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ABSTRACT
In wireless multihop networks each node acts as a relay for the
other nodes. Consequently, the distribution of the traffic load has
a strong spatial dependence. We consider a dense multihop net-
work where the routes are approximately straight line segments.
To this end we introduce the so-called line segment traversing pro-
cess which defines the movement of points in a given region. In
particular, the points move along the line segments with a spatial
velocity which depends on the current location of the point. We
use this process to model the movement of packets and utilise its
properties to study the relayed traffic load which corresponds to the
traffic load experienced by a node in a given location, and to study
the queueing delays as a function of the location using the spatial
velocity of the line segment process. The efficiency of a wireless
multihop network depends significantly on the used MAC protocol,
which then has an impact on queueing delays in a congested net-
work. Our model can be adapted to any given MAC protocol by a
proper choice of the spatial velocity. Additionally, from the model
we also obtain an expression for the mean one-way delay in the
network, which is itself an important performance measure of the
network. Finally, we use ns2-simulations to validate some of the
key ideas, along with several numerical examples illustrating the
effects of MAC protocols on the mean end-to-end delay and power
(ratio of throughtput to mean delay).
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1. INTRODUCTION
The forwarding of data packets in wireless multihop networks

relies on the nodes (i.e., the client devices) taking an active part
in the traffic forwarding process. Examples of these include sen-
sor networks with typically stationary nodes and MANETs with
mobile nodes. This means that any given node, in addition to gen-
erating its own new traffic, acts as a relay (router) for the traffic
originating from other nodes in the network. In practise, most of
the traffic going through a node in a multihop network may be re-
layed traffic. To relay the traffic the nodes need information about
their respective neighbours to decide where to relay the traffic for
a given destination. Determining the appropriate neighbours is the
task of the routing protocol, of which AODV is one practical ex-
ample. A fundamental notion related to the traffic performance of
such a network is the distribution of the traffic load in the network.
The traffic load distribution depends heavily on the routing proto-
col (i.e., how the routes are chosen), the possible mobility pattern
of the users, as well as, the traffic pattern.

In this paper, we derive a model for the traffic load distribution
in a dense wireless multihop network. We concentrate on the case
where the routing protocol performs shortest path routing. This,
combined with the assumption of a dense network, implies that
the routes which the packets traverse are essentially straight line
segments. Then the transmission of packets constitutes a line pro-
cess on a plane, where the end points of the lines correspond to the
sources and the destinations of packet transmissions. The distribu-
tion of the end points in the model can be arbitrary. We refer to
this process as theline segment traversing process. Furthermore,
a point (packet) in the line segment traversing process may have
a spatial velocity that depends on the location of the point. Un-
der these assumptions the distribution for the location of a single
packet can be computed by evaluating a certain integral expression.
Moreover, we are able to determine a mean arrival rate of packets
across an arbitrary curve, which we will utilise to model the arrival
of packets into the proximity of a node.

We use the line segment traversing process to study several phe-
nomena related to traffic load in ad hoc networks. One deals with
the relayed traffic load (spatial frequency of successful transmis-
sions), which corresponds to the pdf of the packet location. For ex-
ample, if the transmission range is so large that all nodes hear each
other, the locations of packet transmissions correspond to locations
of the nodes, i.e., the stationary node distribution. When multi-
hop routes are used (with a sufficiently large transmission range
and number of nodesn) we obtain, due to the traffic relaying, a
distribution for the locations of packet transmissions that is more
concentrated into the center of the area. Using the line segment
traversing process we present expressions to evaluate the rise in the
frequency of transmissions in different areas. The results are vali-
dated through ns2 simulations showing excellent agreement.

Additionally we present a microscopic model for studying the
traffic load experienced by a single node, defined as the mean num-



ber of transmissions per unit time within the node’s proximity. The
analysis utilises the results on the line segment traversing process
presented in this paper. Treating a single node as a queue with a
given arrival rate, the stability of the queue can be analyzed. By
employing certain approximations, the familiarO(1/

√
n) scaling

law for the capacity of ad hoc networks can be derived.
Finally, our model can take into account queueing delays along

a multihop path. This is done by approximating the time it takes
for a packet to travel to the destination as resulting from traversing
a path on which the velocity changes continuously in proportion
to the load along the path. To this end, we apply the spatial node
velocity component in the line segment traversing process, which
allows us to model any given MAC protocol. We give an explicit
formula for average end-to-end delay in the network and study also
the tradeoff between the delay and throughput.

The rest of the paper is organised as follows. Section 2 intro-
duces the line segment traversing process. In Section 3 we state
our assumptions. Section 4 analyses the relayed traffic load, and
Section 5 queueing delays. In Section 6 we present some numeri-
cal examples, and finally, Section 7 concludes the paper.

