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ABSTRACT

We consider the load balancing problem in large wirelesgirhob networks by applying the continuum

approximation. The task is to find routes, geometric cursash that the maximal traffic load in the net-
work is minimized. In finite fixed networks, multi-path rostgenerally yield a lower congestion and thus
allow higher throughput. In contrast, we show that in denseless multi-hop networks, the optimal load

balancing can be achieved by a destination based singherpating referred to as field-line routing. This

is because any routing can be transformed to the correspgfidid-line routing with the same or better

performance, by using as paths, the field lines of the sedaéstination flow associated with the original
routing. The concepts are illustrated with two exampleshikn case of a unit disk with unit traffic, the

maximal load of 0.389 of a multi-path routing system is restlito 0.343 by using the field-line routing.

Similar improvements are also demonstrated for the unésgu

Keywords Wireless multi-hop network, Multi-path, Single-path,ddbalancing.

1 Introduction

The load balancing problem in fixed networks is a well-knowwolbem for which several formulations
have been proposed. Typically, one is asked to find suchgdhs minimize the maximal link load. In
general, lower congestion can be obtained by dividing tafi¢rflows into several routes, i.e., by using
multi-path routes. Frequently the problem descriptiordtentself to an efficient formulation as an LP-
problem — see, for example, [1]. The approach is generic ande applied to different kinds of networks
ranging from packet switching to lightpath routed opticatworks.

In this paper, we consider the load balancing problem in alesés multi-hop network in the setting of a
so-called massively dense multi-hop network. A massivetysg multi-hop network means that 1) there are
nodes practically everywhere, and 2) that a typical pativéen two nodes consists of a large number of
hops, (i.e., the transmission range is several orders smialinagnitude than the diameter of the network).
Note that in the considered type of networks, the traffic loadsists almost solely of the relay traffic.
At the limit, there is a strong separation between rtieroscopic levelcorresponding to the immediate
neighborhood of a given node, and thmacroscopic levelcorresponding to the end-to-end connections.
At the microscopic level, the nodes are simply concernedidoowarding a given packet to the direction



defined by the chosen routing. In practice, this means thead|ly, a packet is forwarded to the furthest
reachable node in that directidnAt the macroscopic level, one is concerned with the endatbysaths,
and the assumption of a strong separation between theafiffscales justifies describing the underlying
network as a continuous medium and the paths as smooth gonsrcurves [2—-10]. In the present paper,
we focus on studying the optimal paths at the macroscopét.lev

The exact load balancing problem in dense wireless mulftifeiworks considered in the present paper
was first formulated in [11] and has also been studied in [2D,lh particular, in [11, 12] we focused on
single-path routing with curvilinear paths and noted thattiple sets of single-path routes can straight-
forwardly be combined to multi-path routing by randomly okimg one of the single-path routes for each
packet. In the present paper, we show that, with respecietéotd balancing problem, the optimal solu-
tion can always be achieved by so-called field-line routiigich consists of destination based single-path
routes constructed in a special way. This new result is ikisty contrast to finite fixed networks, where
the restriction to single-path routes can severely limgt plerformance of the network. The optimality of
field-line (single-path) routes is a consequence of anatmilt of this paper, which states that, starting
from any routing system, the scalar flux will decrease or riartiee same everywhere if the routing system
is replaced with the corresponding field-line routing. Timiecedure is demonstrated by examples, where
we are indeed able to reduce the maximal scalar flux by usaidfd-line routing. Furthermore, we show
that the optimal paths are unique and bidirectional in thealed bottleneck region, where each optimal
solution achieves the maximum of the scalar packet flux.

The rest of the paper is organized as follows. In Section Helrélated work is reviewed. Then, in
Section 2 we introduce the basic concepts and define the lalatding problem. Our main results are
presented in Section 3, where we prove that the optimalisalgtin be achieved by the destination based
single-path routes. The uniqueness and bidirectionafithe paths in the so-called bottleneck area are
also established. In Section 4, the framework and the newvitsesre illustrated by means of examples, and
Section 5 contains the conclusions.

1.1 Related Work

The research community has recently shown consideral@eesttin different routing problems in dense
wireless multi-hop networks. The idea of modeling routes@#inuous curves at the macroscopic level
was introduced in [3] and [4]. However, the trajectory baseavarding (TBF) scheme, proposed by
Niculescu and Nath [13], already provides the connectidwéen the macroscopic and microscopic lev-
els. Another closely related concept is the so-called géaom®uting (or geographic routing) paradigm
[14—-16], where each packet carries the information (diyextindirectly) about the location of the destina-
tion node. Typically the nodes along the path simply forwthelpacket in a greedy manner to the neighbor
which is closest to the destination. In the same fashionpizaun et al., in [17], propose a robust and scal-
able anycast routing scheme for large wireless mesh nesMmked on temperature fields. The scheme,
referred to as HEAT, assigns each node a temperature in suak that the temperature always increases
towards the gateway node(s).

The shortest path routes tend to concentrate traffic to thtecef the network. This is particularly true of

1 To be more precise, the task is to find a coordinated forwgrsiimeme that maximizes the sustainable packet flow
in a given direction. Finding the maximum is an interesting ahallenging problem but is outside the scope of this
paper. The sustainable maximum can be shared betweeredifféirections in a time-sharing manner and sets an
upper bound to the scalar flux (see Def. 4). This allows ussorakite the scalar flux with the local traffic load.



uniform traffic demands [8,11, 18]. In [18], Pham and Perraad later, in [19], Ganjali and Keshavarzian
have studied the possible gain from usinghortest paths instead of one. By using approximative mod-
eling techniques, Pham et al. argue that the use of multi-pmiting always results in improvement to
throughput. However, the results by Ganjali et al., basedhodeling thek shortest paths as a rectangle
between the node pairs, suggest that this is not always Hee galess a huge number of multiple paths are
allowed for each pair of nodes. This is due to the fact thathélimit of massively dense networks, any
finite number of shortest paths reduces to a single line seghbetween the given nodes.

