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Abstract—We consider a simplified model for the rate ~ The common assumption in TCP throughput analysis
control of TCP sources. In particular, we assume idealized has been the independence between congestion epochs,
negative feedbacks upon reaching a certain total sendingj e | it is assumed that the packet losses occur in fixed
rate., ie., gt the m0n_1enF yvhen the total sending rate time intervals ([41, [5], [6], [7]), or originate from a (nen
attains a given capacity limit ¢ one of the TCP sources uniform) Poisson process [8]. A more general approach

is given a negative feedback and the source reduces its be found f 9 h the | ted
sending rate in a multiplicative manner. Thus, the model can be found from [9], where the losses are generate

takes into account the interactions between different flows DY @n arbitrary exogenous random process allowing one
appropriately at the microscopic level instead of assuming 0 model correlations between inter-loss times.
independence. For this model we are able to derive steady In contrast to above work, in this paper we consider an
state equations and solve them. Furthermore, we are elementary model for the TCP rate control mechanism,
able to compute several important performance measures where the loss process gets explicitly defined by the
such as the mean and the variance of the total sending sending rates of all TCP sources, as the case also is in
rate. Moreover, we are able to characterize the packet ,actice The aim is to characterize the behavior of the
loss process at the bottleneck link and, in particular, the .\, rrant TCP flows at the microscopic level, e.g., in
correlations therein. . .
order to study the influence of the TCP traffic to other
|. INTRODUCTION traffic flows such as real time voice or video streams.
Transmission control protocol (TCP) is without doubto this end, we study a single bottleneck link and make
the most popular transmission rate control mechanisi@veral simplifying assumptions about the rate control
due to its success in the Internet. The rate contr@lechanism. Firstly, we consider a continuous model,
mechanism in TCP belongs to the family of the so-callde., a fluid flow model, where the sending rates are
additive increase and multiplicative decrease (AIMD§ome non-negative real numbers. Secondly, the decision
schemes, which have been studied extensively in tliesend a negative feedback is based on the current arrival
literature, see, e.g., [1] and [2]. An introduction tdate of the packets into the bottleneck link, not directly
TCP rate control mechanism can also be found froan the occupancy level of the buffer (unfinished work).
several text books, see, e.g., [3]. One important aspdtirdly, we assume a constant delay before sources react
of bandwidth allocation protocols is the fairness, i.eon the negative feedback signals (i.e., a constant RTT).
how the available bandwidth is allocated between theThe model is analyzed in the standard framework
traffic flows sharing the same resources. For exampid, Markov processes. First we present the steady state
it is well-known that in TCP/IP networks the flows withequations for the underlying embedded Markov chain
higher round trip times (RTT) tend to get smaller sharegith continuous state space. We are able to solve the
Perhaps the most famous results on TCP are the res@fpscial case of two TCP flows exactly, while for more
on the throughput analysis, e.g., the famous square rtan two flows the number of possible transitions in-
formula for the TCP throughput by Floyd and Fall [4]creases considerably and we resort to a flow aggregation
and the more accurate expression by Padhye et al. @pproach. In particular, we choose one flow as a targeted
The above results provide the average throughput g@w and assume that the rest of the flows share the
flow as a function of the packet loss probability. remaining bandwidth equally. For this model we are
e B . o ~_ able to compute several important performance measures
Centre for Quantifiable Quality of Service in Communicatio 5,y a5 the mean and the variance of the total sending
Systems, Centre of Excellence” is appointed by The Resdzocim- . S
cil of Norway, and funded by the Research Council, NTNU anf@te for different number of flows, the distribution for
UNINETT. (http://www.ntnu.no/Q2S/) the window size upon a negative feedback and full



characterization of times between congestion events. The 5, 4 D0 0o
knowledge of the packet loss process at the bottleneck l l l l i
link, and the correlations therein, allows us to further P IR AN SN A 0
present an elementary model for the loss process for the
UDP flow(s) sharing the same link.

