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ABSTRACT
We consider the load balancing problem in large wireless multi-hop
networks, often referred to as massively dense wireless multi-hop
networks. A network is considered to be massively dense if there
are nodes practically everywhere and a typical distance between
two nodes is much larger than the transmission range necessitating
communication over a large number of hops. The task is to choose
the routes in such a way that the maximum relayed traffic load in the
network is minimized. In fixed networks the multi-path routes gen-
erally yield a lower congestion and thus allow higher throughput.
In contrast, we show that in the case of massively dense wireless
multi-hop networks the optimal load balancing can be achieved by
single-path routing. In particular, we show how any given multi-
path routing can be transformed to a single-path routing with at
least the same level of performance. The concepts are illustrated
by numerical examples where the network nodes are assumed to
reside inside a unit disk with uniform traffic demands. The shortest
path routes, corresponding to straight line segments, yield a maxi-
mum traffic load of 0.637, whereas the single-path routes obtained
by numerical optimization yield 0.343, corresponding to46% re-
duction in the traffic load.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: routing protocols

General Terms
Algorithms, Performance, Theory

Keywords
wireless multi-hop network, multi-path, single-path, load balancing

1. INTRODUCTION
Load balancing problem in fixed networks is a well-known prob-

lem for which several formulations have been proposed. Typically
one is asked to find such routes that minimize the maximum link
load. In general, lower congestion can be obtained by dividing the
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traffic flows to several routes, i.e., by using multi-path routes. Typi-
cally the problem description lends itself to an efficient formulation
as an LP-problem, see, e.g., [1] and Appendix. The approach is
generic and has been applied to different kinds of networks ranging
from packet switching to lightpath routed optical networks.

In this paper, we consider the load balancing problem in a wire-
less multi-hop network in the setting of a so-called massively dense
multi-hop network. Massively dense multi-hop network means that
1) there are nodes practically everywhere, and 2) that a typical path
between two nodes consists of a large number of hops, i.e., the
transmission range is several orders of magnitude smaller than the
diameter of the network. In this setting there is a strong separa-
tion between the microscopic level, corresponding to the immedi-
ate neighbourhood a given node, and the macroscopic level, corre-
sponding to the end-to-end connections. Note that in the consid-
ered type of networks the traffic load consists almost solely of the
relay traffic. At the microscopic level the nodes are simply con-
cerned about forwarding a given packet to the direction defined by
the chosen routing. In practice this means, roughly speaking, that
locally a packet is forwarded to the furthest reachable node in that
direction. At the macroscopic level one is concerned about the end-
to-end paths and the assumption of the strong separation between
the different scales justifies describing the paths as smooth contin-
uous curves [2–8]. In the present paper we focus on studying the
optimal paths at the macroscopic level.

In a similar context both Pham et al., in [9], and Ganjali et al.,
in [10], have considered the possible gain from usingK shortest
paths instead of one. By using approximative modelling techniques
Pham et al. argue that the use of multi-path routing always results
in improvement to throughput. However, the results by Ganjali et
al., based on modelling theK shortest paths as a rectangle between
the node pairs, suggest that this is not always the case, unless a
huge number of multiple paths are allowed for each pair of nodes.
This is due to the fact that in the limit of massively dense network
any finite number of pathsK tends to be (close to) a line segment
between the nodes. Finally it is concluded that in order to achieve
better load balancing one needs to find such routes which push the
traffic away from the center of the network, i.e., by using not only
the (K) shortest paths.

In [11, 12], we have considered the load balancing problem in
dense wireless multi-hop networks. In contrast to [9, 10], we fo-
cused on single-path routing with curvilinear paths, and noted that
several single-path routes can straightforwardly be combined to
multi-path routing by randomly choosing one of the single-path
routes for each packet. In the present paper, we show that with re-
spect to load balancing problem the optimal solution can always be
achieved by properly chosen single-path routing. This new result
is in strike contrast to fixed networks, where restriction to single-



path routes can severely limit the performance of the network. By
single-path routing we obviously refer to the routes at the macro-
scopic level.

The rest of the paper is organized as follows. In Section 2 we
introduce the notation and define the load balancing problem, and
then prove that the optimal solution can be achieved by a single-
path routing. In Section 3 we illustrate the framework and the new
results by means of numerical examples, and Section 4 contains the
conclusions.