A considerable amount of recent work relies on strong analeith physical systems. In [20] a set
of paths are derived, based on the heat conduction in a skt 8imilarly, Kalantari and Shayman [3]
have studied dense wireless multi-hop networks by learrtlyd theory of electrostatics. In particular, the
authors consider a routing problem where a large numberagsiare sending data to a single destination.
In this case the optimal paths are obtained by solving a setdfal differential equations similar to
Maxwell's equations. Using a similar analogy with electaties, Toumpis and Tassiulas [2] consider a
related problem of optimal placement of the nodes in a deessws network. It is assumed that, at any
point in the network, the information flows exactly in onesdition.

Another interesting analogy is provided by geometricalagpiCatanuto et al. [6, 7] have optimized the
routes by exploiting this analogy. The communication cakich is related to the index of refraction in the
analogy, is defined as a function of the node density. In [R6pa et al. study the load balancing problem
using the linear programming approach and are able to shatthk optimal paths can be expressed as
shortest (minimum cost) paths with a certain metric. Thisnsethat the geometrical optics analogy is
accurate, with the index of refraction defining the metribeTesult provides an alternative approach to
some of the results in the current paper, first presentedijpp The main obstacle with the approach seems
to be the technical difficulties in actually determining thetric and computing the traffic load and, as a
practical solution, the authors propose a heuristic seatifpreferred to as curveball routing.

Finally, we note that a comprehensive survey on differendeliog approaches and problem formula-
tions has been given by Toumpis [5, 9].

2 Preliminaries and Definitions

To start with, we first need to define the traffic that is offeiethe network located in some area denoted
by A. In our setting, the nodes form a continuum and thus it is enrent to define the traffic demands as
densities:

Definition 1 (traffic demand density) The rate of flow of packets from a differential area elemént
aboutx; to a differential area elememtA aboutx, is \(x1, x) - dA%, whereA(x;, x») is called the traffic
demand density [pkts/stn

These end-to-end traffic demands are then satisfied by fdmegaeach packet from the sourge to the
destinationx, over a multi-hop route, which, in our context, translates toontinuous path fromy; to

X,. The set of paths is denoted BY In this set there is at least one path for every sourcefusgin pair
(Xl, XQ).

From the point of view of the forwarding load (scalar flux, $&ef. 4), the direction of the traffic is
immaterial. It follows that, without a loss of generalityecan assume symmetric traffic demands:
Definition 2 (symmetric traffic demands) The traffic demands are said to be symmetric if

A(X1,X2) = AM(X2,%X1), Vxi,%x2 € A (1)
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Fig. 1. Angular fluxy(r, 8) is the rate of packets crossing a small line segnasrih angle (9,6 + df) divided by
d¢ - ds in the limit df, ds — 0. Angular d-flow density is equal to the angular flux of packetsing a destination in
dA aboutx in the limit dA, df, ds — 0.

As part of our earlier work, in [11, 12], we have defined thedlbalancing problem in dense multi-hop
networks as a minmax problem for the scalar packet flux. Bpaleket flux, in turn, is defined in terms of
so-called angular packet flux (see Fig. 1):

Definition 3 (angular flux) Angular flux of packets atin directiond, denoted byy(r, #), is equal to the
rate [1/s/m/rad] at which packets flow in the angle intery@l6 + d6) across a small line segment of the
lengthds perpendicular to directiord at pointr divided byds - df in the limit whends — 0 anddf — 0.
Definition 4 (scalar flux) Scalar flux of packets [1/s/m] atis given by

O(r) = B(P, 1) = /gp(P,r,G’) dé. @)

0

We note that these packet fluxes are defined in analogy withdiresponding particle fluxes in physics,
e.g., in neutron transport theory [21]. The load balancirapfem in the context of massively dense multi-
hop networks is as follows:

Definition 5 (load balancing problem) Find the set of path® minimizing the maximal scalar flux,

arg min max ®(P, r). (3)
P r

For the load balancing problem, two useful lower bounds arengn [11]:
Proposition 6 (distance bound)
A7

ik
wherel = /(P, \(xy, x;)) denotes the mean path length.
Proposition 7 (cut bound) For any curveC separating the domaim into two disjoint subdomaingl,
and A,, it holds that

max ®(P,r) >

(4)

1
(bopt 2 Z /d2X1 /d2X2 ()\(X17X2) + )‘(X27X1))7 (5)
A Ao
whereL is the length of the curvé and the double integral gives the rate of packets betwéeand A,
(both directions included).
The first inequality follows from the fact that the maximaakr flux cannot be less than the mean scalar
flux, which is equal to the average progress density in thergarea. The second inequality is obtained



by considering the average scalar flux along the cut. Thamltist bound (4) is further lower bounded by
A - lsp /A, where SP refers to shortest paths, yielding a strict lowend for all path sets.

For our developments, it is useful to single out flows asgediwith the traffic with a given destination
x € A. In the following definitions the prefix d stands for destioat
Definition 8 (angular d-flux density) Angular d-flux density, denoted byr, 6; x) [1/s/mé/rad], is equal
to the angular fluxp(r, #) divided byd A resulting from the packets having their final destinatiorsinall
areadA aboutx, in the limit whendA — 0.
The concept of angular d-flux density is illustrated in Fidp)1By definition,

o(r,0) = /<p(r,9;x) d*x.
A

Definition 9 (d-flow intensity) Destination flow intensity, or d-flow intensity for short, mdckets atr
having destinatiorx, denoted byl (r, x) [1/s/m?], is equal to

2w

J(r,x) = /gp(r,@;x) ey db, (6)

0

whereey is the unit vector in directiol.
Note that for a given destinationthe d-flow intensityJ (r, x) corresponds to a vector field i?.

