have similar performance. Again,
both cases give a better performance than the geometric forms
considered in Section III-A, where the overhead for n = 100
is roughly 37%.

D. Forms Based on the Soliton Distributions

Even more effective forms are achieved by considering the
soliton distributions defined in Section I-A. One characteristic
of both soliton distributions is that the probability for degree-
one symbols is less than the probability for degree-two sym-



TABLE V
RESULTS FROM 10000 RUNS OF LT FOR n = 100

Distribution Average T Std σ̂(T )
(24) 125.0 13.1

(24) with spike at i = 50 123.9 9.9
ideal soliton 169.5 72

robust soliton, σ = 0.5, c = 0.01 148.5 44.8
robust soliton, σ = 0.5, c = 0.03 134.9 23.9
robust soliton, σ = 0.5, c = 0.1 132.9 13.3

bols. This should ensure that not too many redundant degree-
one packets are sent, resulting in more efficient transmission.
However, the ideal soliton distribution itself performs rather
poorly, as is well-known. To improve it, we take the first two
degree probabilities as parameters and define the rest of our
distribution to be the ideal soliton distribution, i.e.,

pi =





η1, for i = 1,

η2, for i = 2,
1

i(i−1) , for i = 3, . . . , n.

(24)

This needs to be normalized to get proper probabilities for
each component.

We ran the ISG-algorithm with a similar setup as before
for n = 100, allowing the generation of 106 samples if
unless the threshold of 0.1 is met before. Bisection search was
performed in the interval [0, 0.05] with threshold of 0.0001.
The maximum number of iterations was again set to 15. The
starting point was set at η = (0.2 0.2).

The optimized values after 15 iterations were ηopt =
(0.09 0.36). 10000 runs of the LT process defined by cor-
responding degree distribution shows the overhead of around
25%, clearly a better result than with the previous geometric
forms and similar in performance to distributions presented in
Table IV.

The question of whether the spike present in robust soli-
ton distribution is really necessary leads us to consider a
slightly modified form of (24). We ran the ISG-algorithm
with the same setup as above, but with an extra parameter
for the probability of degree 50 packets. We started from
η = (0.2 0.2 0.2) and arrived at the optimized parameters
ηopt = (0.083 0.487 0.032). With this form the overhead is
around 24%, again a slightly better result than with (24) and
similar to the sparse distributions. Exact statistics are presented
in Table V, where we have also included statistics of ideal and
robust soliton distributions with different parameters.

Table V shows that while the robust soliton distribution
performs much better than the ideal soliton distribution, our
algorithm was able to find even better distributions first of
all by simply using the first two probabilities of ideal soliton
distribution as free parameters, and even better by introducing
a spike. The behavior of ideal soliton distribution, as explained
in Section I-A, is clearly very poor in real situations. With
n = 100 the first two probabilities of ideal soliton distribution
are 0.01 and 0.5, respectively, but our results show that the
optimized (and normalized) values of 0.1 and 0.38 give a much
better performance.

TABLE VI
RESULTS FROM 1000 RUNS OF LT PROCESS FOR n = 1000.

Distribution Average T Std σ̂(T )
(24) 1130 84

(24) with spike at i = 50 1122 60.8
(24) with spike at i = 100 1121 37

robust soliton, σ = 0.5, c = 0.01 1185 150
robust soliton, σ = 0.5, c = 0.03 1128 65
robust soliton, σ = 0.5, c = 0.1 1177 36

robust soliton, σ = 0.9, c = 0.04 1124 57

As (5) cannot be properly differentiated our algorithm
cannot be used directly to optimize these parameters. Thus,
it is unclear if there is a robust soliton distribution that gives
better results for n = 100. A form where the tail distribution
ensures that there is enough packets of high degrees could
probably eliminate the need for the spike.

Fig. 4 shows the histograms of 10000 simulations of the LT
processes run with our parameterized distribution resembling
the robust soliton distribution and with the real robust soliton
distribution. With our distribution the worst case requires
nearly always less than 150 packets, with robust soliton
distribution the tail goes much further, with several hundred
cases with over 160 packets. We also note that with our
optimized distribution, the average number of packet degrees
was 7.7, and with the robust soliton distribution this was 8.6.
This means that less operations are needed for decoding when
using the form (24) with spike at i = 50 and parameter
values ηopt = (0.083 0.487 0.032), resulting in a little better
decoding performance.

E. Tests With Larger n

As stated before, our implementation of the ISG-algorithm
requires some optimization in order to work in reasonable
time for n larger than 100. Nevertheless, we run some LT
process simulations with n = 1000 to see how our optimized
distribution for n = 100 performs when compared to the
robust soliton distribution. To our surprise, (24) outperforms
the robust soliton distribution with n = 1000, at least with a
wide range of tested parameters.