1.1 Related work
Our work is related to the work by Pham et al. in [7] and [8],

The main idea in these is to analyze the benefits of using multi-
path routing instead of just single shortest path routing. To this end
a model for the packet transmissions is presented assuming that
the routes that the packets take are essentially straight lines (sim-
ilarly as we do) and that the senders and receivers are uniformly
distributed. Additionally, in [8], the model is extended to include a
delay analysis of the network under shortest path routing and multi-
path routing. In [7] and [8] the mean number of packets the node
itself has to transmit is studied, i.e., the quantity defining the traffic
load is slightly different than in this paper. However, our objective
is to study the traffic seen by a node at a given location, which is
important, e.g., when one wants to determine the maximum sustain-
able load a given network can handle. Additionally, the assumption
in the delay analysis of [8] is that a node at a given location can be
modelled as a finite M/M/1 queue with an arrival rate depending on
the location, which may be a valid model for some particular MAC
protocol. However, our approach allows modeling of various types
of MAC protocols through the notion of the spatial velocity. Also,
our analysis is not restricted by the assumption of uniformly dis-
tributed senders and receivers (which allows us to, e.g., study the
impact of mobility), and we present an exact analysis of the process
describing the packet movement, whereas the results in [7] and [8]
are approximate in nature. In [2] the model from [7] is extended to
more accurately characterize the impact of multi-path routing.

2. PRELIMINARIES
Here we give a formal definition for a process, which generates

line segments into a plane at random time instants. Using this pro-
cess we define a point movement process, where each line segment
creates a point which moves from one end of a line segment to the
other end at a certain speed and then disappears. These points are
used to model the movement of a packet through the network.

Definition 1 (line segment process)A process is said to be a time
homogeneous line segment process inA ⊂ R

2 with intensityλ(r1, r2) :
(A,A) → R if the number of line segments generated from a
differential area element atr1 ∈ A to a differential area ele-
ment atr2 ∈ A constitutes a Poisson process with intensity of
λ(r1, r2) · dA2.

In other words, a line segment from a differential area elementdA
aboutr1 ∈ A to a differential area elementdA aboutr2 ∈ A is
generated during a short time interval∆t with a probability equal
to λ(r1, r2) · dA2 · ∆t. Note that, the line segment process is, in
fact, a special case of a Poisson point process inR

4. A realisation
of this line process is defined by an infinite sequence of triples

(P
(s)
0 , P

(d)
0 , t0), (P

(s)
1 , P

(d)
1 , t1), . . . ,

where theP (s)
i andP (d)

i correspond to the source and destination
points of the line segments, and theti to the time instants.

Remark 2 In the line segment process new line segments are gen-
erated according to a Poisson process with a rate given by

Λ =

Z
A

Z
A

λ(r1, r2) d
2r2 d

2r1. (1)

Corollary 3 The mean length of a line segment is

` =
1

Λ

Z
A

Z
A

|r2 − r1| · λ(r1, r2) d
2r2 d

2r1. (2)

2.1 Point transitions along the line segments
Consider next a process where each line segment creates a point

which moves from the source to the destination at a certain speed.

Definition 4 (line segment traversing process)A process where each
line segment̀ i = (r1, r2) generated by a time homogeneous line
segment process triggers a point to move from the sourcer1 to the
destinationr2 is said to be a line segment traversing process if the
velocity of the point atr ∈ `i is given by

vi(r) = vi · ν(r),

where thevi ∼ v are i.i.d. nominal velocities (random variables)
andν(r) : A → R corresponds to the local spatial velocity (func-
tion of location).

Corollary 5 The mean transition time along a random line, de-
noted byE [T ], is given by

E [T ] = E [E [T | v]] = E [1/v] · E [T ∗] ,

whereE [T ∗] denotes the mean transition time conditioned on that
the nominal velocityv is a constant,v = 1,

E [T ∗] =
1

Λ

Z
A

Z
A

|r2 − r1|λ(r1, r2) · ν(r1, r2) d
2r2 d

2r1, (3)

and ν(r1, r2) is the mean velocity on transition(r1, r2) condi-
tioned on thatv = 1,

ν(r1, r2) =

1Z
0

[ν(hr2 + (1 − h)r1)]
−1 dh.

Remark 6 For ν(r) = 1 we haveE [T ∗] = `.

Remark 7 The mean number of moving points in a system, de-
noted byE [n], is given by (Little’s result)

E [n] = Λ · E [T ] . (4)



2.2 Distribution of moving points
One important property of a point movement process is the den-

sity of points at a given location. For the line segment traversing
process we have the following result.

Proposition 8 Pdf of the location of a point at an arbitrary time
instant is given by

f(r) =
1

E [T ∗] · Λ · ν(r)

2πZ
0

a(φ+π)Z
0

a(φ)Z
0

(r1 + r2)·

λ(r1, r2) dr2 dr1 dφ,

(5)

wherer1 = r + r1 · (cos(φ+ π), sin(φ+ π)), andr2 = r + r2 ·
(cos(φ), sin(φ)).

PROOF. The probability of finding a point inside a small area
elementdA aboutr ∈ A at a random time instant is proportional
to E [` ∩ dA] where` denotes an arbitrary line segment. Thus,

f(r) =
E [(` ∩ dA)/(v · ν(r))]

E [T ] · dA

=
E [(` ∩ dA)] · E [1/v] · 1/ν(r)

E [1/v] · E [T ∗] · dA =
E [(` ∩ dA)]

E [T ∗] · dA · ν(r) .

