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a b s t r a c t

Weconsider a stochasticmodel for a systemwhich can serve n customers concurrently, and each accepted
and departing customer generates a service interruption. The proposed model describes a single vehicle
in a dial-a-ride transport system and is closely related to Erlang’s loss system. We give closed-form
expressions for the blocking probability, the acceptance rate, and the mean sojourn time, which are
all shown to be insensitive with respect to the forms of the distributions defining the workload and
interruption durations.
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1. Introduction

In a dynamic dial-a-ride problem (DARP) [2,1], the aim is to pro-
vide a transport service that satisfies the dynamically arriving trip
requests by controlling a fleet of N vehicles, each having n cus-
tomer seats. Upon receiving a new trip request, the system imme-
diately assigns the request to some vehicle, the route of which is
modified accordingly to include the new pick-up and drop-off lo-
cations, and an acknowledgement about the trip is sent back to the
customer. One important consequence is that the delivery of the
other customers may get delayed when a route changes due to a
new customer. In general, one can identify two somewhat conflict-
ing goals: (i) the system’s effort (e.g., driven kilometers) and (ii) the
customers’ service level (e.g., mean travel time). The fundamental
decision is to juggle between the interests of the system, the new
customer, the old customers, and the future customers. A policy
maneuvering the fleet sets a balance between these two objectives.
Controlling the fleet is an interesting and very challenging problem
itself, but outside the scope of this paper.
In a dial-a-ride system, vehicles follow constantly changing

routes while picking up and dropping off customers. In a high-
demand situation with a large number of vehicles, only trips along
some meaningful route are assigned to each vehicle. Conversely,
these trips implicitly define a vehicle’s route, which becomes self-
evident. In fact, an often used heuristic rule simply inserts a new
trip to the existing route without changing the relative order of the
existing stops [1], thus reducing the complexity considerably.
In this paper, we propose an elementary model for a single

vehicle in a dial-a-ride system. The model captures several aspects
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of the real system. Firstly, the vehicle has a finite capacity, and thus
during a congestion customers may have to be rejected. Secondly,
each stop delays the travel of the other customers sharing the same
vehicle. Consequently, the model allows us to gauge, for example,
the length of pick-up/drop-off detours that should be taken.

2. Model

We study a demand-responsive transport system, where each
vehicle, having n seats and a velocity v, picks up and drops off
customers along its route. Customers are distributed on the road
according to a Poisson process with density λ∗ per unit distance
[1/m], and defining λ = λ∗ · v gives the offered customer rate per
unit time [1/s]. Trip distances, denoted by the X∗i , are drawn from
an arbitrary distribution, X∗i ∼ X

∗, so that Xi = X∗i v denotes a
‘‘direct workload’’ in time [s]. The random variable S denotes the
total time to pick-up/drop-off a customer, consisting of the driving
time and the actual stop time (see Fig. 1). The total additional
work (in time) a customer creates, denoted by D, is thus Si + Sj,
i.e., E[D] = 2 E[S]. We further assume that a boarding customer
experiences half of the corresponding interruption period, and a
departing customer, similarly, leaves the system in the middle
of the departure interruption. Thus, on average, each customer
experiences a delay of E[S] due to his own interruptions. During
each detour, i.e., interruption, the other customers get no service
in terms of progress towards their destination. Neither can new
customers arrive for the same reason.

2.1. Erlang’s loss system with interruptions

Erlang’s loss system is a well-known stochastic model with n
servers, nowaiting places, a Poisson arrival processwith rateλ, and
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Fig. 1. Model illustrated. Pick-ups and drop-offs correspond to ‘‘perpendicular’’
deviations from the main route/road and the random variable S defines the
additional delay experienced by the other customers.

an arbitrary service time distribution with mean E[X]. For Erlang’s
loss system, the stationary probability distribution is

π
(n)
i =

ai/i!
n∑
j=0
aj/j!

, i = 0, . . . , n (1)

where a = λ E[X], and the blocking probability in particular is
given by Erl(n, a) = π (n)n . Note that this result holds for an arbitrary
service time distribution with mean E[X] (insensitivity) [5,4,8].
Due to the so-called PASTA property (Poisson arrivals see time
averages), the steady-state distribution the accepted customers see
is given by π (n−1)i , i.e., arriving customers see the system as if it
had one server less. Thirdly, the mean number of customers N in
an ordinary Erlang loss system is given by
E[N] = a · (1− Erl(n, a)). (2)
Herewe consider a variant of this, referred to as Erlang’s loss system
with interruptions.

Def 1 (Erlang’s Loss System with Interruptions). The system has n
servers, no waiting places, and accepts a new customer given a
free server is available. The system is either in the active state,
or interrupted. In the active state, customers arrive according to
a Poisson process with rate λ [1/s], and have i.i.d. service times
Xi ∼ X with finite mean E[X]. Each accepted and departing
customer triggers an interruption for a duration S(in)i and S(out)i ,
respectively, where both are i.i.d. random variables, S(in)i ∼ S(in)

and S(out)i ∼ S(out), having finite means E[S(in)] and E[S(out)]. During
the interruptions, no customer is served, and also the arrival rate
is zero, i.e., the system is offline.

