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Abstract—We study the load balancing problem in a dense maximum is not a topic of this paper but is assumed to be
wireless multihop network, where a typical path consists of large given (known characteristic constant of the medium). By a
number of hops, i.e., the spatial scales of a typical distance simple time sharing mechanism this maximal value can be
between source and destination, and mean distance between . . . . .
the neighbouring nodes are strongly separated. In this limit, shared between flows propagating in dlffe'rent Q|rectlo!’ls. As
we present a general framework for analysing the traffic load @ result, the scalar or total flux (to be defined in Section II)
resulting from a given set of paths and traffic demands. We of packets is bounded by the given maximum, and the load

formulate the load balancing problem as a minmax problem and palancing task is to determine the paths in such a way that the
give two lower bounds for the achievable minimal maximum .ovium flux is minimised.

traffic load. The framework is illustrated by an example of . .
uniformly distributed traffic demands in a unit disk with a few Under the assumption of a dense multihop network the

families of paths given in advance. With these paths we are able shortest paths (SP) are approximately straight line segments
to decrease the maximum traffic load by factor of33 — 40% [1]. Straight paths yield an optimal solution in terms of mean
depending on the assumptions. The obtained traffic load level delay when the traffic demands are low and there are no queue-
also comes quite near the tightest lower bound. ing delays. However, they typically concentrate significantly
more traffic in the centre of network than elsewhere, and as the

_ ) ) _traffic load increases the packets going through the centre of
In a dense wireless multihop network a typical path consisise network start to experience queueing delays and eventually

of several hops and intermediate nodes along a path act@s system becomes unstable when the maximal sustainable
relays. In this paper we focus on studying the traffic load Wajar flux is exceeded. Hence, the use of shortest paths limits
such a network. By traffic load we mean, roughly speakinghe capacity of the multihop network unnecessarily and our
the rate at which packets are transmitted in the proximipfsk is to minimise the maximum packet flux in the network
of a given node, and the objective of load balancing is ¥ a proper choice of paths on the macroscopic scale.

find such paths that minimise the maximum traffic load in" our main contribution is the formulation of the traffic load
the network. In particular, we assume a strong separatmndﬁd the corresponding load balancing problem in a dense
spatial scales between the macroscopic level, correspondigitihop network. For the load balancing problem we provide
to a distance between the source and destination nodes, gl |ower bounds. Further, we show how the scalar flux can
the microscopic level, corresponding to a typical distangg calculated for a given set of curvilinear paths. Even though
between the neighbouring nodes. This assumption justifig results are valid only in the limit of a dense network (i.e.,
modelling the routes on the macroscopic scale as smogiilhrge number of nodes and a small transmission range), they

geometric curves as if the underlying network fabric formeghe insight and can serve as useful approximations for more
a homogeneous, continuous medium. realistic scenarios.

The microscopic scale corresponds to a single node and itSrpe rest of the paper is organised as follows. In Section I
immediate neighbours. At this scale the above assumptiqg present the necessary mathematical framework. In Sec-
imply that only the direction in which a particular packet igion |1 two lower bounds for the achievable traffic load level
traver§ing is signific_:ant. In parti_cular, cpnsidering one directiofye presented. In Section IV the general expressions for the
at a time there exists a certain maximum flow of packetsggfic load with curvilinear paths are derived. In Section V we
given MAC protocol can support (packets per unit time pgfemonstrate the load balancing in unit disk with three different
unit length, “density of progress”). Generally, this maximghaih sets yielding a better performance than the shortest paths

sustainable directed packet flow depends on the particUldrterms of maximum traffic load. Section VI contains our
MAC protocol defining the scheduling rules and possiblggnciusions.

coordination between the nodes. Determining the value of this

A. Related work

TThis work was completed while Esa Hyytia was with the Networking . -
Laboratory of Helsinki University of Technology. In [1] Pham et al., and later in [2] Ganjali et al., have

*This work has been funded by the Finnish Defence Forces Techni(%udIed the load balancmg u;mg mUItlpath_rOUIeS.mStead of
Research Center and by the Academy of Finland (grant n:0 202204).  shortest paths. The analysis is done assuming a disk area and