A central concept is the following:
Definition 10 (destination based forwarding (DBF)) In destination based single-path forwarding, the
direction in which a given packet at is forwarded is defined solely by the destinatioof the packet,
I(r,x) : R? x R?* — [0, 27).
Consequently, the end-to-end path fraimto x,, denoted by(x;, x2), gets defined by the functiah i.e.,
P = P(¥). In [11, 12] explicit expressions for calculating the scglacket flux for arbitrary DBF paths
is given. Note that destination based forwarding necdgsarplies single-path routes but not vice versa,
i.e.,v-forwarding rule is a stronger requirement than just a sifgth between any given pair of locations,
because fromy-forwarding rule it follows that all the other nodes on thétptm a given destinatior also
use the same (remaining) path for the packets, having thmdgsnx. In the present paper, we show that
the optimal solution to the load balancing problem can béeael with destination based forwarding.

We define an additional property that a routing may have:
Definition 11 (bidirectionality) Paths are bidirectional if the paths(x;, x,) and p(x., x;) are identical
forall x;,x, € A.
Note that a flow on a given path contributes to the scalar flangtpoint on the path by an amount equal
to the absolute size of the flow, no matter what the directiotne flow is (cf., Def 2). Thus, allowing a
different return path is, from the load balancing point awij in effect equivalent to allowing two paths
between each pair of locations.

We denote byirg J(r, x) the angle of direction of the vectdir, x) with respect to an arbitrary (fixed)
reference direction. It is straightforward to see thathwingle-path DBF routes, we have

I(r,x) = arg J(r, x), W
i.e., the pathg(r, x) follow the field lines ofJ(r, x), and

o(r,0;x) =50 — I(r,x)) - |J(r,x)]|.



Fig. 2. Expression for d-flow (r, x) with arbitrary single-path routes.

whered(-) is Dirac’s delta-function. Moreover, for scalar packet fluith destination based single-path
routing we have

27 27
o(r) :/go(r,ﬁ) d@z//go(r,ﬁ;x) d2xd9:/|J(r,x)\d2x. 8)
0 0 A A

In general, for an arbitrary domain with destination basadle-path routes, there are paths arriving to
a given destinatios from all angled, 6 € [0, 27). Let p(s; x,0) denote a point on the path arriving from
the directiord, with the parametes specifying the distance gf from x along the path, i.e., the arc length
betweenp andx. Here we assume for notational simplicity that there is a-torene correspondence
between the paths and their direction andglest the destinatiox. The situation is illustrated in Fig. 2.
(Note that there exist valid though somewhat pathologietd ef routes that do not satisfy this assumption.
This happens when separate paths leading toalesce at some point, as in the case of so-called radial
ring paths discussed later in Section 4.) The magnitudeftaivd-at r to destinationk can be obtained by
evaluating the line integral along the paifs; x, 6) going throughr,

30.3)) = 5 [ M) s, ©

where\(s) = h(s;r,x) is the traffic demand density from poiat(on pathp(s;x,#)) to x, andh(s) =
h(s;r,x) is divergence rate of paths

_ o p(six, 0+ df) — p(s;x, 0)|
hs) = i, a6 |

Thus,h(s) describes the distance between two neighboring pathsuasrdted in Fig. 2. For example, this
distance is simply a linear function effor shortest pathg;(s) = s. The proof of (9) is straightforward
and essentially the same as the proof given in [11, 12] forxgmession for the scalar packet flux with
curvilinear paths.

3 Main Results

In this section we prove that the optimal solution to the lbathncing problem in the context of dense
wireless multi-hop networks can be obtained by using dastin based single-path routes. We also give
several corollaries related to the optimal solution.



3.1 Optimality of field-line routing

Let P denote any set of routes and JEt, x; P) be the d-flow intensity of the traffic destinedstaising
this routing. We associate 8 another routing systeri(P), consisting of destination based single-path
routes defined by the forwarding rule

U(r,x;P) =argJ(r,x; P). (10)

Thatis, the field lines of the d-flol(r, x; P) are used as routes for packets with destinatiohccordingly,
this associated routing syste(P) is referred to as thigeld-line routing Now we establish our main result.
Proposition 12 For any routing syster®, the associated field-line routin§(7) yields a scalar flux that
is everywhere less than or equal to that of the original nogtP,

O(r;S(P)) < ®(r;P), Vr,P. (11)
Proof: First we show thafl (r, x; S(P))

struction everywhere alignedyg J(r, x; S(P)
equation (flow conservation condition)

J(r,x;P). This follows because (i) the fields are by con-
) = argJ(r,x;P), and (i) they both satisfy the source