The rest of the paper is organized as follows. First, in
Section I, we present our model in detail and comment %
about the assumptions. Then, in Section Ill, we analyze ) =
the model and derive expressions for several important fow? fmet
performance measures and characterize the loss process Fig. 1. Sample realization of two competing flows.
caused by the TCP mechanism. In Section IV, we study
the correlations between the consecutive packet losses,

i.e., how often the buffer occupancy achieves the giv&ith an appropriate scale of time, i.e., when the linear
level and how the time intervals between such events dhgrease factor is equal to, d/dt R(t) = 1. With this
correlated. Section V contains some numerical exampléboice of the time scale we can write
and finally, in Section VI, we present our conclusions and Ap— A — A

R = AT = A.
comment on the future work.

Il. TCP MODEL DESCRIPTION A. Relationship to real systems

We consider. TCP flows in an idealized system where ' aAg mentioned already, this is a rather idealized model
the sending rate of one source is always reduced f§} TCP congestion control. Firstly, we consider a con-
multiplicative manner when the total rate would exceqghuous model where sending rate of each source is some
the capacity of the (single) bottleneck link. In particylagositive real number. This is rather standard assumption
let r;(t) denote the sending rate of souricat timet, SO i the analysis of the TCP. Secondly, the decision to send
that the total sending rate is simply a negative feedback signal (either by explicit congestion

R(t) = Zn‘(t)- notification (ECN) [10] or by dropping a packet) is not
P based on the (averaged) occupancy level of the buffer,
We can assume such a scaling that the total capacityPf the total sending rate of the sources sharing the same

the bottleneck link is one; = 1, so that we have bottleneck link. Thirdly, we neglect the delays in the
feedback loop, or rather assume that the delay is some
R(t) = Z”(t) =1 vt constant for all sources, which yields the same additive

7

) ) _increase rate for all sources.
Furthermore_, we assume a pr_op_oonnaI marking, i.e.,next we comment a bit on the second assumption
upon reaching the capacity limi¢ the flow 0 be g ji js unique to this model. In practice the IP routers
downsized is chosen randomly with the probabiliti§s,se their decisions on the (averaged) occupancy level
proportional to the sending rates. With ¢ = 1 the ¢ the puffer (see, e.g., random early detection in [11]).
probability of choosing flowé is simply ;(t). Letv be 5 vever if the arrival rate is substantially lower than
the multiplicative factor, i.e., upon a negative feedbagKe service rate, no queue accumulates in the router.
flow ¢ reduces its rate according to Thus, if during each epoch the drop in the total sending
ri(t+dt) = v-ri(t). rate is large enough for the router to empty the buffer,

Thus, the drop in total sending rate(is—v) - r;(t) with the assumption Of. t_he negayve feedback_ Cr.'te“a ba_sed
.on the current arriving rate is not really limiting. This

probability of "l _and, consequently, the mean drop Ighould be the case with a small number of TCP flows
total rate (conditional to the current stateis given by

E[Ag|r] = (1-v) Z ) (i.e., access network).
RITf =W —V)" .

Moreover, the mean time to achieve the same total raéfie Embedded Markov chain

after a negative feedback is given by The process described in the previous section clearly
E[Ar|(r]=1-v)-Y 72 constitutes a Markov process. In particular, we can
associate an embedded Markov chain to this process

[1l. ANALYSIS
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Fig. 2. Transitions to the intervdl:, z + dz).

For the flow in we need to consider transitions from
two intervals corresponding to transitions up and down
as illustrated in Fig. 2. Hence, the probability flow into
small interval(z, z + dx) is
4x
(5)

f<4x—1> 4

4 4 4
de (1 — de - 2o
3 3d:1: 3( x)+ f 3dl’ 3¢

These probability flows are equal in the steady state,

by considering, e.g., the time instances when the tothich yields

rate attains the capacity of the bottleneck link. D&t
denote the sending rates of the TCP sources atthe
point, k = 1,2,.... Then, with the probability o’rXi(k)

4 — 1

fla) = 5

<4

3

) oo (5 ()]

the next state&X *+1) of the embedded Markov chain istetting f(1/2) = a we obtain

(XP A ox® A X A,

where A* = (1 —
Markov chain has a state space Ri* dimensional
hyperplane"" | X; = 1 with X; € (0,1) V.

Note that, if the multiplicative factor and the initial
stateX(©) of the system are fractional numberse Q
and X©) ¢ Qm, then the system remains i@", i.e.,
Xk e Q" V k = 0,1,.... However, in this paper

we consider only “smooth solutions”, which are relevartimilarly, for each: = (

from the practical point of view.

