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Esa Hyytïaa, Jorma Virtamob
a Telecommunications Research Center Vienna, Donau-City Straße 1, 1220 Vienna, Austria
b Department of Communications and Networking, Helsinki University of Technology, Finland

A B S T R A C T

We consider the load balancing problem in large wireless multi-hop networks by applying the continuum
approximation. The task is to find routes, geometric curves,such that the maximal traffic load in the net-
work is minimized. In finite fixed networks, multi-path routes generally yield a lower congestion and thus
allow higher throughput. In contrast, we show that in dense wireless multi-hop networks, the optimal load
balancing can be achieved by a destination based single-path routing referred to as field-line routing. This
is because any routing can be transformed to the corresponding field-line routing with the same or better
performance, by using as paths, the field lines of the so-called destination flow associated with the original
routing. The concepts are illustrated with two examples. Inthe case of a unit disk with unit traffic, the
maximal load of 0.389 of a multi-path routing system is reduced to 0.343 by using the field-line routing.
Similar improvements are also demonstrated for the unit square.
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1 Introduction

The load balancing problem in fixed networks is a well-known problem for which several formulations
have been proposed. Typically, one is asked to find such routes that minimize the maximal link load. In
general, lower congestion can be obtained by dividing the traffic flows into several routes, i.e., by using
multi-path routes. Frequently the problem description lends itself to an efficient formulation as an LP-
problem – see, for example, [1]. The approach is generic and can be applied to different kinds of networks
ranging from packet switching to lightpath routed optical networks.

In this paper, we consider the load balancing problem in a wireless multi-hop network in the setting of a
so-called massively dense multi-hop network. A massively dense multi-hop network means that 1) there are
nodes practically everywhere, and 2) that a typical path between two nodes consists of a large number of
hops, (i.e., the transmission range is several orders smaller in magnitude than the diameter of the network).
Note that in the considered type of networks, the traffic loadconsists almost solely of the relay traffic.
At the limit, there is a strong separation between themicroscopic level, corresponding to the immediate
neighborhood of a given node, and themacroscopic level, corresponding to the end-to-end connections.
At the microscopic level, the nodes are simply concerned about forwarding a given packet to the direction

1



defined by the chosen routing. In practice, this means that, locally, a packet is forwarded to the furthest
reachable node in that direction.1 At the macroscopic level, one is concerned with the end-to-end paths,
and the assumption of a strong separation between the different scales justifies describing the underlying
network as a continuous medium and the paths as smooth continuous curves [2–10]. In the present paper,
we focus on studying the optimal paths at the macroscopic level.

The exact load balancing problem in dense wireless multi-hop networks considered in the present paper
was first formulated in [11] and has also been studied in [10, 12]. In particular, in [11, 12] we focused on
single-path routing with curvilinear paths and noted that multiple sets of single-path routes can straight-
forwardly be combined to multi-path routing by randomly choosing one of the single-path routes for each
packet. In the present paper, we show that, with respect to the load balancing problem, the optimal solu-
tion can always be achieved by so-called field-line routing,which consists of destination based single-path
routes constructed in a special way. This new result is in striking contrast to finite fixed networks, where
the restriction to single-path routes can severely limit the performance of the network. The optimality of
field-line (single-path) routes is a consequence of anotherresult of this paper, which states that, starting
from any routing system, the scalar flux will decrease or remain the same everywhere if the routing system
is replaced with the corresponding field-line routing. Thisprocedure is demonstrated by examples, where
we are indeed able to reduce the maximal scalar flux by using the field-line routing. Furthermore, we show
that the optimal paths are unique and bidirectional in the so-called bottleneck region, where each optimal
solution achieves the maximum of the scalar packet flux.

The rest of the paper is organized as follows. In Section 1.1 the related work is reviewed. Then, in
Section 2 we introduce the basic concepts and define the load balancing problem. Our main results are
presented in Section 3, where we prove that the optimal solution can be achieved by the destination based
single-path routes. The uniqueness and bidirectionality of the paths in the so-called bottleneck area are
also established. In Section 4, the framework and the new results are illustrated by means of examples, and
Section 5 contains the conclusions.

1.1 Related Work

The research community has recently shown considerable interest in different routing problems in dense
wireless multi-hop networks. The idea of modeling routes ascontinuous curves at the macroscopic level
was introduced in [3] and [4]. However, the trajectory basedforwarding (TBF) scheme, proposed by
Niculescu and Nath [13], already provides the connection between the macroscopic and microscopic lev-
els. Another closely related concept is the so-called geometric routing (or geographic routing) paradigm
[14–16], where each packet carries the information (directly or indirectly) about the location of the destina-
tion node. Typically the nodes along the path simply forwardthe packet in a greedy manner to the neighbor
which is closest to the destination. In the same fashion, Baumann et al., in [17], propose a robust and scal-
able anycast routing scheme for large wireless mesh networks based on temperature fields. The scheme,
referred to as HEAT, assigns each node a temperature in such away that the temperature always increases
towards the gateway node(s).

The shortest path routes tend to concentrate traffic to the center of the network. This is particularly true of

1 To be more precise, the task is to find a coordinated forwarding scheme that maximizes the sustainable packet flow
in a given direction. Finding the maximum is an interesting and challenging problem but is outside the scope of this
paper. The sustainable maximum can be shared between different directions in a time-sharing manner and sets an
upper bound to the scalar flux (see Def. 4). This allows us to assimilate the scalar flux with the local traffic load.

2



uniform traffic demands [8,11,18]. In [18], Pham and Perreau, and later, in [19], Ganjali and Keshavarzian
have studied the possible gain from usingk-shortest paths instead of one. By using approximative mod-
eling techniques, Pham et al. argue that the use of multi-path routing always results in improvement to
throughput. However, the results by Ganjali et al., based onmodeling thek shortest paths as a rectangle
between the node pairs, suggest that this is not always the case, unless a huge number of multiple paths are
allowed for each pair of nodes. This is due to the fact that, inthe limit of massively dense networks, any
finite number of shortest paths reduces to a single line segment between the given nodes.