Let gs(r1) denote the probability that a line segment starts fromr1,

gs(r1) =
1

Λ

Z
A

λ(r1, r2) d2r2 =
λs(r1)

Λ
,

whereλs(r1) denotes the generation rate of lines starting fromr1

per unit time and unit area. Thus, the pdf of an arbitrary point is

f(r) =
1

E [T ∗] · dA · ν(r)

Z
A

gs(r1) · E [` ∩ dA | r1] d
2r1

=
1

E [T ∗] · dA · Λ · ν(r) ·

2πZ
0

a(φ+π)Z
0

r1 · λs(r1) · E [` ∩ dA | r1] dr1 dφ,

wherer1 = r + r1 · (cos(φ+π), sin(φ+π)), and a(φ) is the
distance from pointr to the boundary in directionφ. Let dA =
∆ · r1 dφ. For the conditional expectation we have (see Figure 1),

E [` ∩ dA | r1] = ∆

a(φ)Z

0

(r1 + r2) · λ(r1, r2)

λs(r1)
dφ dr2

=
dA

r1 · λs(r1)

a(φ)Z

0

(r1 + r2) · λ(r1, r2) dr2,

wherer2 = r + r2 · (cos(φ), sin(φ)). Hence,

f(r) =
1

E [T ∗] · dA · Λ · ν(r)

2πZ
0

a(φ+π)Z
0

r1 · λs(r1)·

dA

r1 · λs(r1)

a(φ)Z
0

(r1 + r2) · λ(r1, r2) dr2 dr1 dφ,

and cancelling the common terms completes the proof.

r

r1

r2

∆

A

dφ

dφ (r1+r2)

Figure 1: Notation for the line segment traversing process pdf.

Corollary 9 Multiplying (5) byE [n], given by(4), yields the den-
sity of points atr,

n(r) =
E [1/v]

ν(r)

2πZ
0

a(φ+π)Z
0

a(φ)Z
0

(r1+r2)λ(r1, r2) dr2 dr1 dφ. (6)

Remark 10 Generally, for an arbitrary line segment process it
holds that

f(r) =
`

E [T ∗]
· f0(r)
ν(r)

, (7)

wheref(r) is the stationary distribution of the complete line seg-
ment traversing process with an arbitraryν(r), and f0(r) is the
stationary distribution of the respective process withν(r) = 1.

Example 11 Random waypoint (RWP) process is a commonly used
mobility model (see [1, 6, 3, 4]), where each user moves along
a zigzag line from one waypoint to the next. The waypoints are
distributed according to some pdfg(r) (typically uniform). Let
λ(r1, r2) = Λ · g(r1) · g(r2), i.e., the source and the destination
points are i.i.d. random variables. It turns out that the stationary
distribution of the line segment traversing process is identical to
that of the corresponding RWP process with a waypoint distribu-
tion g(r). Substituting that into(5) gives

f(r) =
1

E [T ∗] · ν(r)

2πZ
0

a(φ+π)Z
0

a(φ)Z
0

(r1 + r2)·

g(r1) · g(r2) · dr2 dr1 dφ.

(8)

Withν(r) = 1 we haveE [T ∗] = ` and (8) can be written as

f0(r) =
1

`

2πZ
0

a(φ+π)Z
0

a(φ)Z
0

(r1+r2) · g(r1) · g(r2) dr2 dr1 dφ, (9)

which is in agreement with the expression for the pdf of the non-
uniform RWP process from [3]. Moreover, according to Little’s
resultE [n] = Λ · `, and

n0(r) = Λ · ` · f0(r).

Withg(r) = 1/A, whereA is the area of the domain, we obtain

f(r) =
1

E [T ∗] · ν(r)

2πZ
0

a(φ) · a(φ+ π) [a(φ) + a(φ+ π)] dφ,

i.e., the pdf of the point in the traditional RWP process with a uni-
form waypoint distribution [3].
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Figure 2: Angular flux.

2.3 Mean flow of points
Another important property resulting from the movement is the

rate at which points cross a given boundary. This property is later
used to model the arrival rate of packets into the transmission range
of a network node. To this end we first define the so-called scalar
flux which represents the flow of points at a given location:

Definition 12 (angular flux) Angular flux at pointr in direction
φ, denoted byψ(r, φ), is the rate at which points moving in the
direction (φ,φ + dφ) cross a differential line segment at pointr
perpendicular toφ per unit time per unit length (see Figure 2).

Definition 13 (scalar flux) Scalar flux at pointr is given by

Φ(r) =

Z 2π

0

ψ(r, φ) dφ. (10)

Corollary 14 From (10)one obtains an identity for the scalar flux,

Φ(r) = lim
d→0

q(r, d)

2d
, (11)

whereq(r, d) denotes the arrival rate of points (or packets) into a
disk atr with radiusd.

Proposition 15 For the scalar fluxΦ(r) at r with a constant nom-
inal velocityv = 1 it holds that

Φ(r) = n(r) · ν(r). (12)

Proposition 16 The rate of points crossing a given curveC in the
direction of normaln(s) is given by

q(C) =

Z
C

π/2Z
−π/2

cosφ · ψ(r(s), θn(s) + φ) dφ ds, (13)

whereθn(s) denotes the direction of the normal andψ(r, φ) is the
angular flux at pointr in directionφ, for which it holds that

ψ(r, φ) =

a(φ+π)Z
0

a(φ)Z
0

(r1 + r2) · λ(r1, r2) dr2 dr1, (14)

wherer1 = r + r1 · (cos(φ+ π), sin(φ+ π)) andr2 = r + r2 ·
(cos(φ), sin(φ)).