Interruptions are internal, i.e., not due to some external process,
and may correspond, for example, to a reconfiguration delay or,
as in our case, to a pick-up/drop-off delay. This is not the same
as vacations, where an empty server enters into an idle state
(=vacation), in which the server only occasionally checks if new
customers have arrived [3].

3. Analysis

Let a denote the offered load in the active state, a = λ · E[X].
Neglecting the time periods corresponding to service interruptions
yields an ordinary Erlang loss system. Therefore the blocking
probability b in the active state is, simply, b = Erl(n, a), which is
also the system’s overall blocking probability as arrivals occur only
in the active state.

Lemma 1. The rate of accepted customers (throughput), denoted by
λa, is given by

λa =
1− Erl(n, a)

1/λ+ E[D](1− Erl(n, a))
,

where E[D] = E[S(in)i ] + E[S
(out)
i ]. (3)

Proof. A system without interruptions is an ordinary Erlang
loss system. Moments when such a system becomes empty are

regeneration points [7]. Let Ã(t) denote the number of accepted
customers during (0, t), Ña the number of accepted customers
during a cycle, and T̃a the duration of the cycle in Erlang’s loss
system. For the rate of accepted customers in Erlang’s loss system
(i.e., throughput), it holds that

λ̃a := lim
t→∞

Ã(t)
t
=
E[Ña]

E[T̃a]
= λ(1− Erl(n, a)). (4)

The modified system with interruptions behaves identically dur-
ing the active periods. Therefore, it also constitutes a regenerative
process with the same number of accepted customers per cycle,
Ña = Na. Moreover, Ta = T̃a +

∑Na
i=1(S

(in)
i + S

(out)
i ), which gives

E[Ta] = E[T̃a] + E[Na] (E[S(in)] + S(out)) = E[T̃a] + E[Na] E[D],

where the expectation of the random sum is due to Wald’s equa-
tion [8,7]. Finally, the rate of accepted customers in the modified
system with service interruptions is

λa =
E[Na]
E[Ta]

=
E[Ña]

E[T̃a] + E[Ña] · E[D]
=

1

1/λ̃a + E[D]
,

and substituting (4) into the above yields (3). �

Corollary 2. The blocking probability of a system in which customers
arrive independently of the system’s state, but are categorically
rejected during an interruption, is given by

b∗ = 1−
λa

λ
=
Erl(n, a)+ λ · E[D] · (1− Erl(n, a))
1+ λ · E[D] · (1− Erl(n, a))

.

That is, b∗ is the blocking probability for a system where, instead
of switching off the arrival process, customers arriving during
interruptions are categorically rejected.
Another interesting quantity is the sojourn time of customers,

denoted by T , and in particular, its mean value E[T ]. Note that,
without interruptions, E[T ] = E[X], but here interruptions cause
an additional delay that customersmay experience. Assuming that
the service times Xi are i.i.d. and that they obey an exponential
distribution, one can utilize thememoryless property ofMarkovian
systems, write a set of linear equations, and solve E[T ]. However,
it turns out that a more general result exists.
Before proceeding any further,wemust definewhena customer

actually enters and leaves the system: at the start, at the end, or
at the middle of the corresponding interruption? These definitions
make no difference to the system’s behavior in the active state, but
merely define a base line for the mean sojourn time. Thus, without
loss of generality, we first assume that the sojourn time does not
include the customer’s own interruptions.

Lemma 3. The mean sojourn time in the system is given by

E[T ] = E[X] + a · (1− Erl(n− 1, a)) · E[D]. (5)

Consequently, E[T ] depends only on the mean values, E[X], E[S(in)]
and E[S(out)], i.e., the mean sojourn time is insensitive with respect
to the forms of the distributions defining the amount of work and
the interruption times. Note that, letting E[N ′] denote the mean
number of customers in Erlang’s loss system with n − 1 servers,
that is E[N ′] = a(1− Erl(n− 1, a)), then (5) can also be written as
E[T ] = E[X] + E[N ′] · E[D].
The last term corresponds to the mean additional delay caused by
the other customers.
Proof. The fraction of time the system is interrupted is λa E[D].
Outside interruptions, one obtains an ordinary Erlang loss system,
and the probability of active state i (active and i customers in
the system) is obtained with aid of (1), (1 − λa · E[D]) · π

(n)
i .

Both interruption states occur with rate λa. An accepted customer
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Fig. 2. Left: customer rate λa (throughput) as a function of range parameter h for n = 1, 2, 4, 8,∞ seats per vehicle. Right: Trade-off between the customer rate and the
customer’s mean travel time E[T ∗] obtained by increasing parameter h from h = 0 m corresponding to the common point at the bottom left corner.