A considerable amount of recent work relies on strong analogy with physical systems. In [20] a set
of paths are derived, based on the heat conduction in a unit disk. Similarly, Kalantari and Shayman [3]
have studied dense wireless multi-hop networks by leaning to the theory of electrostatics. In particular, the
authors consider a routing problem where a large number of nodes are sending data to a single destination.
In this case the optimal paths are obtained by solving a set ofpartial differential equations similar to
Maxwell’s equations. Using a similar analogy with electrostatics, Toumpis and Tassiulas [2] consider a
related problem of optimal placement of the nodes in a dense sensor network. It is assumed that, at any
point in the network, the information flows exactly in one direction.

Another interesting analogy is provided by geometrical optics. Catanuto et al. [6, 7] have optimized the
routes by exploiting this analogy. The communication cost,which is related to the index of refraction in the
analogy, is defined as a function of the node density. In [10],Popa et al. study the load balancing problem
using the linear programming approach and are able to show that the optimal paths can be expressed as
shortest (minimum cost) paths with a certain metric. This means that the geometrical optics analogy is
accurate, with the index of refraction defining the metric. The result provides an alternative approach to
some of the results in the current paper, first presented in [20]. The main obstacle with the approach seems
to be the technical difficulties in actually determining themetric and computing the traffic load and, as a
practical solution, the authors propose a heuristic set of paths referred to as curveball routing.

Finally, we note that a comprehensive survey on different modeling approaches and problem formula-
tions has been given by Toumpis [5,9].

2 Preliminaries and Definitions

To start with, we first need to define the traffic that is offeredto the network located in some area denoted
by A. In our setting, the nodes form a continuum and thus it is convenient to define the traffic demands as
densities:
Definition 1 (traffic demand density) The rate of flow of packets from a differential area elementdA
aboutx1 to a differential area elementdA aboutx2 is λ(x1,x2) · dA2, whereλ(x1,x2) is called the traffic
demand density [pkts/s/m4].
These end-to-end traffic demands are then satisfied by forwarding each packet from the sourcex1 to the
destinationx2 over a multi-hop route, which, in our context, translates toa continuous path fromx1 to
x2. The set of paths is denoted byP. In this set there is at least one path for every source-destination pair
(x1,x2).

From the point of view of the forwarding load (scalar flux, seeDef. 4), the direction of the traffic is
immaterial. It follows that, without a loss of generality, one can assume symmetric traffic demands:
Definition 2 (symmetric traffic demands) The traffic demands are said to be symmetric if

λ(x1,x2) = λ(x2,x1), ∀x1,x2 ∈ A. (1)
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Fig. 1. Angular fluxϕ(r, θ) is the rate of packets crossing a small line segmentds in angle(θ, θ + dθ) divided by
dφ · ds in the limit dθ, ds → 0. Angular d-flow density is equal to the angular flux of packetshaving a destination in
dA aboutx in the limit dA, dθ, ds → 0.

As part of our earlier work, in [11, 12], we have defined the load balancing problem in dense multi-hop
networks as a minmax problem for the scalar packet flux. Scalar packet flux, in turn, is defined in terms of
so-called angular packet flux (see Fig. 1):
Definition 3 (angular flux) Angular flux of packets atr in directionθ, denoted byϕ(r, θ), is equal to the
rate [1/s/m/rad] at which packets flow in the angle interval(θ, θ + dθ) across a small line segment of the
lengthds perpendicular to directionθ at pointr divided byds · dθ in the limit whends → 0 anddθ → 0.
Definition 4 (scalar flux) Scalar flux of packets [1/s/m] atx is given by

Φ(r) = Φ(P, r) =

2π
∫

0

ϕ(P, r, θ) dθ. (2)

We note that these packet fluxes are defined in analogy with thecorresponding particle fluxes in physics,
e.g., in neutron transport theory [21]. The load balancing problem in the context of massively dense multi-
hop networks is as follows:
Definition 5 (load balancing problem) Find the set of pathsP minimizing the maximal scalar flux,

arg min
P

max
r

Φ(P, r). (3)

For the load balancing problem, two useful lower bounds are given in [11]:
Proposition 6 (distance bound)

max
r

Φ(P, r) ≥ Λ · ℓ
A

, (4)

whereℓ = ℓ(P, λ(x1,x2)) denotes the mean path length.
Proposition 7 (cut bound) For any curveC separating the domainA into two disjoint subdomainsA1

andA2, it holds that

Φopt ≥
1

L

∫

A1

d2x1

∫

A2

d2x2 (λ(x1,x2) + λ(x2,x1)) , (5)

whereL is the length of the curveC and the double integral gives the rate of packets betweenA1 andA2

(both directions included).
The first inequality follows from the fact that the maximal scalar flux cannot be less than the mean scalar
flux, which is equal to the average progress density in the given area. The second inequality is obtained
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by considering the average scalar flux along the cut. The distance bound (4) is further lower bounded by
Λ · ℓSP/A, where SP refers to shortest paths, yielding a strict lower bound for all path sets.

For our developments, it is useful to single out flows associated with the traffic with a given destination
x ∈ A. In the following definitions the prefix d stands for destination.
Definition 8 (angular d-flux density) Angular d-flux density, denoted byϕ(r, θ;x) [1/s/m3/rad], is equal
to the angular fluxϕ(r, θ) divided bydA resulting from the packets having their final destination insmall
areadA aboutx, in the limit whendA → 0.
The concept of angular d-flux density is illustrated in Fig. 1b). By definition,

ϕ(r, θ) =
∫

A

ϕ(r, θ;x) d2x.

Definition 9 (d-flow intensity) Destination flow intensity, or d-flow intensity for short, ofpackets atr
having destinationx, denoted byJ(r,x) [1/s/m3], is equal to

J(r,x) =

2π
∫

0

ϕ(r, θ;x) eθ dθ, (6)

whereeθ is the unit vector in directionθ.
Note that for a given destinationx the d-flow intensityJ(r,x) corresponds to a vector field inR2.