PROOF. The choice of velocity clearly has no effect on the ar-
rival rate across a given boundary as long as the mean transition
time is finite. Hence, without loss of generality we can assume a
unit nominal velocity,v = 1, so that the velocity of a point atr is
ν(r). Combining (6) and (12) one can identify that the quantity

ψ(r, φ) =

a(φ+π)Z
0

a(φ)Z
0

(r1 + r2) · λ(r1, r2) dr2 dr1,

2

source

31

A B

destination

Figure 3: Shortest path and its approximation by line segment.

is the angular flux at pointr in directionφ, i.e., the expected rate of
crossings across a differential line segment perpendicular to direc-
tion φ per unit length and per unit angle. Hence, the quantity,

π/2Z
−π/2

cosφ · ψ(r, θ + φ) dφ,

is the flux per unit length across a differential line segment atr
having a normal pointing to the directionθ, and the flux crossing a
curveC in the direction defined by the normaln(s) equals

q(C) =

Z
C

π/2Z
−π/2

cosφ · ψ(r(s), θn(s) + φ) dφ ds,

whereθn(s) is the direction of the normal at points in the curve.

Remark 17 For a closed curveC the total flux from outside to in-
side is given by the contour integral

q(C) =

I
C

π/2Z
−π/2

ψ(r(s), θn(s) + φ) dφ ds, (15)

whereθn(s) is the direction of the normaln(s) which points to
inside direction of the curve.

Remark 18 Using the angular flux defined in(14) the point den-
sity, given by(6), can be written as

n(r) =
E [1/v]

ν(r)

2πZ
0

ψ(r, φ) dφ.

Example 19 For a uniform line segment generation rate,λ(r1, r2) =
λ, the angular flux reduces into

ψ(r, φ) =
λ

2
· a(φ) · a(φ+ π) · [a(φ) + a(φ+ π)] ,

which is in agreement with [4] (withλ = 1/`).

3. MODEL FOR THE PACKET MOVEMENT
As already mentioned, we assume a dense network with a large

number of nodes. Fig. 3 represents a typical example of a multihop
transmission. NodeA sends a packet to nodeB and three interme-
diate nodes,1, 2 and3, along the shortest route act as relays. The
idea is to consider the straight line segment fromA to B instead
of the actual zigzag line via the nodes1, 2 and3. These line seg-
ments can be modelled by the line segment process introduced in
Section 2. In summary, we assume (similarly as in [7]):

1. A dense multihop network with a large number of nodes, de-
noted byN , in a convex domainA.



2. Location of nodei, denoted byPi, is randomly distributed
according tog(r). With mobile nodes, from the point of view
of the packet transmission, the nodes are (quasi) stationary.

3. Nodes have a fixed transmission ranged, i.e., they can trans-
mit directly to the nodes within a distanced.

4. A fully connected network and high node density so that the
shortest paths are approximately straight line segments.

5. Uniform traffic, nodes send packets to all other nodes at rate
λ, and total rate isΛ = N(N − 1) · λ.

6. Mean packet transmission time is1/µ and the mean packet
length (in bits) isB, i.e., the nominal capacity of the channel
isC0 = B · µ = [bit/s] .

4. RELAYED TRAFFIC LOAD
Consider first a typical case where a packet travels through the

neighbourhood of a given node and the node, or one of its neigh-
bours, acts as a relay. As a result the node will hear the same packet
several times corresponding to a certain number of transmission
channel reservations. The first time corresponds to the arrival of
the packet into the transmission range of the node in question. The
next time corresponds to the retransmission of the packet further,
performed by the node itself or by one of its neighbours. Further-
more, e.g., when the node itself acts as a relay, it will hear also a
third transmission when the next node along the route transmits the
packet further. These events can be approximated by considering
the events when the line process cuts through the respective disk,
which corresponds to two to three transmissions.

Note that the destination nodeB only hears the packet once
when the packet “arrives” into the transmission rangeDB of node
B. Also the source nodeA and the first relaying node hear two
transmissions even though the packet never “arrives” into their trans-
mission ranges. Moreover, part of the transmissions are single-
hop constituting a single transmission where the corresponding line
segment may not cross the boundary of the transmission range disk
of the given node. However, with the assumption of large number
of nodes most routes consist of several hops and the inconsistencies
mentioned above can be neglected. At this point it is quite clear
that the packet movement can be modelled using the line segment
traversing process according to Def. 4. In particular, the indepen-
dent line segment traversing process corresponding to the move-
ment of an arbitrary packet can be characterised as follows:

1. New line segments are generated at the total rate ofΛ =
N · (N − 1) · λ per unit time.

2. End points of line segments are independently and randomly
distributed according to some pdfg(r).

3. Each line segment corresponds to the transmission of a single
packet along a multihop path.

Hence, we define therelayed traffic loadas the arrival rate of
packets into the transmission range of a node located atr. With
the above assumptions it can be approximated in a dense multihop
network by (15). With a small transmission ranged compared to
the whole areaA the relayed traffic load can be estimated by the
scalar flux according to (11),

q(r, d) ≈ 2d · Φ(r). (16)

Note that this quantity neglects the fact that each arriving packet
that is relayed further requires one or more transmissions before it
departs the transmission range of a given node. Furthermore, this
quantity also excludes possible collisions.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4: Normalised traffic load distribution in an wireless
multihop network according to theory (solid curve) and numer-
ical results with ns2 (dots).