B. Solution for 2 flows

With two flows andX; = z the state of the embedded
Markov chain is(z, 1 — z). The transitions to the next

embedded point (withv = 1/2) are then as follows.

( )
(

where, e.g., at statér,1 — ) the reduction occurs for

143z 3—3x
4 4

11—z P
(z, 1 —x) °<:
T o (3

3 _3
gz, 1 — 3w

V)XZ-(k)/n. We note that the above

2

F(1/2) =a= (g)? [(1/2)f (%) L f <§
(710,

and we get
F1/3) = £(2/3) = (

3 3
2
3

4) -7 We can recursively obtain
an accurate value. Thus,

)

3

4

a a
fam=a =g 1006 =g
3 a
s = (3) o s6n0 =
Recursively, one obtains
1 /3\" a 3 n(n—1)/2
((6)) =% (5)
=a- 5_% Vn=012...

flow 1 with probability of z and the embedded MarkovThe above suggests a solution for intervat (0, 1/4],

chain moves to statex/4,1 — 3z/4). Let f(x) denote

the pdf for the state of the flowat the embedded points,

P{zr < Xj <z +dz} = f(z)dx. We define explicitly,
flz)=0 Vz<Oandz > 1.
Due to the symmetry we also have
fl@) = f(1 - ). (1)

In order to determine the exact form gf(z) we

write the global balance equations. In particular, we can

consider a small intervdle, = + dz) and the probability
flows to and from it. For a small interval: there are no

self-transitions in this system and the flow out is simpl

flow out= f(z) - dx.

a [3vn=3) g /2\"
2y [z (n—1)/2

T4
with n — 20847

log 3/4
The other values i1 /4, 1) can be computed recursively
using the identities (1) and (2), and the constafllows
from the normalization condition. The resulting pdf is
illustrated in Fig. 3. The distribution has a meard

and variances? ~ 0.0192. Note that in order to get
the time averages for the actual sending rate one must
integrate overf(x) with appropriate weightsf(x) is
%erely the steady state distribution of the embedded
Markov chain!).



with

2.5 . log r —log(1 — ay)
2 / \ N log as ’
SN / \ The valuef(1 — aq) is obtained by normalization. With
1 a1 = az = 3/4 the above reduces into (3).
0.5
D. Flow aggregation approach
0.2 0.4 0.6 0.8 1 .
x Generally there aren TCP flows sharing the same

bandwidth. The straightforward analysis, however, leads
Fig. 3. Steady state distributiofi(z) of the embedded chain for to complicated equations as the number possible transi-
two competing flows. tions from each state increases linearly as a function of

m. In order to reduce the complexity of the model let us
C. General case next consider an approximation where we have- 1

The above Markov chain is a special case of a discrét gregated flows and a "targeted flo.

: : ) . Let X; = x denote the sending rate of flowupon
time Markov process with a continuous state space in . )
a negative feedback signal, so that the aggregated flows

(0,1) of R with the transition probabilities according tohave a total sending rate af— . We assume that the
l—2 e g .2+ (1—ay) aggregated flows share this bandwidthlof = equally

r e — at the point of time when the negative feedback signal

is generated.

¢ In this case the state transition probabilities are as fol-

where0 < a; <1 and0 < ay < 1. Leta; = 1/ay, and lows. With probability ofl —z at stater (corresponding

as = 1/as. Then theglobal balance equationfor this to the sending rate of flow) the negative feedback is

® g5-x

system can be written as sent to one of the aggregated flows corresponding to a
fl@) =a?-(1—2) f(1 — a1 +arz) @ decrease in the sending rate equal to
—l—a%-x-f(agw). A:(l—y)-l_x,
m—1

Again, we know that
flz)=0 Vz<Oandz > 1.

so that the next state of the embedded chain is
A z(m?P-m)+(1-z)(1-v)

In particular, for0 < x < 1 — a; ho transitions are T+ m_ m(m — 1)

possible fromt to x, for t < x, and (4) simplifies to

m2—m+v—1 n 1—v
T E——
f(z) =03 -z flanz). (5) m(m — 1) m(m — 1)
Values forz > 1 —a; can then be computed recursivehbimilarly, with the probability ofz the rate of flowl is

using (4) once the solution for (5) is known. In particulareduced and the decrease is
it turns out that fol0 < x < 1—a; andn =0,1,... we

have A=(1-v)z,
_ (n?+3n)/2 on. n o
f(z) =0y x" - fagw), and the next state of the chain is
which can be written as A (m—-1pr+1
(n2—3n)/2 vt E - m o
fla3z) = ay " f(x).