A central concept is the following:
Definition 10 (destination based forwarding (DBF)) In destination based single-path forwarding, the
directionϑ in which a given packet atr is forwarded is defined solely by the destinationx of the packet,
ϑ(r,x) : R

2 × R
2 → [0, 2π).

Consequently, the end-to-end path fromx1 to x2, denoted byp(x1,x2), gets defined by the functionϑ, i.e.,
P = P(ϑ). In [11, 12] explicit expressions for calculating the scalar packet flux for arbitrary DBF paths
is given. Note that destination based forwarding necessarily implies single-path routes but not vice versa,
i.e.,ϑ-forwarding rule is a stronger requirement than just a single-path between any given pair of locations,
because fromϑ-forwarding rule it follows that all the other nodes on the path to a given destinationx also
use the same (remaining) path for the packets, having the destinationx. In the present paper, we show that
the optimal solution to the load balancing problem can be achieved with destination based forwarding.

We define an additional property that a routing may have:
Definition 11 (bidirectionality) Paths are bidirectional if the pathsp(x1,x2) andp(x2,x1) are identical
for all x1,x2 ∈ A.
Note that a flow on a given path contributes to the scalar flux atany point on the path by an amount equal
to the absolute size of the flow, no matter what the direction of the flow is (cf., Def 2). Thus, allowing a
different return path is, from the load balancing point of view, in effect equivalent to allowing two paths
between each pair of locations.

We denote byarg J(r,x) the angle of direction of the vectorJ(r,x) with respect to an arbitrary (fixed)
reference direction. It is straightforward to see that, with single-path DBF routes, we have

ϑ(r,x) = arg J(r,x), (7)

i.e., the pathsp(r,x) follow the field lines ofJ(r,x), and

ϕ(r, θ;x) = δ(θ − ϑ(r,x)) · |J(r,x)|.
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Fig. 2. Expression for d-flowJ(r,x) with arbitrary single-path routes.

whereδ(·) is Dirac’s delta-function. Moreover, for scalar packet fluxwith destination based single-path
routing we have

Φ(r) =

2π
∫

0

ϕ(r, θ) dθ =

2π
∫

0

∫

A

ϕ(r, θ;x) d2x dθ =
∫

A

|J(r,x)| d2x. (8)

In general, for an arbitrary domain with destination based single-path routes, there are paths arriving to
a given destinationx from all anglesθ, θ ∈ [0, 2π). Let p(s;x, θ) denote a point on the path arriving from
the directionθ, with the parameters specifying the distance ofp from x along the path, i.e., the arc length
betweenp andx. Here we assume for notational simplicity that there is a one-to-one correspondence
between the paths and their direction anglesθ at the destinationx. The situation is illustrated in Fig. 2.
(Note that there exist valid though somewhat pathological sets of routes that do not satisfy this assumption.
This happens when separate paths leading tox coalesce at some point, as in the case of so-called radial
ring paths discussed later in Section 4.) The magnitude of d-flow at r to destinationx can be obtained by
evaluating the line integral along the pathp(s;x, θ) going throughr,

|J(r,x)| =
1

h(s0)

s1
∫

s0

λ(s)h(s) ds, (9)

whereλ(s) = h(s; r,x) is the traffic demand density from points (on pathp(s;x, θ)) to x, andh(s) =
h(s; r,x) is divergence rate of paths,

h(s) = lim
dθ→0

|p(s;x, θ + dθ) − p(s;x, θ)|
dθ

.

Thus,h(s) describes the distance between two neighboring paths as illustrated in Fig. 2. For example, this
distance is simply a linear function ofs for shortest paths,h(s) = s. The proof of (9) is straightforward
and essentially the same as the proof given in [11, 12] for an expression for the scalar packet flux with
curvilinear paths.

3 Main Results

In this section we prove that the optimal solution to the loadbalancing problem in the context of dense
wireless multi-hop networks can be obtained by using destination based single-path routes. We also give
several corollaries related to the optimal solution.
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3.1 Optimality of field-line routing

LetP denote any set of routes and letJ(r,x;P) be the d-flow intensity of the traffic destined tox using
this routing. We associate toP another routing systemS(P), consisting of destination based single-path
routes defined by the forwarding rule

ϑ(r,x;P) = arg J(r,x;P). (10)

That is, the field lines of the d-flowJ(r,x;P) are used as routes for packets with destinationx. Accordingly,
this associated routing systemS(P) is referred to as thefield-line routing. Now we establish our main result.
Proposition 12 For any routing systemP, the associated field-line routingS(P) yields a scalar flux that
is everywhere less than or equal to that of the original routingP,

Φ(r;S(P)) ≤ Φ(r;P), ∀ r,P. (11)

Proof: First we show thatJ(r,x;S(P)) = J(r,x;P). This follows because (i) the fields are by con-
struction everywhere aligned,argJ(r,x;S(P)) = argJ(r,x;P), and (ii) they both satisfy the source
equation (flow conservation condition)

∇ · J(r,x;P) = ∇ · J(r,x;S(P)) = λ(r,x)−δ(r−x) Λ(x), ∀ r,x, (12)

whereΛ(x) [1/s/m2] denotes the density of total traffic destined tox (per unit area aboutx), since by
construction they both carry the traffic defined by the trafficmatrix λ(r,x). Now we need to show that a
field with properties (i) and (ii) is unique, which then implies thatJ(r,x;S(P)) = J(r,x;P). To simplify
the notation, we suppress the parameterx and denote the source density of the right hand side of (12) by
σ(r). Thus letJ′(r) be a solution to∇ · J′(r) = σ(r) that is parallel to a given solutionJ(r) everywhere.
Now, use a coordinate system defined by the common field lines.Let one of the coordinates bes, the
curve length parameter along a field line, and leth(s) be the distance of two ‘neighboring’ field lines at
point s. By applying Gauss’ theorem (see, e.g., [22]) to a small volume element of lengthds, between
the neigboring lines we obtain∇ · J′(r) = 1

h(s)
d
ds

(h(s)|J′(s)|) sinceh(s)ds is the area of the element and
d(h(s)|J(s)|) is the flow out from one end minus the flow in at the other end. Therefore, the expression
represents the net flow out of the element per unit area. Thus,along the field line,|J′(s)| obeys a first order
ordinary differential equation

d

ds
(h(s)|J′(s)|) = h(s)σ(s).