V- -Jr,x;P)=V - -J(r,x;S5(P)) = AMr,x)—(r—x) A(x), Vr,x, (12)

where A(x) [1/s/n?] denotes the density of total traffic destinedxtdper unit area about), since by
construction they both carry the traffic defined by the trafiitrix \(r, x). Now we need to show that a
field with properties (i) and (i) is unique, which then imgdithat) (r, x; S(P)) = J(r,x; P). To simplify
the notation, we suppress the parameat@nd denote the source density of the right hand side of (12) by
o(r). Thus let)’'(r) be a solution tov - J'(r) = o(r) that is parallel to a given solutial(r) everywhere.
Now, use a coordinate system defined by the common field licetsone of the coordinates be the
curve length parameter along a field line, and/let) be the distance of two ‘neighboring’ field lines at
point s. By applying Gauss’ theorem (see, e.g., [22]) to a small m@element of lengtlls, between
the neigboring lines we obtai\i - J'(r) = ﬁ%(h(s)u’(sﬂ) sinceh(s)ds is the area of the element and
d(h(s)|J(s)|) is the flow out from one end minus the flow in at the other end rd&foee, the expression
represents the net flow out of the element per unit area. Hhwsg the field line|J’(s)| obeys a first order
ordinary differential equation

L)) = his)a(s)

Since at the outer boundady(r) is zero, setting a fixed initial condition for the equatidme solution for
|J’(r)| is uniquely defined on any field line. Thd§(r) has not only the same direction everywhere, but
also the same magnitude Ag).

Having established thdt(r, x; S(P)) = J(r, x; P), we can write by (6)

2

27
/gp(r, 0;x,P) ey df = /gp(r, 0;x,S(P)) ey db. (13)
0

0



By the triangle inequality we have

2w 2w 2w
/wn&xpmez/m@ﬁmjw%hwz\/wn&xpmwwy
0 0 0

With S(P) the angular d-flux density(r, 8; x, S(P)) is concentrated on a single direction, and the above
holds as an equality,

2m 2m 2m
/gp(r,@;x,S(P)) df = / lo(r,0;x,S(P)) eg| db = |/g0(r,9;x,8(77)) ey db).
0 0 0

By (13) the right hand sides are equal, whence

2w

2w
[ oe,6:x,8(P))db < [ o(x,0:x,P) db,
0

0

and by integrating ovex the claim (11) follows. O

An immediate corollary from Proposition 12 is the following
Proposition 13 An optimal solution for the load balancing probldB) can be obtained with a destination
based forwarding (DBF).

Proof: Let P be a routing that realizes the minimum of (3). By Propositlé, the field-line routing
S(P), which is a destination based single-path routing, has &lflatis nowhere larger than thatBfand
thus achieves the optimum. O

The proof of Proposition 12 shows, as another corollaryfahewing local result:

Proposition 14 If a routing systemP at pointr forwards packets with a given destination genuinely to
several directions, the corresponding field-line rout$i@) yields a strictly lower scalar flux about

Proof: Under these conditions the triangle inequality relatiolib@s a strict inequality at O

Note that forwarding of packets with a common destinatiadifi@rent directions at a given pointdoes
not imply multi-path routing. Even single-path routing th& not destination based leads to forwarding
packets in different directions at an intermediate poiapehding on their source points.

As a final remark, we note that, since by Proposition 13 th@raph can be attained by destination
based single-path routes, and for those the scalar flux camitten in terms of the d-flow (r, x) as given
in (8), one can formulate the load balancing problem solelgims ofJ (r, x),

Jr?in) mﬁlx/ 1J(r,x)| d*x,
X ¥

subject to the flow-conservation requirement (12),
V-J(r,x) = AMr,x)—0(r—x) A(x), Vr,x.

It should be emphasized that the paths do not appear at héi$e equations. If the solutiditr, x) has been
found, the paths can be determined afterwards as the figd t¢ifithis d-flow. This formulation, however,
will not be pursued further in this paper but is the topic @][2
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Fig. 3. Transformation from a two-path routing to singlékpeouting according to (15).
3.2 Uniqueness of the optimal solution

Let us next elaborate the main result by characterizing ptienal paths in a so-called bottleneck region.
To this end, first consider the following special case of idith routing:
Definition 15 (randomized multi-path routing) LetP;, ¢ € I, be a countable set of single-path solutions
to the minmax problem (3), and let > 0 be arbitrary probabilitiesy",.; a; = 1. A routing where a path
for each packet is chosen randomly from eiccording to they; is referred to as randomized multi-path
routing.
Thus, the path chosen at random by the source for each padidtoived to the destination without any
further random selections. It is straightforward to se¢, tha

O(r) = Zaiq)i(r), (14)

where®; denotes the packet flux when all the traffic is routed using) gat:, i € I. Similarly, let the
J;(r,x) denote the corresponding d-flows when all the traffic dedtioe is routed using path seéti € I.
According to (11), the field-line routing decision is in thieedtion of the net d-flow, i.e.,

I(r,x) = arg Y _ o J;(r, x). (15)

This is illustrated in Fig. 3 for two alternative path setxcarding to Proposition 14, paths defined by
(15) lead to a better solution with a lower maximal scalar.flaxSection 4 we illustrate this by means of
numerical examples and show that the single-path routigad lowers the maximum of the scalar flux.
Typically, an optimal solution for the load balancing predol in finite fixed networks is such that the
maximal load is attained in several links. This suggeststti@moptimal solution in the present context of
massively dense networks is also such that the maximal eabted byd, .., is obtained in some area
AP ¢ A. We further believe thatl(®) has a strictly positive area, i.e., it is not a single point.
Definition 16 (bottleneck region) Let I denote the index set of all the optimal solutions to the loald b
ancing problem, i.e., having the same maximal scalardlyjx. Define the bottleneck region as

AB) = fr e A : Oyr) = Doy, Vi€ I},

From the optimality it follows that the bottleneck regiomoat be empty. To this end, consider an arbitrary
finite subset of the optimal single-path solutiah$r, x) yielding the scalar fluxe®,(r), i = 1,...,n.
The scalar flux for the corresponding multi-path system watidom path selection with probabilities
according to (14) is simpl®(r) = >, a;-®;(r). In particular, if{r € A : ©;(r) = $gpe, Vi=1,...,n} =