4.1 Validation of the model
In order to confirm the validity of our assumptions we have simu-

lated a standard 802.11 wireless network operating in ad hoc mode
using the ns2 network simulator. In the simulation we have used
n = 40 nodes, which move slowly in a circular area having a radius
r = 125m according to the random waypoint model with a uniform
waypoint distribution and a constant velocity ofv = 0.1 m/s. The
transmission and receive powers were adjusted so that the maxi-
mum transmission range was aboutd = 50m. Furthermore, the
proactive DSDV routing protocol was used.

Our objective is to study the relayed traffic load as a function of
location, i.e., how many packets are transmitted in the proximity of
a given node per time unit on average. Note that relative relayed
traffic load, i.e., the ratio of the rate of transmissions occurring in
the proximity of nodea and nodeb, remains the same regardless
of the actual traffic load (assuming the same routes are used). To
this end a low traffic load scenario was created by appropriately
chosen constant bit rate (CBR) sources. In our model this scenario
corresponds to a situation where the end points of the line segment
process are distributed according to stationary distribution of basic
RWP process (from [3]),

g(r) ≈ 6(1 − r2)(27 − 8r2)

73π
.

In a low load situation we can neglect the queueing delays and the
pdf of the packet location,f(r), is easy to evaluate by numerical
integration of (9). With the assumption of multihop paths, this pdf
can be related to the frequency of transmissions occuring within a
given location using (12) and (16), i.e., we haveΦ(r) ∝ f(r).

With this in mind, we recorded from the simulations the loca-
tions of successful packet transmissions over a long time interval.
From the statistics we computed the frequency of transmissions
occuring within the range(r − ∆r, r + ∆r) and divided that by
2πr. In other words, we obtained an estimate for the frequency of
transmissions occuring at a given distance from the origin, which
according to our assumptions should be proportional to the scalar
flux at a given distance. The normalised results can be seen in Fig-
ure 4 from which it is obvious that the model and numerical results
are in agreement.

4.2 Capacity of the network
Note that in order to determine the capacity of the network we

need to identify the location having the highest arrival rate, i.e., the
bottleneck area. More specifically, we use the following definition
for the capacity the multihop network:

Definition 20 (network capacity) Capacity of the network is the
maximum (uniform) packet arrival rateλmax times the mean size
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Figure 5: The maximum sustainable loadρ(tot)
max in unit disk as

a function of the transmission ranged.

of a packetB (in bits) the network can handle,

C = λmax ·B = ρmax · C0.

Remark 21 (capacity per node)A related performance quantity
is the capacity allocated per node,

C(1) =
C

N
.

Example 22 (capacity in unit disk) Let us assume that the nodes
of a wireless multihop network are placed uniformly into a unit
disk and that we want to determine the traffic load experienced by
a node residing in the center of the disk as the traffic load will be
clearly highest at that point. The sum of arrival and departure rates
inside a concentric disk with radiusd is given by (see [4])

λ(d) = 2 · q(0, d)

= Λ · 4

π
· d(1 − d2)

πZ
0

sinφ
p

1 − d2 cos2 φ dφ.

which includes the packet flows in both directions. As explained
earlier we use this as an estimate to the mean rate of transmissions
occuring inside the transmission range, i.e., we assume that trans-
mission ranged is so small that the proportion of traffic having
the source and destination within the transmission range of a node
in the center of area is negligible. Assuming the packet lengths
are i.i.d. with mean1/µ and defining the total network load as
ρ(tot) = Λ/µ we can determine the maximum sustainable network
load as a function ofd, i.e., at the point whereλ(d)/µ = 1 we have

ρ(tot)
max =

Λ

µ
=

π

4d(1 − d2)

πZ
0

sinφ
p

1 − d2 cos2 φ dφ

.

For small values ofd the maximum traffic load is approximately

ρ(tot)
max =

π

8d
,

or alternatively, the capacity of the network is

C =
π

8d
· C0.

In Fig. 5 the maximum sustainable loadρ(tot)
max is depicted as a

function of the transmission ranged. Note that in practice the
transmission ranged cannot be arbitrarily small, but instead we
must ensure that the network remains fully connected most of the
time. Furthermore, a small transmitting range also means that the
mean number of hops each packet experiences increases consider-
ably resulting in long end-to-end delays. Hence, the smallest prac-
tical value ford depends on the design criteria and especially on
the number of nodes and their distribution in a given area.

Example 23 (scaling law)One way to deal with the connectivity
requirement is to ensure that the mean number of neighbours a typ-
ical node has, denoted byS, is high enough. Clearly,

E [neighbours] = S ≈ d2 ·N.
Combining the above gives us the well-known scaling law for the
capacity of the single node in a wireless multihop network,

C(1) =
C

N
=
C0 · ρ(tot)

max

N
≈ πC0

8dN
=
π · C0

8
√
S

· 1√
N
,

i.e., the capacity of a node is proportional to1/
√
N .