I. INTRODUCTION



a high node density so that the shortest paths correspondfinition 2 Set of paths denoted 5y defines for all source
straight line segments. In multipath situation the straight lirgestination pairs(rq,r2) a unique pathp € P.
segments are replaced by rectangular areas where the width
of the rectangle is related to the number of multiple patfdemark 2 The mean path length, i.e., the mean distance a
between a given pair of nodes. In particular, multiple pattcket travels, is given by
are fixed on both sides of the shortest path. -1
In [3] Dousse et al. study the impact of interference on the =% /d2r1 /d2r2 Ar1,r2) - (P, r1,12),
connectivity of large ad hoc networks. They assume an infinite A A
area and the behaviour of each node to be independent of wieere s(P,r1,r2) denotes the distance from to ro with
other nodes, which, together with interference assumptiopsith setP.
defines the stochastic properties for the existence of links. With
these assumptions the authors study the existence of a gigafti@mple 1 For the shortest paths we have
component, which is related to the network connectivity. - 1 o o
In [4] Sirkeci-Mergen et al. study a dense wireless network bsp = A /d 1 /d T2 Ary,ra) - [rz —11]. @
with cooperative relaying, where several nodes transmit the A A
same packet simultaneously in order to achieve a bettefProbably the most important quantity for our purposes is
signal-to-noise ratio. In the analysis an infinitely long strip ithe packet arrival rate into the proximity of a given node.
studied and the authors are able to identify a so-called criticghis is described by the notion of scalar flux, which in turn
decoding threshold for the decoder, above which the messagelefined in terms of the angular flux. These are similar to
is practically transmitted to any distance (along the strip). Tlo®rresponding concepts of particle fluxes in physics, e.g., in
analysis assumes a dense network similarly as in this pap&eutron transport theory [10]. In our case, the packet fluxes
In a dense network with shortest path routing the transmigepend on the traffic demand densiffr;, r2) and the chosen
sion of each packet corresponds to a line segment in the areaaths?, and are defined as follows:
the network. A line segment process with uniformly distributed
end points is similar to the so-called random waypoint (Rwiefinition 3 (angular flux) Angular flux of packets at in
mobility model commonly used in studies of wireless ad hddrection 6, denoted by (r,6) = ®(P,r,0), is equal to the
networks [5], [6], [7], [8]. In the RWP model the nodes movéate [1/s/m/rad] at which packets flow in the angle interval
along straight line segments from one waypoint to the next aff§ ¢ + d¢) across a small line segment of the length
the waypoints are assumed to be uniformly distributed in sorRgrpendicular to directiond at point r divided by dz - df
convex domain. The similarity between the RWP process afitithe limit dz — 0 and df — 0.
the packet transport with the shortest path routes is striking .. ...
and we can utilise the readily available results from [11] i?ggeﬂ.mnon 4 (scalar flux) Scalar flux of packets [1/s/m] at
this case. For curvilinear paths the situation, however, is mdred!Ven by

complicated and the new results derived in the present paper 2
allow us to compute the resulting scalar packet flux (i.e., traffic o(r) = ¢(P,r) = /<I>(P, r,0) dob.
load). 0
[l. PRELIMINARIES With the above notation we can formulate the optimisation
In this section we introduce the necessary notation aH&Oblem'

definitions for analysing the transport of the packets and t
resulting traffic load in the network. Lef denote the region
where the network is located antlthe area ofd. The packet

generation rate corresponding to traffic demand density is Popt = al"gminmgx@(?r)-
defined as follows. s

Beefinition 5 (load balancing problem) Find such a set of
paths, P, that minimises the maximum scalar flux,

Remark 3 (optimal maximum traffic load) With the load
Definition 1 (traffic demand density) The rate of flow of balanced paths the maximum load is
packets from a differential area elemedfl aboutr; to a _ .
differential area elementA aboutry is A(ry,r3)-dA?, where Popy = max ®(Pop, 1) = en max ®(P, r). (2)

A(r1,12) is called the traffic demand density. In Def. 5 one needs the scalar flé(P, r). In Section IV

we will show how this can be calculated for a given set

Remark 1 The total packet generation rate is given by of pathsP. The remaining problem of finding the optimal

9 o paths is a difficult problem of calculus of variation. In this
A= d I d Iro )\(I‘l,rg). .
paper, we do not search for a general solution but rather
A A study three heuristically chosen families of paths and compare

Each generated packet is transferred along a certain multitbpir performance with that of the shortest paths and with the
path. More formally, bounds introduced in the next section.