(), then choosing, e.gw; = 1/n gives

m}z}x <Z Q. (I)Z(I')> < (bopta

which is a contradiction and thu4(®) is non-empty. SaA®) surely contains at least one point. For now,
let us assume that the bottleneck regidf¥) is a set with a strictly positive area.
Proposition 17 Optimal paths are unambiguous inside the bottleneck region

Proof: Let ) (r,x) andd,(r,x) denote the forwarding functions of two optimal solutioris. |

V1(r,x) # Us(r,x), for somer € AP,

then by Proposition 14 the field-line routing, obtained frbra randomized multi-path routing using (15),
would give a lower scalar flux atcontradicting the assumption that A, O

Proposition 18 With strictly positive traffic demands(x;, x;) > 0, the optimal paths are bidirectional
in the bottleneck region.

Proof: Consider a point in the bottleneck area, € AP). As the traffic demands are strictly positive
there is some traffic flowing fromy; to x5, and vice versa. Letl denote the path from; to x,, and B
the reverse path. Next consider a multi-path routing whemaesof the traffic onA has been moved to
reverse pathB, and similarly in the reverse direction. This clearly hasefiect on the resulting scalar
flux. However, if A is different from B (in the bottleneck region), then this multi-path solutiauld be
improved by using the corresponding field-line routing, ethlieads to a contradiction. O

4 Numerical Examples

In this section we illustrate our results in two example getias: unit disk and unit square, with uni-
form traffic demands,
A
ﬁv
where A denotes the total packet flow [pkt/s] arddenotes the area of, i.e., A = = for the unit disk
and A = 1 for the unit square. In particular, we demonstrate that iielel routing derived from some
heuristically defined multi-path routing systems is indabte to lower the maximum of the scalar flux.

The most obvious choice for paths are #tertest paths (SPhich, in this context, correspond to
straight line segments between the source and destindtienocal forwarding rule for the shortest paths
is simply

A(x1,Xp) = X1,Xs € A,

Usp(r,x) = arg(x —r).

Compact expressions for the scalar packet #x) and the d-flow intensity(r, x) exist in this case. Let
a; = a;(r,0) denote the distance to the boundary frenm directioné, anda, in the opposite direction,
as(r,0) = a,(r,0+m). Then itis straightforward to show that the angular flux esponding to the shortest
paths is given by

a1 az

psp(r,0) = //)‘<X17X2) - (51 + s2) dsa dsy, (16)

0 0

wherex; = r — s1e9 andx, = r — syey With ey denoting the unit vector in directigh Consequently, with

10



Fig. 4. Notation for the d-flow intensitysp (r, x) with the shortest paths given by (18).
uniform traffic demands)(x,, x,) = A/A?, the corresponding scalar packet flux is given by

™

A
ﬁ /alag(al + CLQ) de. (17)
0

(I)SP(I') =
The d-flow density for shortest paths with uniform traffic derds is given by

Jgp(r,x) = % (d+d?/2) (x—1), (18)

whered = a/|x — r| anda = a(r, x) denotes the distance to the boundary from the direction ofr — x
as illustrated in Fig. 4.

4.1 Unit Disk

As a first example we consider the standard example of a airdigk with unit radius (see, e.g., [4,11,
12,18, 19]). Due to the symmetry, the scalar flux in this systea function of radius only.

The scalar flux according to th&hortest pathroutes can be obtained from (17) yielding an elliptic
integral of the second kind [11, 12],

Dgp(r) = m:r#/\/l —r2cos? pdo,
0

which has its maximum at the origifesp (0) = (2/7) - A = 0.637 - A. Applying the lower bounds (4) and
(5) for the unit disk with uniform demands gives

128 :
Dot > T A~ 0.288 - A, (distance bound)

1 .
Dopr > 1 A =0.25-A. (cut bound, e.g., along-axis)

4.1.1 Elementary path sets

In addition to the shortest paths, some other elementatygeds can be considered in the circular area.
In Fig. 5 we have illustrated two single-path forwardingesithat correspond to the so-calieder and
outer radial-ring pathq11, 12], which are bidirectional and also satisfy the degtton based forwarding
rule requirement given in Def. 10. These path sets cons@mi@fadial component and one ring component.
With the inner radial-ring paths, the order is chosen sotti@ting component closer to the origin is used,
and for the outer radial-ring paths it is the opposite. Sinhyl like the shortest paths, these path sets are
also not ideal. However, as their simple form facilitates éimalysis, they serve as good examples.
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Fig. 5. Local routing decisiond(r, x) for inner (left) and outer (right) radial-ring paths fer= (d, 0) in upper half
plane.

Without loss of generality, one can assume that the degtimestlocated on positive-axis,x = (d, 0).
The routing decision for radial-ring paths can be expressgdeniently in polar coordinates. Lét )
denote the current locatianin the upper half plane. The local routing rules for the inaed outer radial-
ring paths are

0 —m, r>d, 9, r<d,
ﬂin: 6—7'('/2, ng,9>0, ﬂout: 8—71'/2, ’f’Zd,¢9>0,
0, r<d, 0 =0, T, r>d, 0=0.

The corresponding scalar fluxes are

(I)in(rr) _ (7T+ 1)(T — 7’3) . A, (I)out(T) _ w . A,

™ ™

obtaining their maximab;, ~ 0.507 - A and®,,, = A atr = 1/4/3 andr = 1, respectively.

Note that for radial-ring paths, several paths coalescarba€aching the destination and, thus, packets
arriving at a certain angle may belong to different pathgaat, for any given destinatiox, packets arrive
from one of four possible directions. For the shortest paths is not the case and packets arrive from (and
depart to) all possible directions.