5. QUEUEING DELAYS
In a wireless multihop network with low congestion, packets

travel with an average speed ofv(r) = d/µ−1 = d · µ, where
d is the (mean) transmission range andµ−1 the mean transmis-
sion time of a packet. When congestion occurs the relaying nodes
have to wait a certain time before transmitting a packet further. Let
W (r) denote the mean waiting time before a transmission atr.

The line segment traversing process with spatial velocity dis-
tribution (see Section 2) can be applied to take into account the
queueing delays. To this end, we need to find an expression for
the mean waiting timeW (r) at r before a succesful transmission,
which takes into account the local congestion and the used MAC
protocol. In particular, in our model we set the nominal velocity
constant,v = 1, and propose using

ν(r) =
d

W (r) + 1/µ
=

d · µ
W (r)µ+ 1

, (17)

as the spatial velocity of a packet atr. Thus, we can computef(r)
andn(r) using (8) and (6), respectively. QuantityE [T ] = E [T ∗],
corresponds to the mean one-way delay (the line specific velocity
is assumed to be constant,v = 1). At this point the missing part is
the actual expression for the waiting timeW (r), which depends on
the used MAC protocol and the traffic pattern among other things.

Denote byf0(r) the pdf of node location in a system with unit
nominal velocity,v = 1, and a constant spatial velocity component,
ν(r) = 1, corresponding to a system with no queueing delays. The
mean end-to-end delay of this system is simplyE [T0] = ` and the
node density is given by

n0(r) = E [n] · f0(r) = Φ(r).

Thus, according to (12), the packet density for a givenν(r) is

n(r) = Φ(r)/ν(r).

5.1 Mean one-way delay
One important performance measure of any network is the av-

erage end-to-end delay, i.e., the mean one-way delay, which we
denote byE [T ]. For a dense wireless multihop network we can
immediately write down some “asymptotic” results. More specifi-
cally, it holds that

lim
Λ→0

E [T ] = `/(d · µ), lim
d→0

E [T ] = ∞.

Furthermore, for large enoughd the system reduces into a big server
which can be approximated, e.g., by an M/M/1-queue which yields

E [T ] =
1

µ− Λ
whend > diam A

wherediam A denotes the largest diameter of domainA. Gener-
ally, applying Little’s result forn(r) gives the mean one-way delay,

E [T ] =
E [n]

Λ
=

1

Λ

Z
A
n(r) d2r. (18)



5.2 Delay-throughput tradeoff
Generally, when the traffic load increases also the mean delays

increase in a network, i.e., there is a tradeoff between end-to-end
delay and obtained throughput. Let us next consider a performance
measure called power introduced by Kleinrock [5], which is defined
to be the ratio between the throughput and the mean delay,

γ∗ =
Λ ·B
E [T ]

=
(Λ)2

E [N ]
·B, (19)

whereB is the mean size of packet (in bits). For simplicity, instead
of considering (19) we use a slightly modified version given by

γ = γ∗ · 1

µ2B
=
ρ(tot)

E [T ]
· 1

µ
=

(ρ(tot))2

E [N ]
, (20)

i.e., the ratio between the total offered load,ρ(tot), times the mean
transmission time,1/µ (constant), to the mean end-to-end delay,
E [T ], or alternatively, the ratio between square of the offered load
ρ(tot) and the mean number of packets in the system. Note that
(19) and (20) differ only by a constant factor ofµ2B. The benefit
from using (20) is the fact that it gives us the same value irrespec-
tive of the chosen time units/scale. Generally, one is interested in
finding the optimal traffic loadρ(opt) which maximises the power
according to (20). In a wireless multihop network the mean delay
depends heavily on both congestion (i.e., queueing delays) and the
transmission range (i.e., the mean number of hops).

6. EXAMPLES OF DELAY MODELLING
To complete the model one needs to find an explicit expression

for the spatial velocityν(r) reflecting the delays due to packet con-
tention on MAC layer. To this end one option is to assume that
each node and it’s neighbourhood behave approximately as a sin-
gle server queue for which results are readily available. In the fol-
lowing, we present several idealised models for spatial velocity and
illustrate the concept by numerical examples.

6.1 Elementary models for spatial velocity

6.1.1 M/M/1-server approximation
For now, without presenting any arguments, let us assume that

the queueing delays in a dense multihop wireless network can be
approximated by an M/M/1-queue. In particular, let us assume that
a transmission range of a node acts like an M/M/1-queue with Pois-
sonian arrivals and exponential service times. Using (13) we can
compute the mean arrival rate into a disk having a center atr and
radiusd denoted byq(r, d). The mean service time in our case is
the mean transmission time of a packet, which we have denoted by
1/µ. In an M/M/1-queue the mean waiting time is given by

E [WMM1] =
ρ

1 − ρ
· 1

µ
,

and hence we can assume that the average velocity of a packet at
point r could be estimated by

ν(r) =
d · µ

ρ/(1 − ρ) + 1
= (µ− q(r, d)) · d,

whereq(r, d) is the arrival rate of packets into a disk atr with
radiusd. For small values ofd we haveq(r) ≈ 2d · Φ(r) and

ν(r) = (µ− 2d · Φ(r)) · d.
In particular, the packet density atr is given by

n(r) =
Φ(r)

(µ− 2d · Φ(r)) · d . (21)

Furthermore, assume that the maximum load a particular MAC pro-
tocol can handle is less than1,

ρmax = 2d · Φmax/µ.