- - Another bound is obtained by considering traffic flows
do — h I crossing an arbitrary boundary (cf., cut bound in wired net-
- - works).
T Proposition 2 (cut bound) For any curveC which separates
the domainA into two disjoint subdomaind; and.A; it holds
Fig. 1. Cumulative progress in a small square. that

1
b > 7 [ @ri [ Pra (rar) 4 Arair)),

Ai Az
Our next goal is to derive two lower bounds for achieVgnere 1, is the length of the curvé and the double integral

able load balancing, i.e., for a given traffic demand dens@fves the total rate at which packets cross the cu@véboth
A(r1,r2) we want to find bounds for the minimum of thegirections included).

maximal traffic load that can be obtained by a proper choice

of paths. Let us start with two preparatory remarks that give Proof: Consider first a short line segmefitatr at some

additional characterisations of the scalar flux. point along the curvé. Let~y denote a direction perpendicular
to the curve air such that the packets arriving from the angles

Remark 4 Scalar flux of packets is equal to the rate at whiclry—m/2,v+m/2) crossds from outside to inside, and packets

packets enter a disk with diametérat pointr divided byd arriving from (v + 7/2,v + 3w /2) crossds from inside to

in the limit whend — 0. outside. The rate\(r) ds at which packets move acrods is

- L given by
The proof follows trivially from the definitions. Note that

I11. L OWER BOUNDS FOR PACKET FLUX

Remark 4 justifies the interpretation of the scalar packet flux /2
as a measure of spatial traffic load. Ar)ds = /cosa (O(r,v+a)+P(r,y+a+m)) dads.
—m/2

Remark 5 (density of cumulative progress rate)Scalar

flux ®(r) can also be interpreted as the cumulative progredsS 0 < cosa <1 for —7/2 < a < 7/2 we get

[m] of packets per unit time [s] per unit area [th about /2

pointr (rendering 1/s/m as its dimension). A(r)ds < / O(r,y + a) + O(r,y + a + 7) da ds
Proof: Consider the packet flux within a small angle —m/2

interval df entering a square from the left side as illustrated = ®(r) ds < max ®(x) ds.

in Fig. 1. According to Def. 3, the rate of such packets is xeA

®(r,0) - h - df. The same flow departs the square from thiategrating over the curvé completes the proof. [

right side. Thus, inside the square the cumulative progress per

- : e : ) IV. PACKET FLUX WITH CURVILINEAR PATHS
unit time (for packets moving within the angle interv) is

O(r,0) - h - df - w. Per unit area the above yields(r, 0) df. In this section, unless stated otherwise, we assume uniform
Integrating overd then gives thatd(r) corresponds to the raffic demand density and a single paifr,r) between
cumulative progress per unit time and unit area. m Source and destination locations and ro. We make the
assumption of uniformity mainly for notational simplicity. It
Proposition 1 (distance bound) is easy to generalise the results for any distribution. Moreover,
A7 we assume that the paths R satisfy the so-called path
O(P,r) > — . 3) continuity constraint:
max ®(P,r) > — 3)

Proof: The cumulative progress rate in the whole area [g€finition 6 (path continuity)
obV|o_ustA -£. Thus, the _nght hand side equals the average If r € p(r1,r2), thenp(ry, ) = p(r1,r) + p(r, r2).
density of progress rate, i.e., the average scalar flux. |

The above definition lets us characterise the paths according

Remark 6 Combining(2) and (3) we have to the direction at some point. In particular, the routing
A - decision made in each point depends only on the destination
Dopt > 7 o 2 of the packet, not the source. Lefx, #) denote a path going

through pointx and having a directio at that point. The

Itis obvious that the minimum 6fis obtained wherP consists points along the curve (assumed to be smooth) are denoted by
of the shortest paths. Denoting the corresponding mean path

length by, cf. Eq.(1), we get p(x,0,s),  wheres € [—ai,as], anday, az > 0,

ATy, so thatp(x,6,0) = x. Thus,a; anday denote the distance
Popt 2> A 4 to the boundary along the path in opposite directions. Note




that this means that we limit ourselves to paths that start and
end at the boundary of the domain (no closed paths within the
domain allowed).

Definition 7 (path divergence) Let h(x, 6, s) denote the rate
with respect to the anglé@ at which paths diverge at the
distance ofs,

h(x,0,s) = dleiglo Ip(x,0 + dO,;g —p(x,0,s)|

2 p(x,0,s)|.

Fig. 2. Derivation of expression (5) for the scalar flux.

Proposition 3 (angular flux with curvilinear paths) For
uniform traffic demand density\(r;,r2) = A/AZ,

S T e the Consequently, the angular flux atin directiond is given by
angular flux at pointx in direction 8 is given by

¢ h(x,0,s") ,
®(x,0) A2/h ,9, p / (x',0',s+s")dsds’, (5) (x,0) AQ hxl,H’ =) /hx ', s—s") ds ds'.
wherex’ = p(x, 6, —s’) and ¢’ is the direction of the path at The proposition follows upon substitutiof — —s’. ]

x' (see Fig. 2).