Fig. 3. Left: optimal pick-up/drop-off distance h for different numbers of seats n. Right: resulting customer rate (throughput) with optimal h as a function of n. The constant
lines correspond to cases n = ∞.

sees the system’s state according to π (n−1)i , i = 0, . . . , n − 1, as
in Erlang’s system. Similarly, the system’s state after a departure
obeys the same distribution. Thus, excluding the present customer,
the probability of arrival interruption (AI) state i is given by λa ·
E[S(in)] ·π (n−1)i , and departure interruption (DI) state i, similarly, λa ·
E[S(out)] · π (n−1)i . For the mean number of customers, on condition
that the system is in the arrival interruption state, one obtains

E[N | AI] =
n−1∑
i=0

i · π (n−1)i = a (1− Erl(n− 1, a)),

as according to (2) we have
∑n
i=0 iπi = a(1− Erl(n, a)). Similarly,

E[N | DI] = a (1 − Erl(n − 1, a)). Thus, the mean number of
customers in our system is given by

E[N] = (1− λaE[D]) E[N | active] + λa E[S(in)] E[N | AI]
+ λa E[S(out)] E[N | DI]

= (1− λaE[D]) · a(1− Erl(n, a))
+ λaE[D] · a(1− Erl(n− 1, a))

= a(1− Erl(n, a))+ λa · a · (Erl(n, a)
− Erl(n− 1, a)) · E[D].

Little’s result [6], together with the arrival rate λa, then gives

E[T ] = E[N]/λa = a(1− Erl(n, a))/λa
+ a · (Erl(n, a)− Erl(n− 1, a)) · E[D].

For the first term, we have a · (1− Erl(n, a))/λa = E[X] + a · (1−
Erl(n, a)) · E[D], and consequently, two terms cancel each other,
yielding (5). �
Both an upper and a lower bound for E[T ] follow immediately.

Firstly,
E[X] + a E[D] ≥ E[T ] ≥ E[X],
where the first inequality follows from 0 ≤ Erl(n − 1, a) ≤ 1,
and the second is obtained when a → 0 and there is at most one
customer in the system at a time. Similarly, when a → ∞, the
system is always full, and each departure is immediately followed

by a new customer taking up the free place, lima→∞ E[T ] =
E[X]+E[D] lima→∞ a(1−Erl(n−1, a)), where the limit obviously
converges to n− 1 (see (2)). Thus,
E[T ] ≤ E[X] + (n− 1) E[D].

4. Numerical example

Let us next briefly return back to the original model for a single
vehicle in a dial-a-ride system (see Fig. 1), where the pick-up and
drop-off delays obey the same distribution S, and E[D] = 2 E[S].
Moreover, each customer experiences half of his own interrup-
tions, i.e., on average time E[S]. Let E[T ∗] denote the customer’s
mean sojourn time including his/her own interruptions, E[T ∗] =
E[T ] + E[S]. Substituting this into (5) gives
E[T ∗] = E[X] + E[S] + 2 a · (1− Erl(n− 1, a)) · E[S].
At the limit when n→∞, we have
lim
n→∞

λa = (1/λ+ 2 E[S])−1 , and

lim
n→∞

E[T ∗] = (2λ E[S] + 1) · E[X] + E[S].

Let ρ denote the customer density per unit area [1/km2], cor-
responding to the customers assigned to this particular vehicle,
i.e., here we assume a constant customer density along the main
road. Then let h denote the maximum pick-up/drop-off distance
from the main road (see Fig. 1), so that the mean distance is h/2.
With these,
λ = 2vρ · h and E[S] = h/v + E[tstop].
Consequently, asymptotically we have, for example, for the pick-
up rate λa,
Initially, λa ≈ λ = 2vρ · h, when h→ 0.
For tail, λa ≈ 1/E[D] = v/(2h), when h→∞.
Let us further assume a velocity of v = 10 m/s, customer den-
sity of ρ = 1/km2 (Poisson point process), a mean stop time of
E[tstop] = 30 s, and a mean direct distance of E[X∗] = 5 km.
Fig. 2 (left) illustrates the resulting customer pick-up rate λa for
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n = 1, 2, 4, 8 and infinite number of seats (per vehicle) as a func-
tion of h. Initially, the pick-up rate increases as more customers
become available until too long detours start to hinder it. Fig. 2
(right) illustrates the trade-off between the system’s interest (high
pick-up rate) and the increased travel time the customers expe-
rience. Each curve is obtained by varying parameter h from zero.
Obviously, the right-hand tails of the curves after their particu-
lar turning points correspond to adverse parameter values where
decreasing h improves both the pick-up rate and the mean travel
time. Additionally, we notice that initially the mean travel time in-
creasesmuchmore slowly than the customers per hour rate, which
means that if the customers are even a bit flexible then the vehi-
cle’s efficiency can be increased considerably, allowing a lower cost
per trip.
Fig. 3 illustrates the performance when h is chosen so that the

customer rate is maximized (system’s gain). First, we can observe
that the optimal range h does not vary much as a function of the
number of seats n. Secondly, in this setting, with n = 8 seats the
performance is already rather close to that of a vehicle with an
infinite capacity.
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