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a b s t r a c t

We consider a distributed server system in which heterogeneous servers operate under
the processor sharing (PS) discipline. Exponentially distributed jobs arrive to a dispatcher,
which assigns each task to one of the servers. In the so-called size-aware system, the
dispatcher is assumed to know the remaining service requirements of some or all of the
existing jobs in each server. The aim is to minimize the mean sojourn time, i.e., the mean
response time. To this end,we first analyze anM/M/1-PS queue in the framework ofMarkov
decision processes, and derive the so-called size-aware relative value of state, which sums
up the deviation from the average rate at which sojourn times are accumulated in the
infinite time horizon. This task turns out to be non-trivial. The exact analysis yields an
infinite system of first order differential equations, for which an explicit solution is derived.
The relative values are then utilized to develop efficient dispatching policies by means of
the first policy iteration (FPI). Numerically, we show that for the exponentially distributed
job sizes the myopic approach, ignoring the future arrivals, yields an efficient and robust
policy when compared to other heuristics. However, in the case of highly asymmetric
service rates, an FPI based policy outperforms it. Additionally, the size-aware relative
value of an M/G/1-PS queue is shown to be sensitive with respect to the form of job size
distribution, and indeed, the numerical experiments with constant job sizes confirm that
the optimal decision depends on the job size distribution.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Dispatching problems arise in many contexts such as manufacturing sites, web server farms, and other parallel server
systems. Typically one is interested in minimizing the mean sojourn time. Within each server, the first-come-first-served
(FCFS) discipline is perhaps the most common due to its nature and ease of implementation. It has also been studied
extensively in the literature since the early works by Winston [1], Ephremides et al. [2], and others. However, e.g., web
servers and distributed systems are better modeled as processor sharing (PS) queues, where several clients are served at the
same time [3,4]. The PS queues [5] have a very convenient insensitivity result stating that the mean sojourn time depends
only on themean job size, facilitating, e.g., flow level analysis in data networks. Unfortunately, transient analysiswith respect
to sojourn time is difficult [6,4] and often limited to exponential service times [7,8]. While PS offers in some sense a fair
schedule, the optimal scheduling discipline with respect to the mean sojourn time is the shortest-remaining-processing-
time (SRPT) [9,10].

In a dispatching system, the optimal dispatching decision with respect to sojourn time depends on the scheduling policy
and the available information in general. Often the number of jobs (or tasks) per server is assumed to be known; cf. join-the-
shortest-queue (JSQ) policy. In contrast, [11,12] assume FCFS and that the dispatching policy is aware of the size of the new
job, but not about the state of the queues, and propose the so-called size-interval-task-assignment (SITA) policy (e.g., short
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Fig. 1. Dispatching system with processor sharing (PS) queues.

jobs to one queue, and the rest to another). The optimality of SITA was established later in [13]. Bonomi considers PS with
various state information in [3] and argues that JSQ is a near optimal policy with identical servers. To this end, a heuristic
Myopic policy is developed by assuming that the (remaining) service requirements of all existing jobs are available and
disregarding the future arrivals. Recently, Gupta et al. provide an approximate analysis of JSQ/PS system with general job
size distributions [4]. Without any size or state information, one has to settle with a random policy known as the Bernoulli
splitting, for which the optimal probabilities can be computed in different settings [14–16].

In this paper, we consider a dispatching problem with exponentially distributed job sizes and processor sharing as
illustrated in Fig. 1. The dispatcher is aware of the state of each queue, i.e., the number of tasks and also the remaining service
requirements of all or some of them. This kind of system serves as an abstract model, e.g., for file servers in a distributed
content delivery network, web server farms, and multitasking computing systems [4,11,12,17].

First we study a single M/M/1-PS queue in isolation and derive an important result regarding the relative value of state,
which characterizes the value of queue state with respect to the expected sojourn time in infinite time horizon. Then we
apply these results to the dispatching problem and develop efficient and robust state-dependent policies in the Markov
decision process (MDP) framework. In particular, starting from an arbitrary state-independent policy, the single queue
results allow one to carry out the first policy iteration (FPI) step yielding improved state-dependent policies that take into
account the future arrivals. The knowledge of the relative values is a prerequisite to this end.

A similar approach has been previously used by Krishnan in the context of routing calls in a telephone network [18] so
as to minimize the blocking probability, and in the context of a dispatching problem for parallel M/M/s-FCFS servers [19] so
as to minimize the mean sojourn time. With respect to the mean sojourn time, the traditional M/M/1-FCFS queue has been
analyzed in [20]. Recently, FCFS, last-come-first-served (LCFS), shortest-processing-time (SPT) and SRPT disciplines with a
general service time distribution are analyzed in [21], while the M/D/1-PS queue has been treated in [22].