_ _ In particular, this corresponds to the model described at
Choosingz = 1 — a; (the upper bound of the interval),;o start of Section 11I-D with

we have
m? —m — (1 -v)

23 (m—-1r+1
flas(t—a) =ay" P (=) fl—a).  @= T and e = T

Letting » = a5 (1 — a;) we finally have a continuousjith » = 1/2 the above reduces into
solution for the intervale € (0,1 — ay),

, 2m? — 2m — 1 m+1
fr)=ad T2 1 a1 =), (6) M= s o, ad ;m=—rs ()



m:5/\ A. Generally, we have
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which reduces into

z . [ (1-v) /f [Hl 1i)k+1]dw ©)

Fig. 4. Steady state distributigr{z) of the embedded Markov chain 1)

in aggregated flow approach with = 2, 3,4, 5 flows. .
Substituting (9) into (8) gives us then an expression for
determining the mean sending rate withflows,

The steady state distributiop(x) of this system is 1 E[AZ]
illustrated in Fig. 4 form = 2,3,4,5 flows. It can be E[R[=1--

2 E[A]
seen that as the number of flows increases the mean and

1
the variance of the distribution decrease, as expected. 5, (1—a)?
flx) |2°++—5| dx
In summary, constants; anday depend on the num- (1- (m —1)2
ber of flowsm and the multiplicative factor according =1- v) 0 - (10)
to (7), and the possible transitions and total decrements 2 s (1—1)?
from a given state: are as follows: /f(x) [5” T ] d
trans.| P(-) | new state decremenA 0 o
up T-2 ezt (1—a) | m((l—a1) — (1—a1)z) | Note that even though the constantloes not explicitly
q m_ exist in the integrand(s), the pdf(x) depends on it.
ownj = 2% m — 1( — a2 Furthermore, due to our idealized assumption of imme-
diate negative feedback signals, the optimas clearly
E. Mean period and mean sending rate 1—e, which yields a constant total sending rate lof

Let random variableA denote the drop in the totalln practice this is of course not possible due to strictly
sending rate upon a negative feedback, which, wipsitive RTT's, but one must choose a smallere.g.,
our choice of time scale, also corresponds to the tite= 1/2, in order to ensure stability in the network.
between two negative feedbacks (i.e., packet losses)At the limit m — oo (10) reduces into
During a long time interval of lengtll” there are on 1-v E[X3]
averagel/ = T'/E [A] periods. The total “area” of these E[R]=1- 2 E[X2’
triangles is (on averagé) - 5 -E [A?] . Hence, the mean
sending rate is given by

(11)

where the random variabl& denotes the rate of the
targeted flowl at the moment when the capacity limit
1 E [A?] is reached and a negative feedback is sent.
E[R] =1~ 2 E[A] (8) 1) two flows withv = 1/2: In this case we can easily
write the pdf for the drop in total sending rate by giving
Generally one can consider a single epoch during Wh"égch event “sending rate is reduced By a weight
the sendmg_ rateR(_ ) is glven by R(t) =t +1—A. according to the duration of the event, i.e., alsan our
Hence, we immediately obtain for theh moment, case. If the capacity limit is reached with sending rates
A X1 =z and X, = 1—z for flows 1 and2, respectively,
E U (t+1-A)" dt} 1-E [(1-A)+!]  then with probability ofz the dropA is equal tox,/2
E[R"] = —=° B = n+1).B[A]  and with probability ofl -z it is equal to(1—x)/2. Pdf
f(x) corresponds to the steady state distributionXagf
and we obtain for the pdk(z) of random variable\,

In order to evaluate the mean sending r&té¢R], we
need to know the first twvo moments of random variable h(z) = 8z - f(2z),



Fig. 5. Steady state distributidin(x) for the dropA. Fig. 6. Random variablé&, corresponds to the drop in total sending
rate upon a negative feedback, and also, to the time intbstateen
two consecutive negative feedback signals.