4.1.2 Randomized path selection

In [11, 12] it was shown that by using a randomized path selectsing two or more single-path routes
from a given set of routes, one can achieve a considerablgriomaximal scalar packet flux than with
any of the single-path routes of the set alone. In partictar combinations of the shortest paths and the

radial-ring paths were considered:
(i) shortest paths and outer radial-ring paths,

(i) shortest paths and outer and inner radial-ring paths.
The optimized path selection probabilities were such tbatte resulting scalar packet flux we have

(subscript MP denotes multi-path)
(PMPI(T) =0.61- (DSP(T) + 0.39 - <I>Out(7“),
Oy (1) = 0.5027 - Dgp(r) + 0.3763 - Py () + 0.121 - Dy (1),

where the former yields a maximum flux @897 - A, and the latter a maximum flux 6f3763 - A, i.e., the
flux corresponding to the outer radial-ring paths at the ldamyn The numerical results are given in Table 1,
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Table 1

Results with the shortest paths, and 2- and 3- multi-pattesotogether with the respective field-line routes. The
columns undeProportionsdescribe the used mixture of path sets for each row, and thenas undeMax. packet
flux give the corresponding performance for the multi-pathesystieft) and the field-line routes (right).

Proportions Max. packet flux®
shortest  outer inner| multi-path  field-line
1.00 0.637 (same)
1) | 0.61 0.39 0.397 0.390
2) | 0.503 0.376  0.121 0.376 0.344
3) | 0.437 0.343  0.22 0.389 0.343
0.5
o4 mod FL1
03] am >‘K'"" 7Z
@(r) FL3
0.2
01 modified field-line FL1 field-line FL3
circular (2 path sets) (3 path sets)

0.2 0.4 0.6 0.8 1
T

Fig. 6. Resulting scalar flux as a function of distamdeom the origin for modified circular paths (see [12]), and th
optimized single-path field-line routes FL1 and FL3 (cfwsal) and 3) in Table 1). Three dimensional plots illustrate
the same situation.

where rows indicated with 1) and 2) correspond to the optiweights for randomized path selection
with the given two and three path sets, respectively, andneonl“multi-path” contains the corresponding
maximal scalar fluxes.

However, according to Proposition 13, multi-path routesIMidd MP2 cannot be an optimal solution
to the load balancing problem and, in particular, the c@wesing single-path field-line routes, denoted
by FL1 and FL2, obtained using (15) yield a lower maximal acdllux. This maximal scalar flux can
be computed numerically and the corresponding results iges gn the column “field-line” in Table 1.
We note that in both cases, replacing the multi-path routiitg the corresponding single-path field-line
routing improves the results considerably.

4.1.3 Further Optimization

Instead of using the proportions optimal with respect tordreomized multi-path routing, one can
also treat the route selection probabilitigsas free optimization parameters for the resulting singip
routing. As an example, let us consider combinations of #meesbasic routes consisting of two and three
path sets. It turns out that in this case, the optimal prapustfor the two path sets (straight and outer)
remain the same, as given at row 1) in Table 1. However, fottte path sets (straight, outer and inner),
the optimal proportions are different and are given at ror8particular with these optimized weights, the
corresponding field-line route set, denoted by FL3, yieldsaaimal scalar packet flux ©£343 - A, which
is, to the best of our knowledge, considerably less thanhwisiobtained with any previously proposed set
of paths. For reference, the circular paths proposed inyiEld a maximal flux 0f0.424 - A, and in [12],
a modified version of this path set, after numerical optitntzg gives a maximal flux 06.384 - A. Also
the so-called curveball routing proposed by Popa et al. igl8kpected to provide a similar performance.
Although the idea behind the curveball routes (i.e., defjitie paths via a mapping between the plane and
a sphere) is appealing, the resulting scalar flux is difficulinalyze exactly.

The resulting scalar fluxes for the single-path routes FLA. RSB are illustrated in Fig. 6. Interestingly
with FL3, the scalar packet flux at the center of the area &rlsidower than the maximum. This suggests
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Fig. 7. Single-path routes towards poifit6,0) obtained by combining multi-path routes MP1 and MP3 to the
corresponding field-line routes FL1 and FL3 (rows 1) and 3)ahle 1).

E-N

Fig. 8. Single-path routes FL3 from the positiveaxis to(0.6,0) (left fig.), and the reverse paths frof®.6, 0) back
to positivez-axis (right fig.). Paths are clearly not bldlrectlonal

that there is still some room for improvement, e.g., by cihapa different set of base routes.

Fig. 7 illustrates the single-path routes FL1 and FL3 fottidation pointx = (0.6, 0) (the lower half
plane is symmetric). From the figure, it can be seen that tigewith radiud).6 has a specific role and acts
as a “highway” towards the destination. This is due to thétfaat both radial-ring paths guide most of the
traffic going to(0.6, 0) to this ring yielding a singularity in the corresponding owil(i.e., a delta function).
This singularity is then also present in the resulting snghth routes. Intuitively, from the figure, one
can see that neither of these single-path routes can bealptny., paths just above poifit — ¢, 0) are
perpendicular to the “correct” direction. The resultinghsadeviate from the intuitive ones even more when
d — 0 or whend — 1.

Finally, we note that the obtained destination based sipgth routes are not generally bidirectional.
This can be seen, for example, from Fig. 8 which illustrates gingle-path routes FL3. The left graph
depicts paths from the positiveaxis to(0.6,0) and the graph on the right depicts the reverse paths from
(0.6, 0) back to the positive--axis. Clearly, the paths are different, and thus the sipglh routes are not
bidirectional. This, as well as the fact that some of the re¥@aths cross each other twice, suggests that
a set of paths exists which attains even smaller maximahstiak. However, we believe that the possible
improvement is relatively small and that the FL3 paths areaaly close to optimal.