Prof. Wihutlossofgeneraly we may assume- 1. ST T (Gngle lox it ronuntor ey ) e
Assume that a particular source is located in a differential art%aﬁ‘l?: demand denglt ). In this case, the angular flux
element about point’ (see Fig. 2 left) X(rs,r2 g

at x in direction @ is given by
Xl = p(xa 9; S/)a Sl S 07

ay

o
for which it clearly holds that B(x,0) = / h(x,0,=s")
h(x',0',s")
p(xl70l78_8l) = p(x,@,s). az 0
Let df denote a differential angle at The differential source /A(X’, p(x, 0, s+58) - h(x, 0, s+5)dsds’.

area abouk’ is given by (see Fig. 2 left) 0

As = h(x,0,8")-db-ds'.

Similarly, letd¢’ denote a small angle at poixt, which yields
a destination area of h(x,0,s) = |s|,

Ag = /h(x',@',s —s')ds df’,

0 _ i / /
as illustrated in Fig. 2 (right). The height of the “target line ®(x,0) = //A(r1,r2) (s +s)dsds’,
segment” perpendicular to the path at painis 00
he = h(x, 0, —s) - do. wherer; = r — s’ ey, andr, = r + sey, with ey denoting

o ) _the unit vector in directiod. Consequently, for uniform traffic
Thus, the contribution to the angular flux from the differentigiemand density,

source areal, aboutx’ is

Example 2 (shortest paths)For the shortest paths

and the angular flux is given by

ay az

dd = m d(x,0) A2 // s+s dsds = ﬁalag(al—kag)
11 1
A2 df \h(x, 0, —s)-do ) in accordance with the result on RWP model in [9].

V. UNIT DISK WITH UNIFORM TRAFFIC DEMANDS

<h(x,9,s’)~d9~ds'> '/h(x’,O’,s—s’) ds do’

5 In this section we will demonstrate how the proposed
, as framework can be applied. To this end, we consider a special
_ % . h(h(’ngf’s )/) '/h(xl,elvs _ s')ds ds'. case of a unit disk with uniform load,
xX,v,—S
A={reR?: |r| <1}, and, \(r1,r2) = A/72
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Fig. 3. Left figure illustrates the three path sets considered: straight line segments (SP), radial paths with outer (Rout) and inner (Rin)gaingoitioins.
The middle figure illustrates the derivation of the angular ring flux at the distdrioe Rout paths. In the figure on right the resulting flux is plotted for the
three path sets (SP, Rout and Rin) and for a randomised combination of SP and Rout (dashed curve) as a function of fistative centre.

We study the performance of three simple families of pathExample 6 (cut bounds for unit disk) Let us consider two
outer and inner radial ring paths and circular paths. Therrves, a diametaf; separating the unit disk into two semi-
performance of these path sets is compared with that of thiecles, and a concentric circl& with radiusd, 0 < d < 1.
shortest paths, and with the appropriate lower bounds for tRer the packet rate; acrossC; it holds thatA; > A/2, and
minimal maximum traffic load. A

(I)opt 2 Z == 025 : A

Example 3 (shortest paths for unit disk) For transport ac- imilarly, the packet rate acrogs is bounded byAs(d) >
cording to the straight line segments we can rely on the res §2(1_d2,) - A, which corresponds to radial flux -
for the RWP model (see [11]). Accordingly, the scalar flux at ’

distanced is given by 2% (1 —d?) A— d—d*

D,.(d A.
” (d) 27d T
Doy (d) = 2(1 - Cf) A / 1= o2 & do. By the cut bound we havé,,: > ®,(d). The tightest lower
m J bound is obtained by maximising, (d) with respect tad,
2
In particular, the maximum flux is obtained at the centre, Dopy > O, (1/V/3) = 35 n A ~0.123-A.
- T
., (0) = 2 A ~0.637 - A. (6) We see that in the case of uniform traffic demand density
s

the distance bound provides the tightest lower bound for the

. - ) solution of the minmax problem (2).
Example 4 (distance bound for unit disk)  The distance

bound gives a relationship between the obtainable maximwm Radial ring paths

load and the mean path length. With shortest paths we havg o1 ;5 consider next the three actual path sets illustrated in