which is illustrated in Fig. 5. Consequently, we have

k| _ ol—k k+1
E {A } =2 B {X ] ’ IV. CORRELATIONS IN THE LOSS PROCESS

and the following numerical values: Let us again first consider ideal TCP flows sharing a
E[A] = 0.269, o3 =0.0044, bottleneck link with unit capacity; = 1. In the previous
E [Ag] — 0.0769 E[R] = 0.857 sections we have derived, both accurate and approxi-

' _ ~mative, expressions for the pdf(z) corresponding to
Thus, the rate of the negative feedback signals in thife bandwidth sharing at the time instances when the
system is abouB.71 of which half belong to each system reaches the capacity limit= 1 for different

particular flow. number of TCP flows sharing the bottleneck link. At
2) m — 1 aggregated flowsin this case, forr = 1/2  those time instances a negative feedback signal is sent
andm = 2,3,4,5, the mean drofE [A] is to a randomly chosen source based on their current
E[A] = (0.27, 0.17, 0.13, 0.10), sending rates causing a reduction in the total sending

rate A = R(t~) — R(t") according to the multiplicative

and the standard deviation d, similarly, decrease scheme. As before, we Aget denote thekth

oA = (0.067, 0.036, 0.022, 0.020) . drop in the total sending rate upon a negative feedback,
Consequently, the mean total ratéR] for m = 2,3, 4,5 i.e., Ay is also the time interval between tikeh and the
TCP flows is :elpproximately "7 (k41)th packet loss (or more generally, the time interval

between two negative feedback signals), as illustrated

E[R] = (0.86, 0.91, 0.93, 0.95). in Fig. 6. The random variableA;, however, are not

Using (11) instead of (10) gives independent, i.e., the consecutive time intervals between
j (0.93, 0.95, 0.97, 0.97). E)hﬁgk:;!gsﬁes have a correlation which we will study in

F. Constant bit rate UDP flow

In this model UDP flow(s) simply consume a fractioha" Two T_CP flows S
of the total capacity. When reaching the capacity limit Assuming two TCP flows and a multiplicative factor
the negative feedback is sometimes sent (erroneouslypfol /2 we have
UDP source, which does not_ adjust its seno_ling rate, and %Ak, with probability of%Ak,
consequently, another negative feedback will be sent (op , | =
the packet dropped).

Let r,q, denote the rate of the (CBR) UDP traffic, . . . : : . ,
and. the total capacity of the link. Then, each time thcel'hls is an interesting expression as it defines a Markov

total rate achieves the link capacity (with Bernoulli triafhain between two consecutive time intervals. Moreover,
. pactly rom (12) we obtain the conditional expectation,
assumption) on average

(12)
13 Ay, with probability of 1—3 Ay

Tudp 1/3 2 1 3 2
. E[A Agl==1(=A —|1-=A
P—— (A1 ] Ag] 2<2 k> +3 50k
UDP packets are dropped (unnecessarily). Thus, we have _ 9A2 3A 1
. =-Ap — -Ap+ . (13)
an elementary model for the loss process in UDP flows. 4 2 2



0.3 - V. NUMERICAL EXAMPLES

0.4 = It should be emphasized again that the purpose of this
0.3 model is not to model the behavior of the actual TCP
O N e variant accurately, but rather to serve as an elementary

0.2 . model for studying the behavior of TCP-like congestion
0.1 control mechanism at the microscopic level, i.e., at the
o time scales of the time interval between packet losses.

0 0.1 0.2 0.3 0.4 0.5 Next we will, however, discuss how the model param-

eters can be chosen in order to match a realistic scenario
Fig. 7. The minimum, maximum and mean 4f.+, conditioned jn some degree. The nature of the fluid model implies
on Ay (-axis) in case of two flows according to (12) and (13). 54 the model is only accurate when the packet size

(MTU) is small when compared to the product of the

These are illustrated in Fig. 7 whereaxis corresponds link capacity ¢) and the round trip timeRT'T), i.e.,
to Ay anqu-a_xis tQ Ajg+1. The covariance between _two MTU < ¢- RTT. (14)
consecutive time intervals between packet losses is _ _ _
In congestion avoidance phase, a TCP source is supposed
Cov [Ag, Apy1] = E[ApAg ] = E[A] - E[Ag4] to increase its window approximately by one packet per