Since at the outer boundaryJ′(r) is zero, setting a fixed initial condition for the equation, the solution for
|J′(r)| is uniquely defined on any field line. ThusJ′(r) has not only the same direction everywhere, but
also the same magnitude asJ(r).

Having established thatJ(r,x;S(P)) = J(r,x;P), we can write by (6)

2π
∫

0

ϕ(r, θ;x,P) eθ dθ =

2π
∫

0

ϕ(r, θ;x,S(P)) eθ dθ. (13)
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By the triangle inequality we have

2π
∫

0

ϕ(r, θ;x,P) dθ ≡
2π
∫

0

|ϕ(r, θ;x,P) eθ| dθ ≥ |
2π
∫

0

ϕ(r, θ;x,P) eθ dθ|.

With S(P) the angular d-flux densityϕ(r, θ;x,S(P)) is concentrated on a single direction, and the above
holds as an equality,

2π
∫

0

ϕ(r, θ;x,S(P)) dθ ≡
2π
∫

0

|ϕ(r, θ;x,S(P)) eθ| dθ = |
2π
∫

0

ϕ(r, θ;x,S(P)) eθ dθ|.

By (13) the right hand sides are equal, whence

2π
∫

0

ϕ(r, θ;x,S(P)) dθ ≤
2π
∫

0

ϕ(r, θ;x,P) dθ,

and by integrating overx the claim (11) follows. 2

An immediate corollary from Proposition 12 is the following.
Proposition 13 An optimal solution for the load balancing problem(3) can be obtained with a destination
based forwarding (DBF).

Proof: Let P be a routing that realizes the minimum of (3). By Proposition12, the field-line routing
S(P), which is a destination based single-path routing, has a fluxthat is nowhere larger than that ofP and
thus achieves the optimum.2

The proof of Proposition 12 shows, as another corollary, thefollowing local result:
Proposition 14 If a routing systemP at point r forwards packets with a given destination genuinely to
several directions, the corresponding field-line routingS(P) yields a strictly lower scalar flux aboutr.

Proof: Under these conditions the triangle inequality relation holds as a strict inequality atr. 2

Note that forwarding of packets with a common destination todifferent directions at a given pointr does
not imply multi-path routing. Even single-path routing that is not destination based leads to forwarding
packets in different directions at an intermediate point, depending on their source points.

As a final remark, we note that, since by Proposition 13 the optimum can be attained by destination
based single-path routes, and for those the scalar flux can bewritten in terms of the d-flowJ(r,x) as given
in (8), one can formulate the load balancing problem solely in terms ofJ(r,x),

min
J(r,x)

max
r

∫

A

|J(r,x)| d2x,

subject to the flow-conservation requirement (12),

∇ · J(r,x) = λ(r,x)−δ(r−x) Λ(x), ∀ r,x.

It should be emphasized that the paths do not appear at all in these equations. If the solutionJ(r,x) has been
found, the paths can be determined afterwards as the field lines of this d-flow. This formulation, however,
will not be pursued further in this paper but is the topic of [23].
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Fig. 3. Transformation from a two-path routing to single-path routing according to (15).

3.2 Uniqueness of the optimal solution

Let us next elaborate the main result by characterizing the optimal paths in a so-called bottleneck region.
To this end, first consider the following special case of multi-path routing:
Definition 15 (randomized multi-path routing) LetPi, i ∈ I, be a countable set of single-path solutions
to the minmax problem (3), and letαi ≥ 0 be arbitrary probabilities,

∑

i∈I αi = 1. A routing where a path
for each packet is chosen randomly from setI according to theαi is referred to as randomized multi-path
routing.
Thus, the path chosen at random by the source for each packet is followed to the destination without any
further random selections. It is straightforward to see that,

Φ(r) =
∑

i

αiΦi(r), (14)

whereΦi denotes the packet flux when all the traffic is routed using path seti, i ∈ I. Similarly, let the
Ji(r,x) denote the corresponding d-flows when all the traffic destined tox is routed using path seti, i ∈ I.
According to (11), the field-line routing decision is in the direction of the net d-flow, i.e.,

ϑ(r,x) = arg
∑

i

αiJi(r,x). (15)

This is illustrated in Fig. 3 for two alternative path sets. According to Proposition 14, paths defined by
(15) lead to a better solution with a lower maximal scalar flux. In Section 4 we illustrate this by means of
numerical examples and show that the single-path routing indeed lowers the maximum of the scalar flux.

Typically, an optimal solution for the load balancing problem in finite fixed networks is such that the
maximal load is attained in several links. This suggests that the optimal solution in the present context of
massively dense networks is also such that the maximal load,denoted byΦopt, is obtained in some area
A(B) ⊂ A. We further believe thatA(B) has a strictly positive area, i.e., it is not a single point.
Definition 16 (bottleneck region) Let I denote the index set of all the optimal solutions to the load bal-
ancing problem, i.e., having the same maximal scalar fluxΦopt. Define the bottleneck region as

A(B) = {r ∈ A : Φi(r) = Φopt, ∀ i ∈ I}.