4.2 Unit Square
Now the considered regiad is a square bounded by the lines= +£1/2 andy = +1/2 and having the
aread = 1. The traffic demands are assumed to be uniforn,x) = A/A? =

We analyze three heuristic path sets. The first set condighe ghortest path routes. The scalar packet
flux for these is straightforward to compute using (17) aredrttaximum is obtained at the origin,

A
Psp(0,0) = 3 (V2 + arcsinh 1) ~ 1.148 - A.
The mean path length with SP routes is

_ 1
lsp = 1z (2+ V2 +5log(1+ v2)) ~ 0.521.

The resulting scalar packet flux distribution is illusticate Fig. 11. For the two lower bounds (4) and (5)
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Fig. 9. In the left figure, the Manhattan paths (MH) are iltattd. These paths are based on an imaginary dense
Manhattan grid from which one of the outermost shortest Eatelected randomly with.5 probability. The right
figure illustrates the field-line paths resulting from therilattan multi-path routes of the left figure.

given in Section 2 we have,

2-AN-AjAy A :
Dopt > Iz — 3 (cut bound along:-axis)
A - lsp .
Dot > 1 ~ 0.521 - A. (distance bound)

Hence, the distance bound provides a slightly stricter tdveeind in this case.

For an arbitraryh x 1/h rectangle with unit area the cut bound givkes. > Ah/2, and the distance
bound®,,; > X - lsp(h), wherelsp(h) can be obtained numerically. In particular, it turns out the cut
bound gives a better lower bound for all> 1.0443 (i.e., the cut bound works well with asymmetric areas).

4.2.1 Manhattan paths (MH)

An alternative heuristic path set has its origin in the slledaManhattan grid. Assume that there is a
very dense grid where, at each point in time, one can only nedlier horizontally or vertically. Clearly,
a number of different shortest paths exist between two ilmeatin such a grid except in the special cases
when the locations are aligned in the direction of the griel. (ieitherz-axis ory-axis). In the limit of a
dense grid, the number of possible paths tends to infinitywé¥er, in order to avoid the congestion in the
center, we use only the two outermost paths with a randomagtthg strategy as illustrated in Fig. 9 and
refer to these paths as Manhattan paths (MH). For MH patls siraightforward to show that the scalar
flux is simply

Oy (w,y) = A1 — 22° — 2¢%),

yielding the maximum at the origi®y5(0,0) = A, which corresponds to abol3% decrease in compari-
son to the shortest path routes. Furthermore, for any M#arhgtpe set of paths where packets are allowed
to be transmitted only in a horizontal or vertical directidrs easy to see that the mean path lengttyis
(or more). Substituting this into the distance bound (4egjv

max d(r) > % A, vV Manhattan type of paths.

Applying the Manhattan paths to a geneftak 1/ unit rectangle with uniform traffic demands gives,

1+ h? 2
d =A — 2hy* — Za?
ME(T, Y) < o7 y hg;),

i.e., the maximal scalar packet flux is again attained at thggm @y (0, 0) = A(1 + h?)/(2h). For large
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values ofh we haved,;(0,0) — Ah/2, which is equal to the lower bound given by the cut bound (5)
showing that the Manhattan paths are asymptotically optima

4.2.2 Field-line routing applied to Manhattan paths

Manhattan paths as defined above represent a genuine rathlts@t of routes wher@% of the traffic
is routed along the “clockwise” path and% along the “anti-clockwise” path (see Fig. 9 left). In order t
proceed further, we will next consider the correspondirfpa-intensities, which then allow us to derive
the single-path field-line routes having the same or betgopmance.

For Manhattan paths the d-flow density consists of both azbotal and vertical component. Let=
(x1,m9) @andr = (ry,79). Assume first that; < x; andr, < x, as illustrated in Fig. 10, where is an
arbitrary interior point of the depicted destination andalf of the packets with destinaticnoriginating
from either strip (lengths andb) will be forwarded by a node aboutMoreover, these are the only packets
seen at and having a destination abaxit Thus, for a giverr the d-flow densityJ(r, x) is constant for
all x in the rectangular destination area depicted in the upght corner and, in particular, the magnitude
of J(r, x) is directly proportional to the diameter of the rectangualeza in the lower left corner, i.e., for
ry < x; andry < 25 we have

J(r,x) = ﬁ(a, b) = %(ﬂj +2r). (19)
Forr, = x; a singularity occurs when half of the packets originatimapfrthe area below, travel viar,
and similarly forry = x5, yielding two additional terms,

~
.

A((1/2 4 r1)8(xs = r2)i+ (1/2+ r2)d (21 — 11)])

Combining these together with the other three possiblerdggin areas (note the symmetries) gives a
general expression for d-flow density,

A~
.

A s
Jun(r,x) = 1 [21" + sgn(r; — x1)i+ sgn(ry — x2)j

A~

+ 2 (sgn(zy — 1) + 2r1) 0(wg — 1)l

+ 2(sgn(zy — ro) + 2r9) §(z1 — r1)j|, forr #x.