lsp = 128/45m which upon substitution in (4) yields Fig. 3. The shortest paths (SP) are equivalent to RWP model as
A-128 has been already mentioned. The two radial path sets, referred
o 0.288 - A. to as “Rin” and “Rout”, are similar in the sense that each path
consists of two sections. One section is a radial path towards
(or away from) the origin, and the other section is an angular
Math along a ring with a given radius. The difference between
the two sets is the order of sections, “Rout” uses the outer
— angular rings and “Rin” the inner ones, as the names suggest.
max ®(P,r) > Py, - £/2. Note that locally, at any point, the packets are transmitted

only in 4 possible directions (2 radial and 2 angular), which

Shortest path§ are not optimal set Of paths for uni_form traffglﬁay simplify the possible implementation of the time division
demand density. But the above relation says that in SearChmgltiplexing.

for a better set of paths (which necessarily fias /,) one  \\1an studying the arrival rate into a small area at the

can outright reject such path sets for which- 2 since or - gisance off from the origin one needs to consider both radial

them the maximal scalar ﬂl,JX surely is greater than' that fgﬁ'\d angular ring movement. The radial component of the flux
the shortest paths. That is, in order to lower the maximal f|l1l§( the same for both path sets, i.e.

one has to bend the paths away from the loaded region but
without increasing the mean length of the paths too much at _d- d?

) P, (d) = - A )
the same time. T

(I)opt Z

Example 5 (greatest sensible mean path lengthyvith the
aid of (6) we can write the distance bound (3) in terms
(0]

Sps
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Fig. 4. Circular paths are paths formed by the circumferences of circles which cross the unit disk at the opposite points. The figure on rightthileistrate
resulting scalar fluxd(d) (y-axis) for both circular and shortest paths (SP) as a function of dist@ricem the centre £-axis).

1) Outer radial ring paths:Let us next consider outer radial Hence, the outer version leads to a higher maximum load
ring paths. We want to determine the flux along the ring #han the shortest paths while the inner version yields a slightly
the distance ofl. To this end, consider a small line segmenrtetter solution. The resulting packet fluxes are illustrated in
from (—d,0) to (—d — A,0) as the target line segment, ag-ig. 3 (right) as a function of the distandefrom the centre.
illustrated in Fig. 3 (middle). Packets originating from a small .
source areal at the distance aof in directiond travel through B. Circular paths
the target line segment if their destination is in the destinationAs the last path set we consider curvilinear paths, referred

areaA,. The size of the source area is to as circular paths, which consist of such sections of circum-
ference of circles that cross the unit disk at the opposite points
As =d-A-db, as illustrated in Fig. 4 (left). From the figure it can be seen that

while the possible destination area is these paths smoothly move some portion of the traffic away
) ) from the centre of the area.
Ay = 0-nd - - . 0. The angular flux can be calculated using Proposition 3, and
2m 2 the scalar flux is obtained by integration (cf., Def. 4). The
Combining the above withh = A /72, and taking into account resulting scalar flux is depicted in Fig. 4 (right). It can be
the symmetries, gives the angular flux at the distancé, of seen that the traffic load is fairly well distributed in the area.

LR The maximum flux is obtained at the centre of the disk, where
By(d) = 4A2 /d_ O-Ad) =P A the flux is0.424. In fact,'it is possible to deltermine the packet
AT ) 2 flux at the centre analytically (see Appendix). For this we have
Hence, the total flux at the distandéfor the outer path set is ®(0) = 4. A=0.424 - A,
given by 3m
D+ d which is exactly2/3 of the packet flux with the shortest paths
Prous (d) = @,.(d) + Py(d) = u AL (cf., Ex. 3) and is also smaller than the maximal scalar fluxes
™ with the ring paths.
The maximum flux is obtained at point= 1, _ _
C. Randomised path selection approach
q)Rout(l) = A

One option to achieve a lower maximum load is to allow
2) Inner radial ring paths: For inner paths the possiblethe use of several paths for each pair of nodes (similarly as in

destination area of packets is [1], [2]). In particular, let us relax our assumptions and allow
) a finite number of path setspP;}, wherei = 1,...,n. Upon
(1—d%)/2-9, transmission of a packet the source node chooses a path from
and we have, path setP; with probability ofp;, i =1,...,n.
AN 1 3 Remark 8 (packet flux with randomised path sets)
Pold) = 3707 / ;0 d-Ad=(d=d)-A Randomised path upon transmission selection from path sets
0 {P;} with probabilities p;, i = 1,...,n, yields a scalar
Combining the above with (7) gives packet flux of
73
Prin(d) = w AL d(r) = Zpi - ®(P;,r).
™ i

The maximum is obtained at point=1/+/3, Example 7 Consider uniform traffic demand density in unit

<I>Rin(1/\/§) =~ 0.507 - A. disk and two path sets, 1) shortest paths, and 2) the outer radial



paths. Weighte; = 0.61 andp, = 0.39 give a packet flux of [8] W. Navidi and T. Camp, *“Stationary distributions for the random
waypoint mobility model,” IEEE Trans. on Mobile Computingvol.