= E[E[ArAr | Ak]] — E[A]? round trip time (RTT), i.e.,
9 3 1 AW 1
—E|ZA} - ZA?2+ ZAL| —E[AP. _— = .
§ok T Sk g5 [A] At  RIT
9 3 3 9 1 9 On the other hand, the sending rate of a TCP source
- 4E [A ] 2E [A ] + 2E[A] E[A]", equals the current congestion windo¥, times the
where the last two terms can be also written as maximum segment siz&[TU, divided by the RTT,
E[A](1/2 - E[A]). p = W MTU
: : ! TT
The different moments of random variable can be R
. . ) and consequently,
computed using (9). Numerically we obtain
3 or; _ MTU
E [A®] ~ 0.0231, o — RTTZ
and get, In our model we have scaled the maximum capacity to
Cov [Ak, Agi1] = —0.00134. 1 and the time so that the linear increase rate equals to
Thus, the correlation coefficient is 1/m, wherem is the total number of TCP flows. Let
Cov [Ag, Agp1] 0303 ri=a-r;, and t=p3-t",
VVIAL - VI[Ag] where the starred versions correspond to the rates and
Note that if time intervalsA, and A, were indepen- the time in our model. With these,
dent the covariance would be equal to zero, and this Ar;  aArf a1
clearly is not the case (not even approximately when the At BAt* B m’
number of flows is small). and hence
a m-MTU
B. General casemn flows =
8 RTT?

We note that for the general case (i.e., the flow aggre- ¢ t fix the level at which tive feedback
gation approach) a similar analysis is straightforward gex we must fix the ‘evel at which a negative feedbac
IS sent (or reaches the source to be exact). To this we

first conditioning on the state of the syste’y, = z, just .

before the first negative feedback. On this condition thef@" choose any for which

are two possible outcomes for drdy,, and recursively, a-E[R] <c,
2 -2 = 4 possible outcomes for the paii\g, Axi1).
Combining this with an appropriate pd{x) allows one
to compute the covariance in the general case. Due
lack of space we omit the details here. c<a<c/E[R],

wherec corresponds to nominal link service rate (stabil-
i%condition). We note that the interesting area is when
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The packet loss probability according to (15) form =

on the TCP analysis, this model manages to catch the
coupling with different concurrent TCP flows correctly
(a lost packet in one flow allows higher window sizes
in the other flows). Especially, the correlation between
the consecutive time intervals between the packet losses
is modelled appropriately instead of assuming indepen-
dence among them (the usual approach). We were also
able to solve the proposed model by analytical means and
compute several key performance figures numerically.
Moreover, by using this model it is possible to char-

2,3,4,5 flows (from lowest to highest) as a function of quantitygcterize the loss process of TCP and UDP flows sharing

z=MTU/(c-RTT).

the same bottleneck link. The future work includes incor-
porating unequal RTT times in the model and evaluating

as then the arrival rate exceeds the service rate

ntlla(_e accuracy of the model against simulation results and

mentarily and the transmission queue builds up causiﬁ&tuaI measurements from the network.

gueueing delays within the router.
The blocking probabilitywe can estimate as follows.
The average total sending rate (in packets/s) is equal {0

o BLR)
MTU
On the other hand, there are on the average [21
AT
5-E[A) el
packet losses during a long time interval &f". Thus,  [4]
MTU MTU
YT E[A] B[R of (BA]-B@AY2) B
MTU \? m
= <c.RTT> "B[A] (19) 5

The behaviour of the loss probability is illustrated in
Fig. 8 form = 2,3,4,5 flows (using the flow aggrega-
tion approximation). [7

Example: Consider a0 Mbit/s link with MTU = 576
bytes andRTT = 20 ms, i.e.,

MTU [8]
m ~~ 0-023.
The packet loss probabilities fern = 2, 3,4, 5 flows are

(9]
p = (0.0039, 0.0091, 0.016, 0.026).

V1. CONCLUSIONS [10]

We have presented an elementary model for TCP
congestion control mechanism where the focus has bege
on the interactions between the concurrent TCP flows aﬁ
the microscopic level. In contrast to the previous work
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