The rest of this paper is organized as follows. In Section 2, we analyze a single M/M/1-PS queue, and derive a closed-form
expression for the size-aware relative value of state with respect to the sojourn time. In Section 3, the theoretical result is
applied to develop efficient dispatching policieswithin theMDP framework, and Section 4 contains the numerical examples.
Section 5 concludes the paper.

2. Analysis of an M/M/1-PS queue

In this section, we analyze a single M/M/1-PS queue and develop a closed-form expression for the size-aware relative
value with respect to sojourn time. The result is utilized later in Section 3 to carry out FPI on state-independent random
dispatching policies.

Let z = (n; x1, . . . , xm) = (n; x) denote the state of an M/M/1-PS queue with n + m tasks, where n denotes the number
of jobs with exponentially distributed unknown (remaining) workload, and x1 > x2 > · · · > xm denote the remaining
workloads of them known tasks. Let λ denote the Poissonian arrival rate and 1/µ the mean of the exponentially distributed
job sizes. Furthermore, ρ = λ/µ is the offered load assumed to be less than one, ρ < 1.

The sojourn time costs are accrued at time t at a rate equal to the number of jobs in the queue, denoted by Nz(t) with z
being the initial state of the queue. We are interested in the cumulative sojourn time during time interval (0, t).

Vz(t) ,
∫ t

0
Nz(s) ds.

We already know the mean number of jobs in the system [23], i.e., the mean cost rate r ,

r , E[N] =
ρ

1 − ρ
=

λ

µ − λ
. (1)

Our aim is to quantify the so-called relative value of state z, denoted by vz and defined as the expected difference in the
cumulative sojourn time in infinite time horizon between a system initially in state z and a system initially in equilibrium,

vz , lim
t→∞

(E[Vz(t)] − E[N] · t).

For a stable queue with λ < µ the above limit is well-defined and finite. The difference vz1 − vz2 then characterizes the
expected difference in the future costs (in sojourn time) between two initial states z1 and z2. For two special cases, an
expression for vz is already available from the past work:
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Lemma 1. The relative value of a state with n exponentially distributed jobs in M/M/1-PS queue with arrival rate of λ and mean
job size of 1/µ is given by,

v(n;0) = vn =
1
2

·
n(n + 1)
µ − λ

−
λµ

(µ − λ)3
. (2)

The result is derived in [20,24] and holds for an arbitrary work conserving M/M/1 queue. The constant term follows from
the identity

∑
i πivi = 0, where the πi denote the steady-state probability distribution of the system.

The myopic expression for the cumulative sojourn time is given in [3,22] by assuming that no further jobs arrive at the
queue, or equivalently, when λ → 0. The (deterministic) cumulative sojourn time is equal to the relative value:

Lemma 2. The relative value of a state with m known remaining service requirements x1 > x2 > · · · > xm in M/M/1-PS queue
with arrival rate of λ and mean job size of 1/µ, at the limit λ → 0, is given by,

v(0;x)|λ→0 = xmm2
+ (xm−1 − xm)(m − 1)2 + · · · + (x1 − x2) =

m−
i=1

(2i − 1)xi. (3)

2.1. Exact analysis of a single task

For simplicity, let us consider first state z comprising a single known job with size x and n jobs with unknown
exponentially distributed service requirements, z = (n; x). Our aim is to derive an expression for the relative value with
respect to sojourn time, vz. For ease of notation, in this case we can simply write νn(x) , vz for state z = (n; x).

First, considering a differential time interval ∆ at state z = (n; x), we have

νn(x) = (n + 1 − r)∆ + λ ∆ νn+1(x − ∆/(n + 1)) +
n

n + 1
µ ∆ νn−1(x − ∆/(n + 1))

+


1 −


λ +

n
n + 1

µ


∆


νn(x − ∆/(n + 1)), (4)

where the first term corresponds to the difference in the cost during a short time interval of ∆, the second and third terms
to the future costs when a job arrives or departs during (0, ∆), respectively, and the fourth term to the future costs with no
change in the occupation during (0, ∆). At the limit ∆ → 0, the above Eq. (4) then gives

ν ′

n(x) = (n + 1)(n + 1 − r) + (n + 1)λ(νn+1(x) − νn(x)) + nµ(νn−1(x) − νn(x)), (5)

where the last term is omitted for n = 0. Moreover, (2) already gives the boundary conditions,

lim
x→0

νn(x) = vn. (6)

Eq. (5) is an infinite system of first order (ordinary) differential equations, which together with the boundary conditions
(6), has a unique solution. We note that (5) is similar to the system of differential equations obtained in [7] for finding the
Laplace transform of the conditional sojourn time distribution of a job with size x in the same setting (M/M/1-PS queue with
a job of size x and n other jobs with unknown exponentially distributed sizes).