®(d) =0.61- CI)Sp(d) +0.39 - Prout(d). 3, no. 1, pp. 99-108, January-March 2004. _ S
[9] Esa Hyytia, Pasi Lassila, and Jorma Virtamo, “Spatial node distribution

- : : of the random waypoint mobility model with application$E2EE Trans.
The resulting flux is almost constant as illustrated by the "\ Computing2005, accepted for publication.

dashed line in Fig. 3. The maximum @397 - A. The same [10] G.I. Bell and S. Glasstone\uclear Reactor TheoryReinhold, 1970.

technique can be taken further, e.g., by combining all thr&€l Esa Hyytid and Jorma Virtamo, “Random waypoint mobility model in
path sets as follows cellular networks,”Wireless Networks2005, accepted for publication.

®(d) = 0.52 Pgp(d) + 0.37 - PRout(d) + 0.11 - Prin(d APPENDIX
() =052 Ropld) 037 Prow(d) + 011 Prinld), Flux at the centre with circular paths
which gives a maximum flux o.379 - A. In order to illustrate the framework and the steps involved

we will next determine analytically the scalar packet flux at
the centre of unit disk for the circular paths. Furthermore, a

In this paper we have presented a general framework fiform traffic demand density is assumed. The situation is
analysing traffic load and routing in a large dense multihd}epicted in Fig. 5. For point; we get,

VI. CONCLUSIONS

network. The approach relies on strong separation of spatial ' sindd = R a0’ — db /R2 _1

. . . . = . — — -1
scales between the microscopic level, corresponding to the S, S C.OS( , ) ’
node and its immediate neighbours, and the macroscopic level, §'-cosdf = R -sin(d6’ — df).

corresponding to the path from the source to the destinatigthr small values of: we have

In a dense wireless network with this property the local traffic 1, 1
load can be assimilated with the so-called scalar packet flwgine =, cosz~1-—-2% and vl-z~1- .
The packet flux is bounded by a maximal value that thﬂ'nus we get

network with a given MAC and packet forwarding protocol '

can sustain. The packet flux depends on traffic demand density s -do—=R- (1 _ l(de’ _ d9)2> _ m7
A(r1,r2) and the chosen set of routing patis The load 2

bala_ncmg problem thus comprises of determining the_set of /. (1- 1d92) — R (d0' — d9).

routing paths such that the maximal value of the flux in the 2

network is minimised. While the general solution of this difAccording to Fig. 5d6'—df = s'/R. Substituting that into
ficult problem remains for future work, our main contributioformer equation above yields

in this paper consists of giving bounds for the packet flux and , N2 P

giving a general expression for determining the packet flux at % =11 (‘i) 1 % R el

a given point for a given set of curvilinear paths. 2\R RrR* 2R?
The results are illustrated by numerical examples with thre@d consequently,
different sets of paths in unit disk. Future work also includes do — 1- 8'2.
investigating how to find nearly optimal load balancing in a 2R - s
distributed fashion. Hence, asif’ — df = s’/ R, we have
N1_8/2 /N1+S/2
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Moreover, we have

s’ - do
no_ /
h(x,0,—s") = =
H 1 2Rs’ s
hix,0,s) = — ~—. = .
O = ¥R Tre? 177
Hence,

h(x,0,—s") _ s'- (14 52) 12,
h(x,0',s") s

and the angular packet flux at the centre of the unit disk is

1

®(0,0) AQ/h /9, /h (x',0',s+5") ds ds’
0

A 2

45 2 ds’ = = - A.

67r2/3+ s’ —3s'“ ds 52
0

Finally, the packet flux at the centre is given by

2

®(0) = /@(079) g = ; A~ 0.424 A,
T

0

which is exact|y2/3 of the packet flux with the shortest path%lg 5. Notation used in the derivation of the packet flux with the circular
consisting of straight line segments (cf., Ex. 3). paths at the centre of the unit disk.