From the optimality it follows that the bottleneck region cannot be empty. To this end, consider an arbitrary
finite subset of the optimal single-path solutionsϑi(r,x) yielding the scalar fluxesΦi(r), i = 1, . . . , n.
The scalar flux for the corresponding multi-path system withrandom path selection with probabilitiesαi

according to (14) is simplyΦ(r) =
∑

i αi·Φi(r). In particular, if{r ∈ A : Φi(r) = Φopt, ∀ i = 1, . . . , n} =
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∅, then choosing, e.g.,αi = 1/n gives

max
x

(

∑

i

αi · Φi(r)

)

< Φopt,

which is a contradiction and thusA(B) is non-empty. So,A(B) surely contains at least one point. For now,
let us assume that the bottleneck regionA(B) is a set with a strictly positive area.
Proposition 17 Optimal paths are unambiguous inside the bottleneck region.

Proof: Let ϑ1(r,x) andϑ2(r,x) denote the forwarding functions of two optimal solutions. If

ϑ1(r,x) 6= ϑ2(r,x), for somer ∈ A(B),

then by Proposition 14 the field-line routing, obtained fromthe randomized multi-path routing using (15),
would give a lower scalar flux atr contradicting the assumption thatr ∈ A(B). 2

Proposition 18 With strictly positive traffic demands,λ(x1,x2) > 0, the optimal paths are bidirectional
in the bottleneck region.

Proof: Consider a point in the bottleneck area,x1 ∈ A(B). As the traffic demands are strictly positive
there is some traffic flowing fromx1 to x2, and vice versa. LetA denote the path fromx1 to x2, andB
the reverse path. Next consider a multi-path routing where some of the traffic onA has been moved to
reverse pathB, and similarly in the reverse direction. This clearly has noeffect on the resulting scalar
flux. However, ifA is different fromB (in the bottleneck region), then this multi-path solution could be
improved by using the corresponding field-line routing, which leads to a contradiction. 2

4 Numerical Examples

In this section we illustrate our results in two example geometries: unit disk and unit square, with uni-
form traffic demands,

λ(x1,x2) =
Λ

A2
, x1,x2 ∈ A,

whereΛ denotes the total packet flow [pkt/s] andA denotes the area ofA, i.e.,A = π for the unit disk
andA = 1 for the unit square. In particular, we demonstrate that field-line routing derived from some
heuristically defined multi-path routing systems is indeedable to lower the maximum of the scalar flux.

The most obvious choice for paths are theshortest paths (SP), which, in this context, correspond to
straight line segments between the source and destination.The local forwarding rule for the shortest paths
is simply

ϑSP(r,x) = arg(x − r).

Compact expressions for the scalar packet fluxΦ(r) and the d-flow intensityJ(r,x) exist in this case. Let
a1 = a1(r, θ) denote the distance to the boundary fromr in directionθ, anda2 in the opposite direction,
a2(r, θ) = a1(r, θ+π). Then it is straightforward to show that the angular flux corresponding to the shortest
paths is given by

ϕSP(r, θ) =

a1
∫

0

a2
∫

0

λ(x1,x2) · (s1 + s2) ds2 ds1, (16)

wherex1 = r− s1eθ andx2 = r− s2eθ with eθ denoting the unit vector in directionθ. Consequently, with
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|r− x|
a

r

x

JSP

Fig. 4. Notation for the d-flow intensityJSP(r,x) with the shortest paths given by (18).

uniform traffic demands,λ(x1,x2) = Λ/A2, the corresponding scalar packet flux is given by

ΦSP(r) =
Λ

A2

π
∫

0

a1a2(a1 + a2) dθ. (17)

The d-flow density for shortest paths with uniform traffic demands is given by

JSP(r,x) =
Λ

A2

(

d + d2/2
)

(x − r), (18)

whered = a/|x− r| anda = a(r,x) denotes the distance to the boundary fromr in the direction ofr− x

as illustrated in Fig. 4.

4.1 Unit Disk

As a first example we consider the standard example of a circular disk with unit radius (see, e.g., [4,11,
12,18,19]). Due to the symmetry, the scalar flux in this system is a function of radiusr only.

The scalar flux according to theshortest pathroutes can be obtained from (17) yielding an elliptic
integral of the second kind [11,12],

ΦSP(r) =
2(1 − r2) · Λ

π2

π
∫

0

√

1 − r2 cos2 φdφ,

which has its maximum at the origin,ΦSP(0) = (2/π) · Λ ≈ 0.637 · Λ. Applying the lower bounds (4) and
(5) for the unit disk with uniform demands gives

Φopt ≥
128

45π2
· Λ ≈ 0.288 · Λ, (distance bound)

Φopt ≥
1

4
· Λ = 0.25 · Λ. (cut bound, e.g., alongx-axis)

4.1.1 Elementary path sets
In addition to the shortest paths, some other elementary path sets can be considered in the circular area.

In Fig. 5 we have illustrated two single-path forwarding rules that correspond to the so-calledinner and
outer radial-ring paths[11, 12], which are bidirectional and also satisfy the destination based forwarding
rule requirement given in Def. 10. These path sets consist ofone radial component and one ring component.
With the inner radial-ring paths, the order is chosen so thatthe ring component closer to the origin is used,
and for the outer radial-ring paths it is the opposite. Similarly like the shortest paths, these path sets are
also not ideal. However, as their simple form facilitates the analysis, they serve as good examples.
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d target d target

Fig. 5. Local routing decisionsϑ(r,x) for inner (left) and outer (right) radial-ring paths forx = (d, 0) in upper half
plane.

Without loss of generality, one can assume that the destination is located on positivex-axis,x = (d, 0).
The routing decision for radial-ring paths can be expressedconveniently in polar coordinates. Let(r, θ)
denote the current locationr in the upper half plane. The local routing rules for the innerand outer radial-
ring paths are

ϑin =



























θ − π, r > d,

θ − π/2, r ≤ d, θ > 0,

0, r < d, θ = 0,

ϑout =



























θ, r < d,

θ − π/2, r ≥ d, θ > 0,

π, r > d, θ = 0.

