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Abstract

The random waypoint model (RWP) is one of the most widely used mobility models in performance
analysis of mobile wireless networks. In this paper we extend the previous work by deriving an analytical
formula for the stationary distribution of a node moving according to a RWP model in n-dimensional
space.
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1 Introduction

Random waypoint model (RWP) is one of the
most widely used mobility models in perfor-
mance analysis of wireless ad hoc networks. In
the traditional RWP model in R

2, the path of
the node is de�ned by a sequence of random
waypoints, P1, P2, . . . , placed randomly using
a uniform distribution in some convex domain
D ⊂ R

2. At time t = 0 the node is placed
at some point P0 ∈ D, either randomly us-
ing, e.g., uniform distribution or at some �xed
starting point. Then the node moves at con-
stant speed v along a line towards the next
waypoint P1. Once the node reaches waypoint
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P1 it takes a new heading towards the next
waypoint P2 etc. Each line segment between
two waypoints is referred to as a leg and its
length is denoted by |`|.

The RWPmodel was originally proposed in [2]
and has since then been studied extensively.
The stationary node distribution in RWP
model (in plane) has been studied, e.g., in [3�
6]. In [4] Bettstetter et al. present a method to
derive an approximate formula for the station-
ary node distribution in two-dimensional unit
square. Using this analysis as a starting point
we derived in [1] an exact formula for the node
distribution in R

2. In [1], we also analysed the
extension of the model where the nodes pause
for a random time at the waypoints. In this
paper we extend our earlier work in [1] by con-
sidering the RWP model in an n-dimensional
convex set. Using a technique similar to that
in [1] we derive an analytical formula for the
stationary node distribution in this case. The
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three-dimensional RWP process serves as an
elementary model for, e.g. mobile users in an
o�ce building or a shopping center. Addition-
ally, it may be a useful mobility model for
either airborne or underwater objects.

2 Spatial Node Distribution in R
3

For clarity, we �rst consider the natural exten-
sion of RWP model to the three-dimensional
space and then generalize the results to an n-
dimensional space.

Let V denote the volume of the convex domain
D ⊂ R

3, ` an arbitrary leg and ` the mean
length of a leg. Furthermore, let f(r) denote
the pdf of the node location at r. Similarly
as in [1,4], we start by considering the length
of the intersection of an arbitrary leg ` and a
di�erential volume element dV at r, denoted
by |` ∩ dV |. Note that the mean length of the
intersection corresponds to the fraction of time
the node spends in dV during a single leg. In
particular, referring to Fig. 1 we infer,

f(r) =
1

`
· E [|` ∩ dV |]

dV
, (1)

E [|` ∩ dV |] =
1

V

∫
D

E [|` ∩ dV ||r1] d3r1. (2)

Let a1 = a1(r, Ω) denote the distance from r
to the boundary of the domain in a given direc-
tionΩ and a2 the distance from r to the bound-
ary in the opposite direction. From Fig. 1 we
deduce that dV = ∆ ·da and da/dA = r2/(r+
a1)

2.
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Fig. 1. The integral in Eq. (3) is equal to ∆ times
the volume of the shaded domain [1,4].
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Fig. 2. Spherical Coordinates.

Consequently, 2

E [|` ∩ dV ||r1] =
1

V

∫
D
|`(r1, r2) ∩ dV | d3r2

=
1

3V
∆ · ((r + a1) · dA − r · da)

=
∆

3V
·
(

(r + a1)
3 − r3

r2

)
da

=
dV

3V
· (r + a1)

3 − r3

r2
. (3)

Substituting Eqs. (2) and (3) back into Eq. (1)
yields,

f(r) =
1

3`V 2

∫
D

(r + a1)
3 − r3

r2
d3r1

2 The volume of 3-dimensional cone is 1/3 ×
height× area of the base, and the shaded domain
corresponds to the di�erence between two cones.
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Fig. 3. Due to symmetry in a unit sphere one can
consider points (0, 0, r) for which a1 and a2 are a
function of r and θ.

=
1

3`V 2

∫
Ω

dΩ
∫ a2

0
dr

(
(r + a1)

3 − r3
)

=
1

12`V 2

∫
Ω

dΩ
(
(a1 + a2)

4 − (a4
1 + a4

2)
)
.

More speci�cally, using spherical coordinates
we get (see Fig. 2)

f(r) =
1

6`V 2

∫ π

0
dθ sin θ

∫ π

0
dφ H(r, θ, φ). (4)

where

H(r, θ, φ) = (a1 + a2)
4−(a4

1 + a4
2),

and the distances a1 and a2 depend on the
shape of the particular domain D.