Then a similar analysis as above yields

n(r) =
Φ(r)

(1 − Φ(r)/Φmax) · d · µ . (22)

6.1.2 M/D/1-server approximation
Assuming fixed size packets, i.e., fixed time transmission pe-

riods, we can approximate the queueing time by an appropriate
M/D/1-queue. Similarly as above, one obtains

n(r) =
µ− d · Φ(r)

d · µ · (µ− 2d · Φ(r))
· Φ(r). (23)

6.1.3 Simplified Aloha approximation
For simplicity let us next assume a basic Aloha MAC with fixed

size packets and without any collision avoidance mechanisms. In
other words, each station tries to send a packet after an exponen-
tially distributed interval and a packet is succesfully transmitted if
no other transmission overlaps with the given transmission within
the corresponding proximity. For this we have,

p = P {succesful transmission} = e−λ·2·1/µ = e−2ρ,

where1/µ is the transmission time of a packet. Hence, the mean
time before a succesful transmission is simply

E [W ] =
1 − p

p
· ∆ =

“
e2λ/µ − 1

”
· ∆,

where∆ denotes the mean of the backoff time which we for sim-
plicity assume to be i.i.d. random variable. According to (11), for
a small transmission ranged we have

λ = q(r, d) ≈ 2d · Φ(r).

Combining the above yields

W (r) ≈
“
e4dΦ(r)/µ − 1

”
· ∆,

which corresponds to mean spatial velocity of

ν(r) =
d

W + 1/µ
=

d · µ
(e4dΦ(r)/µ − 1) · ∆ + 1

.

Consequently, the packet density atr is given by

n(r) =
Φ(r)

ν(r)
=

“
e4dΦ(r)/µ − 1

”
· ∆ + 1

d · µ · Φ(r). (24)

Note that we deliberately neglect the retransmissions of other pack-
ets here and assume that the “background” traffic is still Poissonian.

6.1.4 Aloha with perfect transmission probability
In slotted Aloha withn nodes sharing a same channel the optimal

transmission probability is1/n. With this a given node makes a
succesful transmission in one time slot with probability of

p =
1

n
·

„
1 − 1

n

«n−1

=
(n− 1)n−1

nn
.

Consequently, the mean number of slots needed for a succesful
transmission by a given node is

E [X] =
1

p
=

nn

(n− 1)n−1
,



which, assuming each network node has at most one packet, corre-
sponds to average packet velocity of

ν(r) =
(n− 1)n−1 · d · µ

nn
,

wheren ≈ πd2 · n(r) + 1, d the transmission range and1/µ the
time duration of the slot. Substituting the above into (12) gives,

Φ(r) = n(r) · ν(r) =

„
n− 1

n

«n

· µ
πd
. (25)

Note that for largen we have(1 − 1/n)n → 1/e, which, when
substituted into (25), gives us the saturated flux

Φ(r) =
µ

e · πd .

Hence, in this case the fluxΦ(r) must be in range[0, µ/(e · π · d)]
and the node densityn(r) is given by

n(r) =
g−1(Φ(r) · π · d/µ) − 1

π d2
, (26)

whereg−1(x) is the inverse function ofg(n) =
`

n−1
n

´n
.

6.1.5 Approximation by Poisson arrivals and FIFO
Our last approximation for estimating the traffic load and mean

end-to-end delay takes a slightly different approach than the previ-
ous approximations. LetN denote the mean number of customers
in the server. According to the PASTA property of Poisson arrivals,
the mean waiting time in a FIFO-queue1 is given by

E [W ] = 1/µ ·N.

With these in mind we suggest estimating the mean waiting time in
a dense wireless multihop network by

W ∗(r) = 1/µ · n(r) · πd2.

The total time until the end of (succesful) transmission isW ∗(r)+
1/µ, which yields average velocity of

ν(r) =
distance

time
=

d · µ
πd2 · n(r) + 1

.

Substituting that into (12) yields

Φ(r) = n(r) · d · µ
πd2 · n(r) + 1

,

from what we obtain an expression for packet density (cf. (21)),

n(r) =
Φ(r)

(µ− πd · Φ(r)) · d . (27)

6.2 Comparison of end-to-end delays
Consider a unit disk with transmission range ofd = 0.2 and

uniformly distributed network nodes. The resulting scalar packet
flux can be easily determined and we can calculate the resulting
packet densityn(r) assuming M/M/1-, M/D/1- or simplified Aloha
approximation. Hence, using (18) we also obtain the resulting
mean end-to-end delay which is illustrated in Figure 6. The rapidly
increasing dashed curves correspond to simplified Aloha model
where as the higher solid line correspond to M/M/1-approximation
and the lower solid line to M/D/1-approximation. With very little
traffic the mean end-to-end delay is approximately4.527 according
to all the approximations, which corresponds to the mean distance
between two node pairs divided by0.2.