The corresponding scalar fluxes are

Φin(r) =
(π + 1)(r − r3)

π
· Λ, Φout(r) =

(π − 1)r3 + r

π
· Λ,

obtaining their maximaΦin ≈ 0.507 · Λ andΦout = Λ atr = 1/
√

3 andr = 1, respectively.
Note that for radial-ring paths, several paths coalesce before reaching the destination and, thus, packets

arriving at a certain angle may belong to different paths. Infact, for any given destinationx, packets arrive
from one of four possible directions. For the shortest paths, this is not the case and packets arrive from (and
depart to) all possible directions.

4.1.2 Randomized path selection
In [11,12] it was shown that by using a randomized path selection using two or more single-path routes

from a given set of routes, one can achieve a considerably lower maximal scalar packet flux than with
any of the single-path routes of the set alone. In particular, two combinations of the shortest paths and the
radial-ring paths were considered:

(i) shortest paths and outer radial-ring paths,
(ii) shortest paths and outer and inner radial-ring paths.

The optimized path selection probabilities were such that for the resulting scalar packet flux we have
(subscript MP denotes multi-path)

ΦMP1(r) = 0.61 · ΦSP(r) + 0.39 · Φout(r),

ΦMP2(r) = 0.5027 · ΦSP(r) + 0.3763 · Φout(r) + 0.121 · Φin(r),

where the former yields a maximum flux of0.397 ·Λ, and the latter a maximum flux of0.3763 ·Λ, i.e., the
flux corresponding to the outer radial-ring paths at the boundary. The numerical results are given in Table 1,
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Table 1
Results with the shortest paths, and 2- and 3- multi-path routes together with the respective field-line routes. The
columns underProportionsdescribe the used mixture of path sets for each row, and the columns underMax. packet
flux give the corresponding performance for the multi-path system (left) and the field-line routes (right).

Proportions Max. packet fluxΦ
shortest outer inner multi-path field-line

1.00 0.637 (same)

1) 0.61 0.39 0.397 0.390

2) 0.503 0.376 0.121 0.376 0.344

3) 0.437 0.343 0.22 0.389 0.343

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5
FL1

FL3

mod

Φ(r)

r

modified field-line FL1 field-line FL3
circular (2 path sets) (3 path sets)

Fig. 6. Resulting scalar flux as a function of distancer from the origin for modified circular paths (see [12]), and the
optimized single-path field-line routes FL1 and FL3 (cf., rows 1) and 3) in Table 1). Three dimensional plots illustrate
the same situation.

where rows indicated with 1) and 2) correspond to the optimalweights for randomized path selection
with the given two and three path sets, respectively, and column “multi-path” contains the corresponding
maximal scalar fluxes.

However, according to Proposition 13, multi-path routes MP1 and MP2 cannot be an optimal solution
to the load balancing problem and, in particular, the corresponding single-path field-line routes, denoted
by FL1 and FL2, obtained using (15) yield a lower maximal scalar flux. This maximal scalar flux can
be computed numerically and the corresponding results are given in the column “field-line” in Table 1.
We note that in both cases, replacing the multi-path routingwith the corresponding single-path field-line
routing improves the results considerably.

4.1.3 Further Optimization
Instead of using the proportions optimal with respect to therandomized multi-path routing, one can

also treat the route selection probabilitiesαi as free optimization parameters for the resulting single-path
routing. As an example, let us consider combinations of the same basic routes consisting of two and three
path sets. It turns out that in this case, the optimal proportions for the two path sets (straight and outer)
remain the same, as given at row 1) in Table 1. However, for thethree path sets (straight, outer and inner),
the optimal proportions are different and are given at row 3). In particular with these optimized weights, the
corresponding field-line route set, denoted by FL3, yields amaximal scalar packet flux of0.343 · Λ, which
is, to the best of our knowledge, considerably less than which is obtained with any previously proposed set
of paths. For reference, the circular paths proposed in [11]yield a maximal flux of0.424 · Λ, and in [12],
a modified version of this path set, after numerical optimization, gives a maximal flux of0.384 · Λ. Also
the so-called curveball routing proposed by Popa et al. [10]is expected to provide a similar performance.
Although the idea behind the curveball routes (i.e., defining the paths via a mapping between the plane and
a sphere) is appealing, the resulting scalar flux is difficultto analyze exactly.

The resulting scalar fluxes for the single-path routes FL1 and FL3 are illustrated in Fig. 6. Interestingly
with FL3, the scalar packet flux at the center of the area is clearly lower than the maximum. This suggests
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Fig. 7. Single-path routes towards point(0.6, 0) obtained by combining multi-path routes MP1 and MP3 to the
corresponding field-line routes FL1 and FL3 (rows 1) and 3) inTable 1).

Fig. 8. Single-path routes FL3 from the positivex-axis to(0.6, 0) (left fig.), and the reverse paths from(0.6, 0) back
to positivex-axis (right fig.). Paths are clearly not bidirectional.

that there is still some room for improvement, e.g., by choosing a different set of base routes.
Fig. 7 illustrates the single-path routes FL1 and FL3 for destination pointx = (0.6, 0) (the lower half

plane is symmetric). From the figure, it can be seen that the ring with radius0.6 has a specific role and acts
as a “highway” towards the destination. This is due to the fact that both radial-ring paths guide most of the
traffic going to(0.6, 0) to this ring yielding a singularity in the corresponding d-flow (i.e., a delta function).
This singularity is then also present in the resulting single-path routes. Intuitively, from the figure, one
can see that neither of these single-path routes can be optimal, e.g., paths just above point(1 − ǫ, 0) are
perpendicular to the “correct” direction. The resulting paths deviate from the intuitive ones even more when
d → 0 or whend → 1.

Finally, we note that the obtained destination based single-path routes are not generally bidirectional.
This can be seen, for example, from Fig. 8 which illustrates the single-path routes FL3. The left graph
depicts paths from the positivex-axis to(0.6, 0) and the graph on the right depicts the reverse paths from
(0.6, 0) back to the positivex-axis. Clearly, the paths are different, and thus the single-path routes are not
bidirectional. This, as well as the fact that some of the reverse paths cross each other twice, suggests that
a set of paths exists which attains even smaller maximal scalar flux. However, we believe that the possible
improvement is relatively small and that the FL3 paths are already close to optimal.