Proposition 1. The relative value of state (n; x) comprising one known task of size x and n tasks with unknown exponentially
distributed sizes in M/M/1-PS queue with arrival rate of λ and mean job size of 1/µ is given by

v(n;x) = vn +
1

µ(1 − ρ)2

[
µx + (2 − ρ)


n −

ρ

1 − ρ


(1 − e−µ(1−ρ)x)

]
. (7)

Proof. A proof follows by substituting v(n;x) = νn(x) from (7) to (5) and observing that also the boundary conditions (6) are
met. �

Example 1. Let us consider a system with λ = 1 and µ = 2 so that the offered load is ρ = 1/2 and the mean number of
jobs in the system is r = 1. The numerical results for the first few νn(x) are illustrated in Fig. 2. On x-axis is the length of
the known task, and y-axis gives the corresponding relative value (left graph) and its derivative (right graph). The relative
values increase approximately linearly for large x, as all derivatives converge to 4 as x tends to ∞. Even though ν ′

1(x) is a
constant in Fig. 2, this is not generally the case. Substituting λ = 1 and µ = 2 into (7) yields

ν0(x) = 3e−x
+ 4x − 5,

ν1(x) = 4x − 1,
ν2(x) = −3e−x

+ 4x + 4, . . . .
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Fig. 2. Relative value νn(x) of a single known job with size x and its derivative. The subscript n denotes the number of tasks with unknown remaining job
sizes.

2.2. Exact analysis of multiple tasks

The previous treatment generalizes to the case of m jobs with known sizes and n jobs with unknown exponentially
distributed service requirements (i.i.d.). Again, our objective is to derive an expression for the size-aware relative value with
respect to sojourn time, denoted by vz = v(n;x1,...;xm). To this end, it is convenient to define the state by the differences yj
such that (see Fig. 3 (left))

x1 = y1 + y2 + · · · + ym
x2 = y2 + · · · + ym
...
xm = ym.

(8)

So y = (n; y1, . . . , ym) and z = (n; x1, . . . , xm) correspond to the same state with different state description. Note that
under the PS discipline, allm known jobs receive service at the same rate. Thus the differences y1, y2, . . . , ym−1 between the
unfinished works do not change; it is only the common part ym that decreases as the service proceeds. When ym becomes
zero, the shortest job is completed and in the remaining system of m − 1 known jobs the service continues with only ym−1
decreasing etc. The known jobs depart from the system in the predefined order, and we refer to these durations between
the departures as the stages. First is stagemwithm known tasks present, then stagem−1, etc. Let yk = (y1, . . . , yk) denote
the initial state at the start of stage k, and define y0 , 0. Thus, e.g., y1 = (y1) corresponds to the knownworkload when only
one task is remaining, y2 = (y1, y2), etc. Next, define auxiliary functions for k known jobs, k = 1, 2, . . .,

νn(yk) , v(n;y1+···+yk,...,yk−1+yk,yk),

where n is the number of exponentially distributed unknown workloads at start. Obviously, (7) already gives νn(y1) for
k = 1. The differential equation system for an arbitrary stage with k known tasks reads

d
dyk

νn(yk) = (n + k)(n + k − r) + (n + k) λ(νn+1(yk) − νn(yk)) + nµ(νn−1(yk) − νn(yk)). (9)

The general boundary conditions are

lim
yk→0

νn(yk) = νn(yk−1) ⇐⇒ νn(y1; . . . ; yk−1; 0) = νn(y1; . . . ; yk−1), (10)

with νn(0) = vn. Thus, the only difference to (5) is the constant factor (n+k) instead of (n+1). Differential equation system
(9) with boundary conditions (10) can be solved recursively starting from k = 1 and working out the intermediate results
for k = 2, . . . ,m − 1, and then finally k = m. As (9) involves only the neighboring functions νn+1(yk) and νn−1(yk), the
procedure to obtain, e.g., ν0(ym) requires the computation of the intermediate results at the marked points in the triangle
of Fig. 3. This is straightforward numerically. Moreover, it turns out that the following recursive equation holds:

νn(yk) = νn(yk−1) +
1

µ(1 − ρ)2


µk2yk + (2 − ρ)


n −

kρ
1 − ρ


(1 + e−µ(1−ρ)yk−1

+ e−µ(1−ρ)(yk−2+yk−1) + · · · + e−µ(1−ρ)(y1+···+yk−1))(1 − e−µ(1−ρ)yk)


. (11)

We note that the boundary conditions (10) hold by construction, and substituting (11) into (9) shows that the differential
equation is also satisfied. Consequently, we have:
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Fig. 3. Relative value of an arbitrary state y = (0; y1, . . . , ym) is obtained recursively inm − 1 steps.