The field-line routes follow when packets with a common aegton abouk are forwarded in the direction
of Jyu(r, x) at every poink. Due to the simple form of ;y(r, x) the field-line routes turn out to be rather
elementary as illustrated in Fig. 9 (right) for a single desionx. Note that the horizontal line segment
y = x5 and vertical line segment= z; correspond to singularities il (r, x) as all the packets join one
of these four main “highways” before reaching destination

In the general case, the scalar flux can be computed by evajube integral

o(r) = / 13 (r, x)| d®x.
A

Terms corresponding to singularities can be computed atgaryielding,

A 1
ol (r) = 5 (1=20° = 2) = 5 Pym(r). (20)
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Fig. 10. Derivation of the d-flow densities for Manhattardgiiote that at every point packets are forwarded only in
one of the four possible directions.

For the rest we refer again to Fig. 10 and (19). Consider asyirdgionx located in the rectangular
destination set, which has an area equal to

Ay = (1/2 — 21)(1/2 — 2»).

As mentioned, packets forwardedratvith such a destination must originate from either stripglsa
andb), and, in particular, the d-flow densifli{r, x) is independent of,

3 (r, %) = %Wl/? +r0)? + (1/2 + )2,

Integral of a constant over an arda trivially gives,

% (1= 220)(1 — 229)1/ (1 + 2r1)2 + (1 + 2)2.

Taking into account the symmetries then gives,

2 (r) = %[(1-2@(1-2@%1&@2 T (152y)?

+ (1422) (1-2y),/(1-22)? + (14+2y)?

(21)

+ (1-22) (1+2y),/(1422)2 + (1—2y)?

+ (1422) (142y),/(1-22)2 + (1-29)?|.

Combining (20) and (21) then gives a final expression for tades packet flux with field-line routing,
Pr (1) = Dp) (r) + By (x).
With these paths, the scalar packet flux again obtains thénmoax at the origin,
242
4

®py,(0,0) = A~ 0.854 - A,

corresponding to abodt% improvement in comparison to the shortest paths. The sftaladistributions
corresponding to these three path sets are illustratedginlfi and Fig. 12. One can observe that some
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Fig. 11. Scalar flux distribution for different path sets imtusquare in the order of the performance. The field-line
routes are obtained from Manhattan paths.

L ———_SP 1 T ~SP
\
08— o~ MH 0.8——
0.6 — 0.6 FL \ MH
,,,,,,,,,,,,,,,,, I Ny I IO B\ ]
0.4 0.4
02 distange bound 02 distance bound
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(i) Along z-axis (ory-axis) (i) Along a diagonal

Fig. 12. Resulting scalar fluxes in unit square for shortesh$ (SP), Manhattan paths (MH) and field-line routes
when applied to the Manhattan routes (FL).

unused capacity exists in each case, especially near thersoHowever, taking into account the simple
form of the paths (see Fig. 9 right), the results are summlgigood, and, in particular, the transformation
of the multi-path Manhattan routes to single-path fielélioutes also led to a considerable improvement
in this case.

4.3 Discussion

The shortest paths yield, by definition, the shortest péssilean path length, or equivalently, the small-
est possible average scalar packet flux. In order to lowemtdpamal scalar packet flux, one needs to bend
some paths away from the congested area, which increasestrepath length and, thus, also the average
scalar flux. In other words, there is a trade-off between tieezable minimum maximal scalar flux and
the average scalar flux, i.e., the distance bound (4),

max Op(r) > A%(P), (22)
where/(P) denotes the mean path length with path/2efdditionally, the cut bound (5) provides another
lower bound. The performance of different path sets anddhel bounds are illustrated in Fig. 13. In
particular, for unit disk we observe that the new solutio3k.very close to the lower bound (22). In fact,
all path sets located on the distance bound (22) have flarggatket flux distributions.

For the unit square, the areas near the corners seem to bdchatitize (i.e., there will be excess
capacity in those areas). In particular, we anticipatetti@bottleneck region in this case includes the two
line segments along the andy-axis. We also note that the transformation of the heurldaahattan path
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Fig. 13. Trade-off between the maximal scalar flyxakis) and the mean path length+#xis) for different path sets
together with two lower bounds (see [11,12, 20]).

set (MH) to the corresponding field-line routing (FL) has noyed both the maximal packet flux and the
mean path length considerably. However, both path setsitiguge far from the lower bounds, suggesting
that even better path sets exist (see, e.g., [23]).

5 Conclusions

In this paper, we have studied the load balancing problemassmely dense (wireless) multi-hop net-
works. The task is to find a set of routes, the minimizing th&imal nodal forwarding load in the network,
represented by the so-called scalar flux. In particular, axeHocused on comparing multi-path routing
with single-path routing. The main contribution of this pagvas to show that optimal load balancing can
always be obtained by a properly chosen field-line routinigictv belongs to the category of destination
based single-path routings. This is in striking contrashwhe traditional fixed (finite) networks, where the
use of multiple paths often yields a better load balancirgylagher throughput in the network. We further
anticipate that the optimal paths for large but finite netsare similar, while occasionally multiple paths
are needed in order to reach the optimum. Moreover, we hawerstinat, in the bottleneck area, the optimal
paths are unique and bidirectional, meaning that the sathagtiaversed in both directions.

The framework and new results were illustrated by means wifanical examples in elementary domains
with uniform traffic demands. A clear gain was achieved byveoting multi-path routes in a systematic
way into single-path routes. The new routes obtained for Hi#nop network in a unit disk outperform
the single- and multi-path solutions given in [11, 12]. Imtmaular, the best optimized single-path solution
(FL3) yields a maximal packet flux @343 - A corresponding to aboudt% improvement in comparison
with the shortest path routes, which tend to unnecessarilgentrate too much traffic in the center of the
network. Similarly, for the unit square, two elementarysset paths were first analyzed (shortest paths
and Manhattan paths), and then the multi-path Manhattaresouere transformed to the corresponding
single-path field-line routes, yielding a significant impement.
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