1holds also for, e.g., random service order.
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Figure 6: Mean end-to-end delay as a function of traffic load
Λ in unit disk with transmission range d = 0.2 and uniformly
distributed network nodes.
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Figure 7: End-to-end delays in an wireless multihop network
according to the analytical estimates and ns2-simulatations.

6.3 Queueing delays in 802.11 network
Our next numerical validation concerns the queueing delays. We

have used a similar scenario as in Section 4.1 and have measured
the mean end-to-end delay in the network with different levels of
offered load. The simulated results (ns2/1 and ns2/2) as well the
analytical estimates are illustrated in Figure 7. Case ns2/1 corre-
sponds to pure CBR sources while ns2/2 corresponds to the expo-
nential on/off sources which generates traffic with a constant bit
rate while in on state. The analytical estimates are as follows.
M/M/1 model is according to (21), M/M/x is according to (22) with
ρmax = 0.145 (fitted to an experimental curve), and Aloha model
corresponds to (26).

From Figure 7 it can be seen that pure M/M/1 model is highly
optimistic in this situation as expected. With a proper choice of
ρmax (or Φmax) the model can be adjusted to fit the actual situa-
tion reasonably well. Aloha model is somewhere inbetween these
two. Note that the error at very small traffic load is due to the fact
that the mean number of hops is rather small (about2.5) in this
case. This means that the truncation error we make at estimating
the number of hops is considerably large (e.g., if the route length is
2.5, it requires 3 transmissions, not 2.5).

6.4 Delay-throughput analysis
Our next objective is to study the relationship between the trans-

mission ranged and the optimal traffic loadρ(opt) using elementary
models for the queueing delays introduced in Section 6.1. Consider
the following6 scenarios for a dense multihop network in unit disk:

model nodes model nodes
1) M/D/1 uniform 4) M/M/1 RWP
2) M/D/1 RWP 5) Aloha uniform
3) M/M/1 uniform 6) Aloha RWP

RWP means that the nodes are assumed to be distributed accord-



0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

3L
1L

4L
2L

5L
6L

scenario max. power,γ
1) M/D/1 + uniform nodes 0.408
2) M/D/1 + RWP nodes 0.398
3) M/M/1 + uniform nodes 0.306
4) M/M/1 + RWP nodes 0.302
5) Aloha + uniform nodes 0.059
6) Aloha + RWP nodes 0.059

Figure 8: Graph illustrates the power as a function of offered loadρ(tot) for transmission range ofd = 0.2. The maximum achievable
power, which is independent ofd, is shown in the table.
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Figure 9: Optimal transmission ranged as a function of traffic
load ρ(tot) for different models.

ing to basic RWP, while uniform corresponds to uniform node dis-
tribution. In Figure 8 the resulting powerγ is depicted ford = 0.2
as a function of traffic loadρ. From the figure it can be seen that
there is clearly an explicit maximum for each case. Moreover, the
maximum achievable power seems to depend more on the conges-
tion model (M/M/1 or M/D/1) than the distribution of the network
nodes (uniform or according to RWP model).

By evaluating each scenario numerically for different values of
d it turns out that the maximum achievable powerγmax is indepen-
dent of the transmission ranged. In other words, the optimal point
maximising the power (the ratio between throughput,λ(tot) · B,
and the mean delayE [T ]) is constant for any value ofd. Hence,
for a given traffic topologyT defining relative traffic intensities the
maximum achievable power is a certain constant and we have

E [T ] = γ(T ) · ρ(opt) =
γ(T )

µ
· λ(opt).

In Figure 9 the optimal transmission ranged is depicted as a func-
tion of total traffic loadρ(tot). As the traffic load increases the
transmission ranged must be decreased in order to satisfy the in-
creased capacity requirements, which explains the shape of the
curves.

Based on the rather surprising discovery made in the previous
example it appears that the achievable maximum power in a dense
wireless multihop network is independent of the transmission range
given a high enough node density and fixed relative traffic intensi-
ties between the nodes (or locations). If this property holds for a
given MAC protocol and traffic scenario then there is a linear rela-
tionship between the obtainable capacity and mean delay,

C = γ∗ · E [T ] ,

i.e., doubling the capacity (e.g. by adjusting the transmission power
appropriately) means you will have to tolerate a two times longer
mean transmission delay.

7. CONCLUSIONS
In this paper we have considered a dense multihop network with

an assumption that the routes can be modelled as straight line seg-
ments. The movement of a packet is modelled by the so-called line
segment traversing process. Using the model we have first anal-
ysed the relayed traffic load in different parts of the network, which
has been validated through ns2 simulations. One special property
of our model is the spatial velocity component, which is used to
capture the queueing delays due to congestion in the network. By
a proper choice of spatial velocity, the model can be adapted to any
given MAC protocol. Additionally, we have given expressions for
the mean one-way delay in the network, which is itself an impor-
tant performance measure of the network, and for the ratio between
throughput and the mean end-to-end delay (power). The results
have been illustrated and validated by numerical examples and ns2-
simulations.
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