νn(ym) = vn +
1

(1 − ρ)2

m−
k=1

k2yk +
2 − ρ

µ(1 − ρ)2

m−
k=1


n −

kρ
1 − ρ


(1 + e−µ(1−ρ)yk−1 + · · · + e−µ(1−ρ)(y1+···+yk−1))

× (1 − e−µ(1−ρ)yk). (12)

The first term merely defines the offset, the second term is the sum of the known sojourn times (3), i.e., the myopic
component, multiplied by the constant (1 − ρ)−2, and the third term is related to the future arrivals. With the original
state description, z = (n; x1, . . . , xm), where xi > xi+1, the above gives our final result:

Proposition 2. The relative value of state (n; x1, . . . , xm) comprising m tasks with remaining job sizes x1 > x2 > · · · > xm and
n tasks with unknown exponentially distributed (remaining) job sizes in M/M/1-PS queue with arrival rate of λ and mean job size
of 1/µ is given by

v(n;x1,...,xm) = vn +
1

(1 − ρ)2

m−
k=1

(2k − 1)xk +
2 − ρ

µ(1 − ρ)2

m−
k=1


n −

kρ
1 − ρ

 k−
i=1

e−µ(1−ρ)(xi−xk)


× (1 − e−µ(1−ρ)(xk−xk+1)), (13)

where we have used the convention that xm+1 , 0.

We note that (13) converges to (3) when n = 0 and λ → 0.

Remark 1. For comparison, an M/D/1-PS queue has been analyzed in [22]. With fixed job sizes x = d, tasks depart in the
same order as they arrive, which facilitates the analysis, and eventually allows one to write an exact expression for the
size-aware relative value with respect to sojourn time,

v(0;x1,...,xm) − v0 =
λ

1 − ρ
u2
z − uz + 2

m−
i=1

i xi, (14)

where v0 denotes the relative value of an empty system, and uz is the unfinished work (backlog), uz =
∑m

i=1 xi.

Clearly, (14) is different from (13), i.e., the size-aware relative values of an M/G/1-PS queue are sensitive to the job size
distribution. We note that [6] finds the Laplace transform for the sojourn time in an M/G/1-PS queue, which also establishes
the sensitivity of PS queue on the higher order moments (than the mean) of the job size distribution. In contrast, for FCFS
and (preemptive and nonpreemptive) LCFS disciplines, the size-aware relative values depend only on the mean job size and
thus they are insensitive to the job size distribution [21].

Example 2. As an example, let us consider an M/M/1-PS queue with two tasks with remaining service requirements x1 and
x2, respectively. The mean job size is 1/µ = 1/2, and the arrival rate is varied so that the offered load is ρ = 0.1, 0.5, 0.8.
Fig. 4 illustrates the equivalue contours of the size-aware relative value in (x1, x2) space. We can observe that with a low
load, for a given total workload x1 + x2, having highly asymmetric service requirements, i.e., x1 ≫ x2 or x1 ≪ x2, is clearly
better than equal requirements, x1 ≈ x2. However, when the offered load increases, the total workload x1 + x2 appears to
dominate.

3. Application to dispatching problem

In this section, we utilize the size-aware relative value of M/M/1-PS queue to dispatching problem. First we describe the
state-independent random policies and some state-dependent reference policies. Then the size-dependent FPI policies are
given, and further illustrated in the numerical examples.

In a dispatching problem, a stream of tasks arrives at a dispatcher, which then forwards them to one of the q servers.
Different queuesmay have different service rates, andwe let cj denote the service rate of queue j. Without lack of generality,
we can assume that c1 ≥ c2 ≥ · · · ≥ cq. For the sake of illustration, one can assume that the job sizes X with mean
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Fig. 4. Contour plots of the size-aware relative value in an M/M/1-PS queue with two tasks having service requirements x1 and x2 . As load ρ increases, the
amount of unfinished work x1 + x2 appears to dominate.

1/µ = E[X] are measured in bytes, service rates cj in bytes per second, and the queue specific service requirements Xj with
mean 1/µj in seconds. Thus, for a given job size x the following elementary relations hold:

µj = µ · cj, xj = x/cj, ρj = λj E[X]/cj, (15)
whereλj denotes the task arrival rate to queue junder given policy. The offered load to thewhole system isρ = λ E[X]/

∑
i ci

and assumed to be less than 1 (stable system).

3.1. State-independent random policies

A state-independent random policy, known as Bernoulli splitting, assigns each task to one of the q queues independently
in random using a probability distribution pj, j = 1, . . . , q. Therefore, decisions are independent of the queue states. The
queue specific loads are given by

ρj = (pj/cj) λ E[X].

The important observation here is the fact that with Poisson arrival process and state-independent policy, the arrival process
to each queue remains also Poissonian, which facilitates the FPI step (see Section 3.3). In this work, we consider two random
policies: RND-ρ and RND-opt.