The results presented in Table VI show that out of the
tested distributions, the best performance was provided by our
optimized form with the spike moved to i = 100. While the
form with spike at i = 50 provides the same overhead as the
form with i = 100, the standard deviation is much larger. The

120 140 160 180 200
H7.3L and spike at 50

0

500

1000

1500

2000

120 140 160 180 200
Robust Soliton distribution

0

250

500

750

1000

1250

1500

1750

Fig. 4. Histograms of number of packets needed for successful decoding
with our best parameterized form and with the robust soliton distribution for
n = 100 with 10000 simulation runs.



values of the parameters used in (24) were the same as before,
ηopt = (0.083 0.487 0.032), regardless of the location of the
spike. Without the spike, we see that the standard deviation
is quite high. This could imply that the spike (or at least
more probability mass at the tail distribution) is needed for
a reasonable standard deviation.

The choice of the right parameter values with robust soliton
distribution seems to be very important and a bad choice leads
to poor performance. We did not find parameter combinations
which would outperform the form (24) with optimized param-
eter values ηopt = (0.083 0.487 0.032) neither for n = 100
nor for n = 1000. If still better distributions exist, that remains
an open question and area for further work.

IV. CONCLUSIONS

We have proposed an iterative algorithm for optimization
of the degree distribution used in LT codes. The basic idea
of the algorithm is based on optimization of an objective
function which is constructed using importance ratios, an idea
borrowed from importance sampling theory. We have validated
the correctness of this algorithm by means of numerical
examples where the results have been compared to other
numerical results calculated with the previously published
degree distributions.

In agreement with [5], it seems that a suitable degree
distribution needs to satisfy only few essential conditions.
The soliton distribution is a good starting point, where most
of the probability mass is situated on the low degrees. One
characteristic is the proportion of probabilities of degree-one
and two. The best distributions have in common that degree-
two probability is the largest of all probabilities and only
a fraction of the probability mass is needed for degree-one
packets. Degree one packets are naturally vital for the correct
function of the decoding algorithm, but too many of them
makes the coding somewhat inefficient due to the redundancy
of information. We also found out that the use of geometric
forms result in worse performance compared to other tested
forms. With geometric forms, the probability for degree-one
packets was higher than degree-two packets, which was not
the case with other, and better, distributions.

In addition, some probability assigned to higher compo-
nents, i.e., a spike at some relatively high degree makes the
performance considerably better. The use of the robust soliton
distribution can be justified by the same argument. The spike
provides sufficient amount of packets which have high enough
degree to keep the decoding process alive at the end of the
decoding process.

The optimized distributions are not very sensitive to per-
turbation of the different parameters as slightly modified
distributions provide similar results. This is also a downside of
the developed optimization algorithm; the objective function
is insensitive to small changes in degree distributions near the
optimum, and thus, with the simulation noise included, the
degree distribution can be optimized only to certain accuracy.

We also conclude that both of the considered optimization
objectives lead to a distribution with similar performance and

that objective MaxPr is not feasible for large n due to the fact
that the probability of recovering a message after receiving the
first n packets diminishes and thus most simulation samples
have no contribution to the estimate, and consequently are
useless for the optimization.

The optimal forms of degree distributions for different
message lengths continue to provide an interesting optimiza-
tion problem. For large n (thousands), the robust soliton
distributions have shown good performance [6], [7], [4]. For
smaller n we have presented some alternatives in this paper
but still the question of what really is the optimal form remains
open.

REFERENCES

[1] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh
Rege, “A digital fountain approach to reliable distribution of bulk data,”
in SIGCOMM, 1998, pp. 56–67.

[2] Irvin Reed and Gustave Solomon, “Polynomial codes over certain finite
fields,” SIAM Journal of Applied Mathematics, vol. 8, no. 2, pp. 300–304,
1960.

[3] Robert G. Gallager, “Low-density parity-check codes,” IEEE Transac-
tions on Information Theory, vol. 8, no. 1, pp. 21–28, January 1962.

[4] Michael Luby, “LT Codes,” in Proceedings of The 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002, pp. 271–282.

[5] Esa Hyytiä, Tuomas Tirronen, and Jorma Virtamo, “Optimal degree
distribution for LT codes with small message length,” submitted, June
2006.

[6] David J.C. MacKay, Information Theory, Inference and Learning Algo-
rithms, Cambridge University Press, 2004.

[7] Patrick Farrell and Jorge Castinera Moreira, Essentials of Error–Control
Coding, John Wiley and Sons, 2006.

[8] Reuven Y. Rubinstein and Benjamin Melamed, Modern Simulation and
Modeling, Wiley Series in Probability and Statistics. John Wiley & Sons
Inc., 1998.

[9] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty, Nonlinear
Programming: Theory and Algorithms, John Wiley and Sons, Inc., 2nd
edition, 1993.