2. LOAD BALANCING PROBLEM
To start with we first need to define the traffic that is offered

to the network located in some area denoted byA. In our setting
the nodes form a continuum and thus it is convenient to define the
traffic demands as densities:

Definition 1 (traffic demand density) The rate of flow of packets
from a differential area elementdA aboutx to a differential area
elementdA aboutr is λ(x, r) · dA2, whereλ(x, r) is called the
traffic demand density [pkts/s/m4].

As part of our earlier work, in [11,12], we have defined the load
balancing problem in dense multi-hop networks as a minmax prob-
lem for the scalar packet flux. Scalar packet flux in turn is defined
in terms of so-called angular packet flux1 (see Fig. 1):

Definition 2 (angular flux) Angular flux of packets atx in direc-
tion θ, denoted byϕ(x, θ), is equal to the rate [1/s/m/rad] at which
packets flow in the angle interval(θ, θ + dθ) across a small line
segment of the lengthds perpendicular to directionθ at point x
divided byds · dθ in the limit whends→ 0 anddθ → 0.

Definition 3 (scalar flux) Scalar flux of packets [1/s/m] atx is
given by

Φ(x) = Φ(P ,x) =

2πZ
0

ϕ(P ,x, θ) dθ. (1)

The load balancing problem in the context of massively dense multi-
hop network is stated as follows [11,12]:

Definition 4 (load balancing problem) Find the set of pathsP which
minimizes the maximum scalar flux,

arg min
P

max
x

Φ(x). (2)

In order to analyze the multi-path routing we consider the packet
flows having some fixed destinationr ∈ A. To this end, we need
some additional definitions.

Definition 5 (angular d-flux density) Angular d-flux density, de-
noted byϕ(x, θ; r) [1/s/m3/rad], is equal to the angular fluxϕ(x, θ)
resulting from the packets having their final destination in small
areadA aboutr divided bydA in the limit whendA→ 0.

Thus, by definition,

ϕ(x, θ) =

Z
A

ϕ(x, θ; r) d2r.

1Note that in [11,12] angleθ denotes the angle from which packets
arrive, whereas in the present paper it is more convenient to de-
fine θ as the direction to which packets are moving, i.e., there is a
difference ofπ between these two conventions.

dθ

θ

ds

x

Figure 1: Angular flux ϕ(x, θ) is the rate of packets crossing a
small line segmentds in angle (φ, φ+ dφ) divided by dφ · ds at
the limit dφ, ds→ 0.

Definition 6 (d-flow intensity) Destination flow intensity or for short
d-flow intensity of packets atx having destinationr, denoted by
J(x, r) [1/s/m3], is equal to

J(x, r) =

2πZ
0

ϕ(x, θ; r) eθ dθ, (3)

whereeθ is the unit vector in directionθ.

We note that for a given destinationr thed-flow intensityJ(x, r)
corresponds to a vector field inR2. Moreover, e.g., in a mesh net-
work with a single gateway node there is essentially only one des-
tination in the network, and thus it is sufficient to considerd-flow
intensity towards the location of the gateway. From the load bal-
ancing point of view, this scenario, however, is trivial.

2.1 Single-path routing
The most obvious choice for paths are the shortest paths, which

in this context correspond to straight line segments between the
source and destination. This, however, tends to concentrate too
much traffic to the center of the network. Thus, in order to avoid
congestion one needs to bend some routes away from the center. A
convenient way to define the single-path routes is as follows:

Definition 7 (single-path routing) With single-path routing the di-
rectionϑ at which a given packet is forwarded atx is defined solely
by the destinationr of the packet,ϑ(x, r) : R

2 × R
2 → [0, 2π).

Consequently, the end-to-end pathsP are defined byϑ,P = P(ϑ).
In [11,12] explicit expressions for calculating the scalar packet flux
for arbitrary single-path routing is given. Note thatϑ-forwarding
rule is actually a stronger requirement than just a single-path be-
tween any given pair of locations because fromϑ-forwarding rule
it follows that all the other nodes along the same path also use the
same (remaining) path for the packets going to the same destina-
tion. In fact, in [12] this distinction is made explicitly and the for-
warding rule according to Def. 7 is referred to asdestination based
forwarding. In the present paper, we show that the optimal solu-
tion with regard to load balancing problem can be achieved with a
destination based forwarding rule according to Def. 7, and thus we
do not make further distinction between more relaxed definitions of
single-path routes.