3.1.1. RND-ρ
One rational choice for the dispatching policy is to balance the load equally among the servers, so that the ρi = ρj for all

i, j. To this end, RND-ρ uses probability distribution

pj =
cj∑
i
ci

,

which then gives ρj = λ E[X]/
∑

i ci = ρ. The resulting system is stable as long as the offered load ρ is less than one.

3.1.2. RND-opt
RND-opt policy uses the probability distribution that minimizes the mean sojourn time. The determination of the pj is

straightforward due to the insensitivity of M/G/1-PS. More specifically, the mean sojourn time is

E[T ] =

−
i

pi
µi − piλ

=

−
i

pi
µci − piλ

, (16)

from which the optimal probability distribution can be obtained with aid of Lagrange method, [14,15],

pj =


1
λ


µj −

√
µj

β


, j ≤ q∗,

0 otherwise,
(17)

where, using the notation that µi = 0 for i > q,

β =

q∗∑
j=1

√
µj

q∗∑
j=1

µj


− λ

, and q∗
= min


i ≥ 1 : µi+1 ≤


i∑

j=1
µj


− λ

2


i∑

j=1

√
µj

2


.

Thus, the optimal solution uses only the first q∗ servers when the offered load is sufficiently small. A more general case with
arbitrary server specific holding costs is treated in [16].
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3.2. State-dependent policies

Let us next briefly describe some commonly considered state-dependent policies, where, in contrast to the previous
section, dispatching decisions depend on the states of the queues. Let α(z, x) denote the action, i.e., the queue a given policy
chooses for a new job with size x when the system is in state z. If the action does not depend on x, with a slight abuse of
notation, we write α(z).

3.2.1. JSQ
Join-the-shortest-queue (JSQ) is a prime example of a state-dependent policy, where the dispatcher chooses the queue

with the least number of jobs. In case of ties, the fastest server among the candidates is chosen. Letting ni denote the number
of jobs in queue i, the system’s state is z = (n1; . . . ; nq), and the JSQ policy can be stated as

α(z) = min

i : ni = min

j
nj

,

as the service rates were ordered, c1 ≥ c2 ≥ · · · ≥ cq. For the given state information, JSQ is also the optimal policy for
exponentially distributed job sizes and identical PS servers, ci = cj ∀ i, j [1–3].

3.2.2. Myopic
One general dispatching policy stems from the assumption that no further jobs arrive after the job that has just arrived. In

particular, when the job sizes are known, (3) allows one to compute the additional cost in terms of cumulative sojourn time
for each possible action, and consequently to choose the optimal queue. This policy was introduced by Bonomi in [3] as π∆

and referred to as the opt-0 policy in [4]. In contrast to the abovework, our exact result (13) for the size-aware relative value
explicitly includes the myopic term, which suggests that for Poisson arrival process and exponentially distributed job sizes,
the myopic expression can be expected to be a robust and efficient policy. A sufficient state description is z = (z1; . . . ; zq)
with queue states zj = (xj,1, . . . , xj,mj), where xj,1 > xj,2 > · · · > xj,mj denote the remaining service requirements in queue
j in the decreasing order. Then, (3) gives

α(z, x) = argmin
j

(2kj + 1)xj + 2
mj−

i=kj+1

xj,i

 , (18)

where xj = x/cj denotes the service requirement (in time) of the new job in queue j, and kj corresponds to the number of
jobs longer than xj in queue j, kj = |{xj,i : xj,i > xj}| = mj − max{i : xj,i < xj} with xj,0 , 0.

3.2.3. LWL-∆
The size-aware relative value for an M/D/1-PS queue is given in (14), and therefore FPI can be carried out also in this

case [22]. Starting from RND-ρ basic policy, one ends up with a policy which chooses the queue j minimizing a weighted
sum of workload and the additional work,

α(z) = argmin
j

(uzj + (1/2) · dj), (19)

where uzj denotes the total workload (backlog) in queue j, and dj is the (constant) service time in queue j, dj = d/cj. The
above policy belongs to a policy family defined by

α(z, x) = argmin
j

(uzj + ∆ · x/cj), (20)

where ∆ is a free policy parameter. For example, choosing the queue with the least amount work, referred to as πU in [3]
and the least-work-left (LWL) in [25,4], is obtained with ∆ = 0. We refer to all these policies as LWL-∆, where ∆ = 0.5
(obtained with FPI) is generally a rather good choice for fixed size jobs and PS queues [22]. Note that applying the myopic
criterion (18) for such a system yields

α(z) = argmin
j

(dj + 2uzj),

which is equivalent to (19), i.e., in case of fixed size jobs, the myopic approach and the exact FPI step yield the same policy.
Moreover, this is the optimal policy to dispatch fixed size jobs when the servers are identical [22]. In contrast, in [3] it is
shown that LWL can have a rather poor performance when job sizes vary more.