4.2 Unit Square

Now the considered regionA is a square bounded by the linesx = ±1/2 andy = ±1/2 and having the
areaA = 1. The traffic demands are assumed to be uniform,λ(r,x) = Λ/A2 = Λ.

We analyze three heuristic path sets. The first set consists of the shortest path routes. The scalar packet
flux for these is straightforward to compute using (17) and the maximum is obtained at the origin,

ΦSP(0, 0) =
Λ

2

(√
2 + arcsinh 1

)

≈ 1.148 · Λ.

The mean path length with SP routes is

ℓSP =
1

15

(

2 +
√

2 + 5 log(1 +
√

2)
)

≈ 0.521.

The resulting scalar packet flux distribution is illustrated in Fig. 11. For the two lower bounds (4) and (5)
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destination50%

source 50%

destination

Fig. 9. In the left figure, the Manhattan paths (MH) are illustrated. These paths are based on an imaginary dense
Manhattan grid from which one of the outermost shortest pathis selected randomly with0.5 probability. The right
figure illustrates the field-line paths resulting from the Manhattan multi-path routes of the left figure.

given in Section 2 we have,

Φopt ≥
2 · Λ · A1A2

L A2
=

Λ

2
, (cut bound alongx-axis)

Φopt ≥
Λ · ℓSP

A
≈ 0.521 · Λ. (distance bound)

Hence, the distance bound provides a slightly stricter lower bound in this case.
For an arbitraryh × 1/h rectangle with unit area the cut bound givesΦopt ≥ Λh/2, and the distance

boundΦopt ≥ λ · ℓSP(h), whereℓSP(h) can be obtained numerically. In particular, it turns out that the cut
bound gives a better lower bound for allh ≥ 1.0443 (i.e., the cut bound works well with asymmetric areas).

4.2.1 Manhattan paths (MH)
An alternative heuristic path set has its origin in the so-called Manhattan grid. Assume that there is a

very dense grid where, at each point in time, one can only moveeither horizontally or vertically. Clearly,
a number of different shortest paths exist between two locations in such a grid except in the special cases
when the locations are aligned in the direction of the grid (i.e., eitherx-axis ory-axis). In the limit of a
dense grid, the number of possible paths tends to infinity. However, in order to avoid the congestion in the
center, we use only the two outermost paths with a randomizedrouting strategy as illustrated in Fig. 9 and
refer to these paths as Manhattan paths (MH). For MH paths, itis straightforward to show that the scalar
flux is simply

ΦMH(x, y) = Λ(1 − 2x2 − 2y2),

yielding the maximum at the origin,ΦMH(0, 0) = Λ, which corresponds to about13% decrease in compari-
son to the shortest path routes. Furthermore, for any Manhattan type set of paths where packets are allowed
to be transmitted only in a horizontal or vertical direction, it is easy to see that the mean path length is2/3
(or more). Substituting this into the distance bound (4) gives,

max
r

Φ(r) ≥ 2

3
· Λ, ∀ Manhattan type of paths.

Applying the Manhattan paths to a generalh × 1/h unit rectangle with uniform traffic demands gives,

ΦMH(x, y) = Λ

(

1 + h2

2h
− 2hy2 − 2

h
x2

)

,

i.e., the maximal scalar packet flux is again attained at the origin, ΦMH(0, 0) = Λ(1 + h2)/(2h). For large

15



values ofh we haveΦMH(0, 0) → Λh/2, which is equal to the lower bound given by the cut bound (5)
showing that the Manhattan paths are asymptotically optimal.

4.2.2 Field-line routing applied to Manhattan paths
Manhattan paths as defined above represent a genuine multi-path set of routes where50% of the traffic

is routed along the “clockwise” path and50% along the “anti-clockwise” path (see Fig. 9 left). In order to
proceed further, we will next consider the corresponding d-flow intensities, which then allow us to derive
the single-path field-line routes having the same or better performance.

For Manhattan paths the d-flow density consists of both a horizontal and vertical component. Letx =
(x1, x2) andr = (r1, r2). Assume first thatr1 < x1 andr2 < x2 as illustrated in Fig. 10, wherex is an
arbitrary interior point of the depicted destination area.Half of the packets with destinationx originating
from either strip (lengthsa andb) will be forwarded by a node aboutr. Moreover, these are the only packets
seen atr and having a destination aboutx. Thus, for a givenr the d-flow densityJ(r,x) is constant for
all x in the rectangular destination area depicted in the upper right corner and, in particular, the magnitude
of J(r,x) is directly proportional to the diameter of the rectangulararea in the lower left corner, i.e., for
r1 < x1 andr2 < x2 we have

J(r,x) =
Λ

2 A2
(a, b) =

Λ

4
(̂i + ĵ + 2r). (19)

For r1 = x1 a singularity occurs when half of the packets originating from the area belowr2 travel viar,
and similarly forr2 = x2, yielding two additional terms,

Λ
(

(1/2 + r1)δ(x2 − r2)̂i + (1/2 + r2)δ(x1 − r1)̂j
)

.

Combining these together with the other three possible destination areas (note the symmetries) gives a
general expression for d-flow density,

JMH(r,x) =
Λ

4

[

2r + sgn(r1 − x1)̂i + sgn(r2 − x2)̂j

+ 2 (sgn(x1 − r1) + 2r1) δ(x2 − r2)̂i

+ 2 (sgn(x2 − r2) + 2r2) δ(x1 − r1)̂j

]

, for r 6= x.

The field-line routes follow when packets with a common destination aboutx are forwarded in the direction
of JMH(r,x) at every pointr. Due to the simple form ofJMH(r,x) the field-line routes turn out to be rather
elementary as illustrated in Fig. 9 (right) for a single destinationx. Note that the horizontal line segment
y = x2 and vertical line segmentx = x1 correspond to singularities inJMH(r,x) as all the packets join one
of these four main “highways” before reaching destinationx.