Additionally the communication between two locations may use
the same path in both directions:

Definition 8 (bidirectionality) Paths are bidirectional ifp(r2, r1)
is p(r1, r2) in reverse direction for allr1, r2 ∈ A.

Note that a flow on a given path contributes to the scalar flux at any
point on the path by an amount equal to the absolute size of the
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Figure 2: Expression ford-flow J(x) with arbitrary single-path
routes.

flow, no matter what the direction of the flow is. Thus, allowing
a different return path is, from the load balancing point of view,
is in effect equivalent to allowing two paths between each pair of
locations (assuming that there is traffic flowing in both directions).

It is straightforward to see that with single-path routing we have

ϑ(x, r) = argJ(x, r), (4)

and

ϕ(x, θ; r) = δ(θ − ϑ(x, r)) · |J(x, r)|. (5)

whereargJ(x, r) denotes the angle of direction of vectorJ(x, r),
andδ(·) is Dirac’s delta-function. Moreover, for scalar packet flux
with single-path routing we have

Φ(x) =

2πZ
0

ϕ(x, θ) dθ =

Z
A

|J(x, r)| d2r. (6)

In general, for an arbitrary domain with single-path routes, there
are paths arriving to a given destinationr from all anglesθ, θ ∈
[0, 2π). In particular, letp(s; r, θ) denote the path tor arriving
at the angleθ where parameters corresponds to the distance tor
along the path, i.e., we assume that there is a one-to-one correspon-
dence between paths and arriving anglesθ at the destinationr. The
situation is illustrated in Fig. 2. (Note that this is an additional con-
straint which we make here for the notational simplicity. Note also
that there exist valid though somewhat pathological routes which
do not satisfy this assumption, e.g., the so-called radial ring paths
explained later in Section 3.) However, in this case the magnitude
of d-flow atx to destinationr can be obtained by evaluating a line
integral,

|J(x, r)| =
1

h(s0)

s1Z
s0

λ(s)h(s) ds, (7)

whereλ(s) = h(s;x, r) is the traffic demand density from points
(on pathp(s; r, θ)) to r, andh(s) = h(s;x, r) is “divergence rate
of paths”,

h(s) = lim
dθ→0

p(s; r, θ + dθ) − p(s; r, θ)

dθ
.

For example, with shortest pathsh(s) = s. The proof is straightfor-
ward and essentially the same as given in [11, 12] for the resulting
scalar packet flux with curvilinear paths.

2.2 Multi-path routing
Consider now the solution of the minmax problem (2) in the case

that the traffic of each origin-destination pair can be arbitrarily split
over all available routes (there are an infinite number of them). In
analogy with a fixed network load balancing problem, our task can

be formulated as an LP-type problem (over a set of decision vari-
ables with infinite cardinality),

min
ϕ(x,θ;r)

α (8)

such that

α ≥ Φ(x), ∀x, (9)

∇ · J(x, r) = λ(x, r)−δ(x−r) Λ(r), ∀x, r, (10)

whereΛ(r) [1/s/m2] denotes the density of total traffic destined to
r (per unit area aboutr),

Λ(r) =

Z
A

λ(x, r) d2x.

The constraint (10) represents the requirement of flow continuity
for eachd-flow. Now we claim:

Proposition 1 An optimal solution for the problem(8)-(10)can be
obtained with single-path routing.

PROOF. Letϕ∗(x, θ; r) be the optimal solution to the problem
and letJ∗(x, r) andΦ∗(x) be the correspondingd-flow intensity
and scalar flux. The claim follows by noting that the single-path
forwarding defined by

ϑ(x, r) = argJ∗(x, r), (11)

yielding the following single-path angulard-flux

ϕ(x, θ; r) = δ(θ − arg J∗(x, r)) |J∗(x, r)| (12)

satisfies the constraint (10), and that the associated scalar fluxΦ(x)
is everywhere less than or equal toΦ∗(x).