3.3. Policy iteration with dispatching problem

In general, the knowledge of the relative values enables the FPI step of the Markov decision processes [26–28]. The basic
idea in the policy iteration is to think that one deviates once from the default action of the basic policy, and then returns
back to the basic policy for all later decisions. If the sum of an immediate cost and the relative value of the resulting state is
less than the corresponding quantity with the default action, then, on average, the alternative action yields a lower infinite
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horizon cost and thus choosing it improves the policy. Therefore, among the possible actions, the one with the smallest
expected future costs is chosen. Repeating the same procedure for all states defines a new improved policy. The first policy
iteration step typically yields the highest improvement toward the optimal policy.

For the size- and state-aware dispatching problem, a rather general state description is defined by z = (z1; . . . ; zq)where
zj = (nj; xj,1, . . . , xj,mj) denotes the state of queue j, nj is the number of tasks with unknown exponentially distributed
service requirement in queue j, and xj,1 > xj,2 > · · · > xj,mj are the remaining service requirements of the mj known jobs
currently present in queue j. The remaining known workload (backlog) in queue j is thus uzj =

∑mj
i=1 xj,i. In a size- and

state-aware system, all remaining service requirements are known and nj = 0. However, e.g., JSQ policy expects only the
queue occupations nj, and therefore in that case mj = 0 instead. In other words, the above general state description lends
itself to assumptions different policies make.

When minimizing the mean sojourn time, there are no immediate costs, but instead, the costs are accrued at the state
specific rates equal to the number of tasks in the system, N(t). Consequently, for an arrival at state z, the policy iteration
step reduces to

α(z, x) = argmin
z′∈A(z,x)

(vz′ − vz), (21)

where A(z, x) denotes the set of possible destination states from state z having the new task with size x added to one of the
q queues. The quantity vz on the right-hand side is a common constant and thus could have been omitted. We have written
it explicitly here, so that the quantity vz′ − vz corresponds to the expected increase in the cumulative sojourn time.

3.3.1. Separation with state-independent policy
With an arbitrary state-independent policy, the arrival process to each queue is Poissonian and the queues behave

independently. Consequently, the relative value of state is the sum of the queue specific relative values,

vz =

q−
j=1

vzj .

Moreover, adding a task with size x to queue j does not change the state of the other queues (with a state-independent
policy), and therefore, the change in the relative value is

wj(x) , vz′ − vz = vz′j
− vzj ,

where z′ and z′

j correspond to the resulting global state and the resulting state of queue j, respectively. Therefore, with a
state-independent basic policy, the policy iteration step (21) becomes

α(z, x) = argmin
j

wj(x) = argmin
j

(vz′j
− vzj).

3.3.2. Size-oblivious FPI policy PS0
As mentioned, a different amount of information may be available at the dispatcher. For example, JSQ is the optimal

policy, e.g., for identical servers with FCFS or PS assuming that only the occupation in each queue is known [1–3]. However,
with heterogeneous servers, JSQ is obviously sub-optimal. Eq. (2) enables the FPI step, and using RND-ρ as the basic policy
gives

α(z) = argmin
j

nj + 1
cj

,

where z = (n1, . . . , nq) with nj denoting the number of tasks in queue j upon arrival. In practice, in case of ties it appears to
be beneficial to favor a slower server, and thus for a very small ϵ > 0, we define the PS0 policy by

α∗(z) = argmin
j

nj + 1 − ϵ

cj
.

3.3.3. Size-aware FPI policy PS1
Nextwe assume that a dispatcher is aware of the size of the new task, denoted by x, and the number of active tasks in each

queue but not their remaining workloads, so that z = (n1, . . . , nq). This could be the case, e.g., when several dispatchers
share a common pool of servers. In this case, (7) readily gives the required relative value of state for the FPI step. That is, the
expected cost of accepting a new task of size x to queue j is

wj(x) = v(nj;x) − vnj =
1

µcj(1 − ρj)2

[
µx + (2 − ρj)


nj −

ρj

1 − ρj


(1 − e−µx(1−ρj))

]
,
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where we have utilized the identity µjxj = µx that follows from (15). With RND-ρ as the basic policy, the ρj are equal and
omitting the common constants in the wj(x) gives

w∗

j (x) =
1
cj


µx + (2 − ρ)


nj −

ρ

1−ρ


(1 − e−µx(1−ρ))


=

1
cj
[A(x) · nj + B(x)].

We refer to the policy minimizing the above as the PS1 policy,

α(z, x) = argmin
j

w∗

j (x).

In a symmetric case all servers have equal rates, ci = cj, and the above reduces further,

α(z, x) = argmin
j

w∗

j (x) = argmin
j

nj,

i.e., in this case both PS0 and PS1 reduce to JSQ. This explains why JSQ has such a good performance with symmetric servers,
as observed in [3,4]. Conversely, in the asymmetric cases with ci ≠ cj for i ≠ j, PS1 assigns extremely long jobs categorically
to the fastest server independently of the states of the queues.