In the general case, the scalar flux can be computed by evaluating the integral

Φ(r) =
∫

A

|J(r,x)| d2x.

Terms corresponding to singularities can be computed separately yielding,

Φ
(1)
FL(r) =

Λ

2
(1 − 2x2 − 2y2) =

1

2
ΦMH(r). (20)
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Fig. 10. Derivation of the d-flow densities for Manhattan grid. Note that at every point packets are forwarded only in
one of the four possible directions.

For the rest we refer again to Fig. 10 and (19). Consider any destinationx located in the rectangular
destination set, which has an area equal to

Ad = (1/2 − x1)(1/2 − x2).

As mentioned, packets forwarded atr with such a destination must originate from either strip (lengthsa
andb), and, in particular, the d-flow densityJ(r,x) is independent ofx,

|J(r,x)| =
Λ

2

√

(1/2 + r1)2 + (1/2 + r2)2.

Integral of a constant over an areaAd trivially gives,

Λ

8
(1 − 2x1)(1 − 2x2)

√

(1 + 2r1)2 + (1 + 2r2)2.

Taking into account the symmetries then gives,

Φ
(2)
FL(r) =

Λ

16

[

(1−2x)(1−2y)
√

(1+2x)2 + (1+2y)2

+ (1+2x)(1−2y)
√

(1−2x)2 + (1+2y)2

+ (1−2x)(1+2y)
√

(1+2x)2 + (1−2y)2

+ (1+2x)(1+2y)
√

(1−2x)2 + (1−2y)2

]

.

(21)

Combining (20) and (21) then gives a final expression for the scalar packet flux with field-line routing,

ΦFL(r) = Φ
(1)
FL(r) + Φ

(2)
FL(r).

With these paths, the scalar packet flux again obtains the maximum at the origin,

ΦFL(0, 0) =
2 +

√
2

4
· Λ ≈ 0.854 · Λ,

corresponding to about26% improvement in comparison to the shortest paths. The scalarflux distributions
corresponding to these three path sets are illustrated in Fig. 11 and Fig. 12. One can observe that some
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(i) Shortest (SP) (ii) Manhattan (MH) (iii) Field-line (FL)

Fig. 11. Scalar flux distribution for different path sets in unit square in the order of the performance. The field-line
routes are obtained from Manhattan paths.
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Fig. 12. Resulting scalar fluxes in unit square for shortest paths (SP), Manhattan paths (MH) and field-line routes
when applied to the Manhattan routes (FL).

unused capacity exists in each case, especially near the corners. However, taking into account the simple
form of the paths (see Fig. 9 right), the results are surprisingly good, and, in particular, the transformation
of the multi-path Manhattan routes to single-path field-line routes also led to a considerable improvement
in this case.

4.3 Discussion

The shortest paths yield, by definition, the shortest possible mean path length, or equivalently, the small-
est possible average scalar packet flux. In order to lower themaximal scalar packet flux, one needs to bend
some paths away from the congested area, which increases themean path length and, thus, also the average
scalar flux. In other words, there is a trade-off between the achievable minimum maximal scalar flux and
the average scalar flux, i.e., the distance bound (4),

max
r

ΦP(r) ≥ Λ · ℓ(P)

A
, (22)

whereℓ(P) denotes the mean path length with path setP. Additionally, the cut bound (5) provides another
lower bound. The performance of different path sets and the lower bounds are illustrated in Fig. 13. In
particular, for unit disk we observe that the new solution FL3 is very close to the lower bound (22). In fact,
all path sets located on the distance bound (22) have flat scalar packet flux distributions.

For the unit square, the areas near the corners seem to be hardto utilize (i.e., there will be excess
capacity in those areas). In particular, we anticipate thatthe bottleneck region in this case includes the two
line segments along thex- andy-axis. We also note that the transformation of the heuristicManhattan path
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Fig. 13. Trade-off between the maximal scalar flux (y-axis) and the mean path length (x-axis) for different path sets
together with two lower bounds (see [11,12,20]).

set (MH) to the corresponding field-line routing (FL) has improved both the maximal packet flux and the
mean path length considerably. However, both path sets are still quite far from the lower bounds, suggesting
that even better path sets exist (see, e.g., [23]).

5 Conclusions

In this paper, we have studied the load balancing problem in massively dense (wireless) multi-hop net-
works. The task is to find a set of routes, the minimizing the maximal nodal forwarding load in the network,
represented by the so-called scalar flux. In particular, we have focused on comparing multi-path routing
with single-path routing. The main contribution of this paper was to show that optimal load balancing can
always be obtained by a properly chosen field-line routing, which belongs to the category of destination
based single-path routings. This is in striking contrast with the traditional fixed (finite) networks, where the
use of multiple paths often yields a better load balancing and higher throughput in the network. We further
anticipate that the optimal paths for large but finite networks are similar, while occasionally multiple paths
are needed in order to reach the optimum. Moreover, we have shown that, in the bottleneck area, the optimal
paths are unique and bidirectional, meaning that the same path is traversed in both directions.

The framework and new results were illustrated by means of numerical examples in elementary domains
with uniform traffic demands. A clear gain was achieved by converting multi-path routes in a systematic
way into single-path routes. The new routes obtained for a multi-hop network in a unit disk outperform
the single- and multi-path solutions given in [11, 12]. In particular, the best optimized single-path solution
(FL3) yields a maximal packet flux of0.343 · Λ corresponding to about46% improvement in comparison
with the shortest path routes, which tend to unnecessarily concentrate too much traffic in the center of the
network. Similarly, for the unit square, two elementary sets of paths were first analyzed (shortest paths
and Manhattan paths), and then the multi-path Manhattan routes were transformed to the corresponding
single-path field-line routes, yielding a significant improvement.
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