3 Spatial Node Distribution in R
n

The same procedure can be generalized to n
dimensions. The �volume� of an n-dimensional
cone is

Vn(h) =
h · A

n
,

where h is the height and A corresponds to the
�area� of the base. Let D ⊂ R

n be a convex set
with volume V . Then it is easy to see that the
stationary distribution of the RWP process in
D is given by

f(r) =
1

n`V 2

∫
D

(r + a1)
n − rn

rn−1
dnr,

which can be expressed as

f(r) =
1

n(n + 1)V 2`

∫
Ω

dΩ H(r,Ω). (5)

where

H(r, Ω) = (a1 + a2)
n+1 − (an+1

1 + an+1
2 ).

The mean length of leg ` is obtained from the
normalization condition

∫
f(r) dnr = 1,

` =
1

n(n + 1)V 2

∫
D

dnr
∫

Ω
dΩ H(r,Ω). (6)

4 Examples

Example 1: RWP model in plane: For n = 2
the general expression (5) yields

f(r) =
1

6`V 2

∫ 2π

0
(a1 + a2)

3 − (a3
1 + a3

2) dθ

=
1

`V 2

∫ π

0
a1a2(a1 + a2) dθ,

which is identical to the equation derived in
[1].

Example 2: Unit sphere in R
3: Due to the sym-

metry, the pdf is a function of distance r = |r|
only and without loss of generality we can con-
sider the point r = (0, 0, r). From Fig. 3 one
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immediately obtains that

a1(r, θ) =
√

1 − r2 sin2 θ − r · cos θ,

a2(r, θ) =
√

1 − r2 sin2 θ + r · cos θ.
(7)

Using the 3-dimensional expression (4) we get

f(r) =
3

16π · `
∫ π

0
sin θ · a1a2(2a2

1+3a1a2+2a2
2) dθ.

Writing

h(r, θ) = sin θ · a1a2(2a
2
1+3a1a2+2a2

2)

= sin θ · (1 − r2)(7 − 3r2 + 4r2 cos 2θ)

and

h(r) =
∫ π

0
h(r, θ) dθ =

2

3

(
21 − 34r2 + 13r4

)

we get

∫ 1

0
4πr2 · h(r) dr =

192π

35
.

Thus the mean length of leg ` and the pdf of
the node location at r are

` =
36

35
≈ 1.029,

f(r) =
35

288π
·
(
21 − 34r2 + 13r4

)
.

In the spherically symmetric case, the pdf of
the random variable r = |r|, denoted by fd(r),
is fd(r) = 4πr2f(r),

fd(r) =
35

72
· r2

(
21 − 34r2 + 13r4

)
.

The cumulative pdf for the unit sphere is illus-
trated in Fig. 4, where each section represents
a probability mass of 0.2.

Fig. 4. Stationary node distribution of the RWP
process in the unit sphere. Each section represents
a probability mass of 0.2.

Example 3: Unit hypersphere in R
n: The area

and volume of the n-dimensional unit hyper-
sphere are [7]

An =
2πn/2

Γ(n/2)
, and Vn =

πn/2

Γ(n/2 + 1)
.

Again, due to the symmetry, the pdf is a func-
tion of distance r only and we can arbitrarily
take r = (0, . . . , 0, r). Eq. (7) holds still with
θ being the angle between r and the xn-axis.
Di�erential surface area of the hypersphere be-
tween θ and θ + dθ is An−1 sinn−2 θ dθ. Hence,
we have

f(r) =
An−1

n(n + 1)V 2
n · ` · h(r),

where

h(r) =
∫ π

0
sinn−2 θ · H(r, θ) dθ

with

H(r, θ) =
(
(a1 + a2)n+1−(an+1

1 + an+1
2 )

)
.

In Fig. 5 the pdf of the node location at r,
f(r), and the pdf of the distance r from the
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Fig. 5. Pdf of the node location (left) and distance
from the origin (right) in an n-dimensional unit
hypersphere, n = 2, 3, 4, 5.

origin, fd(r), are depicted for dimensions n =
2, 3, 4, 5. The maximum value of the pdf f(r)
attained at the center of the hypersphere in-
creases as the dimension n increases. Further-
more, from the Fig. 5(b) it can be noted that as
the dimensions increase the probability mass
of the random variable r shifts towards the sur-
face, r = 1. Finally, the mean length of leg
given by Eq. (6) can be written for the unit
hypersphere as

`n =
An−1An

n(n + 1)V 2
n

∫ 1

0
rn−1h(r) dr.

For n = 1, . . . , 5 we obtain the well-known re-
sults [8,9]:

`1 = 2
3 ≈ 0.667, `4 = 16384

4725π ≈ 1.104,

`2 = 128
45π ≈ 0.905, `5 = 800

693 ≈ 1.154.

`3 = 36
35 ≈ 1.029,
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