3.3.4. Size- and state-aware FPI policies
However, in general we have assumed a size-aware system, where the dispatcher is aware of the (remaining) job sizes

in each queue, z = (z1; . . . ; zq) with queue states zj = (xj,1, . . . , xj,mj). In this case, (13) allows the FPI step for an arbitrary
state-independent basic policy. Here we consider two such policies, namely RND-ρ and RND-opt, yielding two new policies
which we refer to as the FPI-ρ and FPI-opt, respectively. Formally, the improved policy is defined by

α(z, x) = argmin
j

(vzj⊕x/cj − vzj), (22)

where zj ⊕ x/cj denotes the resulting state of queue j if the new task of size x is assigned to it. This policy generalizes also to
cases where each queue j has nj additional tasks with (unknown) exponentially distributed service requirements, as well as
to cases where the size of the new job is not known, but obeys the same exponential distribution, cf. Eq. (13).

4. Numerical examples

In this section, we give numerical results for a two-server dispatching system. First we consider the case of exponentially
distributed job sizes, and then, for comparison, also show the corresponding performance under constant job sizes. The
dispatching policies evaluated are summarized in Table 1. Additionally, the performance is evaluated with an equivalent
capacity single-server systemwith PS discipline. The single-server system serves as a reference for investigating the penalty
due to splitting of the server capacity to independent servers. The primary server has a unit service rate c1 = 1, and the
secondary server is:

(i) equally fast; symmetric case, c2 = 1,
(ii) two times slower; asymmetric case, c2 = 1/2,
(iii) four times slower; highly asymmetric case, c2 = 1/4.

In other words, the service rates are c1 = 1 and c2 = 1, 1/2, 1/4. The probability of selecting the faster primary server
1 according to RND-opt policy is illustrated in Fig. 5 for the three example cases. The secondary server is omitted from the
solution in the asymmetric cases when the offered load is low, cf. Eq. (17).

4.1. Exponentially distributed job sizes

We start with exponentially distributed job sizes, X ∼ Exp(1). The numerical results with RND, LWL-∆, JSQ and Myopic
dispatching policies are given in Fig. 6, and the corresponding results with the various FPI policies are depicted in Fig. 7. All
policies are listed in Table 1. In general, we can observe that the Myopic policy seems to work very well in this case, as one
can expect on the basis of the earlier analysis.

In the symmetric case of c1 = c2 = 1, several policies are in fact identical. First, RND-ρ and RND-opt have the same
probability distribution, and consequently FPI-ρ and FPI-opt are identical. Second, JSQ, PS0 and PS1 are identical (see
Section 3.3.3) and work reasonably well, as reported also in [3,4]. Third, the LWL policies are all identical and have a similar
performance as JSQ. The size- and state-aware FPI-ρ/opt policy operates near the performance of the Myopic policy, but
fails to supercede it as the best policy. However, the improvement from the starting point (RND-ρ/opt) is substantial. Recall
that the FPI step yields always a better policy than the basic policy, unless the basic policy was already the optimal policy,
in case of which the same policy is obtained. However, there is no guarantee that FPI yields a better policy than some other
heuristic policy, such as the Myopic policy in this case.

In the asymmetric case with c2 = 1/2, the observations are generally the same, albeit the difference between the
Myopic policy and the FPI policies has become smaller. Also, FPI-opt performs slightly better than FPI-ρ, while, somewhat
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Table 1
Dispatching policies evaluated in the numerical examples.

RND-ρ State-independent random policy (Bernoulli splitting) with load balancing
RND-opt State-independent random policy (Bernoulli splitting) minimizing the mean sojourn time
LWL-∆ Least-work-left with ∆ = 0, 1/2, 1, and with an optimal ∆ (determined each time); backlogs

known
JSQ Join-the-shortest-queue; queue occupancies known
Myopic Minimize the sojourn time on condition that no further jobs arrive; all job sizes known, see (18)
FPI-ρ First policy iteration on RND-ρ; queue occupancies and some/all job sizes known
FPI-opt First policy iteration on RND-opt; queue occupancies and some/all job sizes known
PS0 First policy iteration on RND-ρ; queue occupancies known
PS1 First policy iteration on RND-ρ; queue occupancies and the size of the new job known

Fig. 5. The optimal Bernoulli splitting probabilities (RND-opt) according to (17) in the three example cases as a function of offered load ρ. With asymmetric
servers, initially it is advantageous to route all tasks to the faster primary server (p1 = 1). RND-opt and RND-ρ become identical when ρ → 1.