First, (10) is satisfied since

J(x, r) =

2πZ
0

ϕ(x, θ; r) eθ dθ = J∗(x, r),

andJ∗(x, r) being a solution satisfying (10). Second, from the
definition (12) we have

2πZ
0

ϕ(x, θ; r) dθ = |J∗(x, r)|,

but from (3) it follows

|J∗(x, r)| = J∗(x, r) · eJ∗(x,r)

=

2πZ
0

ϕ∗(x, θ; r) eθ · eJ∗(x,r) dθ

≤
2πZ
0

ϕ∗(x, θ; r) dθ,

(13)

whereeJ∗(x,r) is the unit vector in direction ofJ∗(x, r),

eJ∗(x,r) = J∗(x, r)/|J∗(x, r)|.
Thus we have established

2πZ
0

ϕ(x, θ; r) dθ ≤
2πZ
0

ϕ∗(x, θ; r) dθ,

which impliesΦ(x) ≤ Φ∗(x) for all x ∈ A. But asϕ∗(x, θ; r)
was assumed to be the optimal solution, it follows that the optimum
can be obtained with the single-path routing (11).
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Figure 3: Transformation from a two-path routing to single-
path routing according to (14).

This means that for any multi-path routing the corresponding
single-path routing, according to (11), yields at most equal scalar
packet flux at every pointx. In particular, we have the following
local result:

Remark 1 If a multi-path solution at pointx forwards packets
with a given destination “genuinely” to several directions, then
(13) in fact implies that the corresponding single-path routing, de-
fined by(11), yields a strictly lower scalar flux aboutx (cf., triangle
inequality).

2.3 Randomized path selection
Let us further elaborate the procedure of obtaining the single-

path routes by considering a special case of multi-path routing ob-
tained by randomly choosing a path for each packet destined tor
from a countable setI of single-path solutions. In other words,
each packet is marked to use a corresponding path from setI with
a certain probability ofαi,

P
i∈I αi = 1. Thus, the path chosen

at random by the source is then followed to the destination without
any further random selections. Let theJi denote the corresponding
d-flows when all the traffic destined tor is routed using path set
i, i ∈ I . According to (11) the corresponding single-path routing
decision is in the direction of the netd-flow, i.e.,

ϑ(x, r) = arg
X

i

αiJi(x, r). (14)

This is illustrated in Fig. 3 for two alternative path sets. In the next
section we will illustrate this by means of numerical examples and
show that the single-path routing indeed gives a lower maximum
scalar flux.

2.4 Uniqueness of the optimal solutions
Typically, an optimal solution for load balancing problem in a

fixed network is such that the maximum load is obtained in several
links. This suggests that the optimal solution in the present context
of massively dense networks is also such that the maximum load,
denoted byΦopt, is obtained in some areaA(B) ⊂ A. We further
believe thatA(B) has strictly positive area, i.e., it is not a single
point.

Definition 9 (bottleneck region) Let I denote the set of all opti-
mal solutions with regard to load balancing problem. Define the
bottleneck region as

A(B) = {x ∈ A : Φi(x) = Φopt, ∀ i ∈ I}.
From the optimality it follows that the bottleneck region cannot be
empty. To this end, consider an arbitrary finite subset of the optimal
single-path solutionsϑi(x, r) yielding the scalar fluxesΦi(x), i =

1, . . . , n. For the corresponding multi-path solution obtained by a
randomized path selection with probabilitiespi, it holds that

Φ(x) =
X

i

pi · Φi(x).

In particular, if{x ∈ A : Φi(x) = Φopt, ∀ i = 1, . . . , n} = ∅,
then choosing, e.g.,pi = 1/n gives

max
x

 X
i

pi · Φi(x)

!
< Φopt,

which is a contradiction and thusA(B) is non-empty.
So for sureA(B) contains at least one point. For now let us as-

sume that the bottleneck regionA(B) is a compact set with strictly
positive area.

Proposition 2 Optimal paths are unambigious inside the bottle-
neck region.

PROOF. Let ϑ1(x, r) and ϑ2(x, r) denote two optimal solu-
tions. If

ϑ1(x, r) 6= ϑ2(x, r), for somex ∈ A(B),

then the corresponding single-path routing, obtained from the ran-
domized multi-path routing using (14), would give us a better solu-
tion (cf., Remark 1).

Proposition 3 With strictly positive traffic demands,λ(x, r) > 0,
the optimal paths are bidirectional in the bottleneck region.