Fig. 6. Numerical results for a two-server dispatching system with heuristic policies and exponentially distributed job sizes, X ∼ Exp(1).

surprisingly, PS0 outperforms PS1 even though it relies on less information. Again, we note that FPI only guarantees an
improvement over the basic policy.

In contrast, in the highly asymmetric case with c2 = 1/4, the performance of JSQ has dropped significantly, the PS0
and PS1 policies based on the partial information still work reasonably well, while LWL-opt with an appropriately chosen
parameter ∆ achieves almost equal performance with the Myopic policy. More importantly, the FPI-opt policy manages to
decrease the mean sojourn time clearly below that of the Myopic policy. The sudden change in the performance of FPI-opt
at about ρ = 0.4 is due to the fact that until then the basic policy RND-opt has neglected the secondary server totally (see
Fig. 5). State-dependent policy apparently utilizes the secondary server also when ρ is lower. This suggests that such an
extremal starting distribution is disadvantageous for the FPI procedure, and further improvements can be expected with an
appropriately chosen random basic policy.
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Fig. 7. Numerical results for a two-server dispatching system with FPI based policies and exponentially distributed job sizes, X ∼ Exp(1).

Fig. 8. Numerical results for a two-server dispatching system with constant job sizes.

In general, it seems that Myopic is a strong and robust dispatching policy for PS queues. By definition, it is optimal when
λ → 0. However, the ‘‘averaging’’ nature of the PS disciplinemakes it a good choice also otherwise. Only when servers differ
sufficiently and the load is high, does FPI-opt (and also FPI-ρ) attain a lower mean sojourn time. The highest improvement
in the three elementary cases is less than 5%. However, in more complicated settings the gain can be higher. For example,
for five servers with service rates c1 = 1 and c2, . . . , c5 = 1/4, FPI-opt attains over 10% lower mean sojourn time than the
Myopic policy. Regarding PS0 and PS1, it seems that announcing the size of the new job (PS1) does not help the dispatcher
much if the remaining service requirements of the other jobs are not available. Again, the situationmay be different in other
settings.

4.2. Constant job sizes

For comparison, we also ran similar simulationswith constant job sizes. Recall from Section 3.2.3, that in this caseMyopic
and LWL-0.5 (i.e., FPI) become identical policies. The numerical results are given in Fig. 8. One can observe that in the case of



Author's personal copy

E. Hyytiä et al. / Performance Evaluation 68 (2011) 1136–1148 1147

highly asymmetric servers, LWL-∆ policy, with an appropriately chosen ∆, yields even smaller mean sojourn time than the
Myopic policy. Hence, even though the Myopic policy works well in our numerical examples, it is not generally an optimal
dispatching policy for PS queues (even among the heuristic policies considered). We note that for FCFS and LCFS disciplines,
the size-aware relative value depends only on themean job size, i.e., the relative value is insensitivewith respect to the form
of the job size distribution [21]. As mentioned earlier, this is no longer the case with the PS queue, albeit the mean sojourn
time in an M/G/1-PS queue is insensitive to job size distribution.

5. Conclusions

In this paper, we have studied the processor sharing (PS) discipline in the context of a dispatching problem with
heterogeneous servers and exponentially distributed job sizes. In such a system, arriving tasks are assigned to one of
the available servers, which then processes the given tasks in parallel according to the PS discipline. In principle, a good
dispatching decision requires that one takes into account also the future arrivals. We have approached this problem within
the MDP framework, which provides a systematic methodology to find robust dispatching policies. In particular, we first
derived the size-aware relative value with respect to the sojourn time in an M/M/1-PS queue, where the state information
comprises the number of tasks and the remaining service requirements of some or all of them. The exact formula is obtained
by solving an infinite systemof ordinary differential equations. The result has an intriguing form, fromwhich one can identify
the already known (myopic) and the expected contributions. For the completely size-aware systemwith all job sizes known,
it turns out that the minimum cumulative sojourn time of the present tasks (i.e., without further arrivals) can be used as a
reasonable approximation for the relative value.

The knowledge of the relative values, or their approximations, enables the first policy iteration (FPI) step for an arbitrary
state-independent random policy. As a result, one obtains efficient and robust state-dependent policies tailored for M/M/1-
PS queues. The myopic approach focuses solely on the known jobs, and can be related to FPI by an approximation of the
exact relative value. Its performance is good in the numerical examples due to the averaging nature of the PS discipline.
The optimal Bernoulli split based FPI-opt policy manages to clearly outperform it only with highly asymmetric servers and
reasonably high load. The differences among the FPI based policies are relatively small. In contrast, e.g., the performance
of JSQ, which is known to be good in the symmetric case [3,4], is rather weak in the asymmetric settings. In addition to
the dispatching problems, the relative values can also be utilized, e.g., with fair pricing schemes. The future work includes
comprehensive analysis of the value of the available information, e.g., about the job sizes and scheduled arrivals.
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