PROOF. Without loss of generality, we can assume thatx ∈
A(B). As the traffic demands are strictly positive there is some
traffic flowing fromx to r, and vice versa. LetA denote the path
from x to r, andB the reverse path. Consider next a multi-path
routing where some of the traffic onA has been moved to reverse
pathB, and similarly in the reverse direction. This clearly has no
effect on the resulting scalar flux. However, ifA is different from
B (in the bottleneck region), then this multi-path solution could be
improved by using the corresponding single-path solution, which
leads to a contradiction.

3. NUMERICAL EXAMPLES
Similarly as in the most of the previous work (see, e.g., [4, 9–

12]), let us consider as an example the load balancing problem in
unit disk with uniform traffic demands,

λ(x, r) =
Λ

π2
, |x|, |r| ≤ 1,

whereΛ is the total packet flow. Due to the symmetry, the scalar
flux in this system is a function of radiusr only.

3.1 Shortest paths and radial-ring paths
Let us start by describing three elementary bidirectional single-

path routes which also satisfy the destination based forwarding rule
requirement given in Def. 7. All these path sets were studied al-
ready in [11] and [12] and here we just give brief review of results
relevant to us. The most obvious set of such routes are the shortest
path routes, i.e., straight line segments, for which the local routing
rule atx towards destination atr is simply

ϑsp = arg(r − x).

The resulting scalar flux is given by integral, [11,12]

Φsp(r) =
2(1 − r2) · Λ

π2

Z π

0

p
1 − r2 cos2 φ dφ,
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Figure 4: Local routing decisionsϑ(x, r) for inner (left) and
outer (right) radial-ring paths (in upper half plane).

which has its maximum at the origin,

Φsp(0) =
2

π
Λ ≈ 0.637 · Λ.

In Fig. 4 we have illustrated the single-path forwarding rules cor-
responding to the so-called inner and outer radial-ring paths studied
in [11, 12]. These bidirectional single-path sets consist of one ra-
dial component and one ring component. With the inner radial-ring
paths the order is chosen so that the ring component closer to ori-
gin is used, and for the outer radial-ring paths it is the opposite.
These path sets are neither ideal, but their simple form facilitates
the analysis and thus they serve as a good examples.

For unit disk, without loss of generality, one can assume that the
destination is located on positivex-axis, r = (d, 0). The rout-
ing decision for radial-ring paths can be expressed conveniently in
polar coordinates. Let(r, θ) denote the current location in upper
half plane, for which we have the local routing rule for the inner
radial-ring paths,

ϑin =

8<
:

θ − π, whenr > d,
θ − π/2, whenr ≤ d andθ > 0,
0, whenr < d andθ = 0,

and for the outer version,

ϑout =

8<
:

θ, whenr < d,
θ − π/2, whenr ≥ d andθ > 0,
π, whenr > d andθ = 0.

The corresponding scalar flux are

Φin(r) =
(π + 1)(r − r3)

π
· Λ,

obtaining the maximum atr = 1/
√

3,

Φin(1/
√

3) ≈ 0.507 · Λ,
and for the outer version,

Φout(r) =
(π − 1)r3 + r

π
· Λ,

obtaining the maximum flux atr = 1,

Φout(1) = Λ.

Note that, as mentioned earlier, for radial-ring paths several paths
are combined together before reaching the destination and thus
packets arriving at a certain angle may belong to different paths.
For the shortest paths this is not the case.

Table 1: Results with the shortest paths, and 2- and 3- multi-
path routes together with the respective single-path routes.

proportions max. flux
straight outer inner multi-path single-path

1.00 0.637 (same)
1) 0.61 0.39 0.397 0.390
2) 0.503 0.376 0.121 0.376 0.344
3) 0.437 0.343 0.22 0.389 0.343

3.2 Randomized path selection
In [11,12] it was shown that by using a randomized path selection

using two or more single-path routes from a given set of routes one
can achieve considerably lower maximum scalar packet flux than
with any of the single-path routes of the set alone. In particular,
two combinations of the shortest paths and the radial-ring paths we
considered:

i) shortest paths and outer radial-ring paths, and

ii) shortest paths and outer and inner radial-ring paths.

The optimized path selection probabilities were such that for the
resulting scalar packet flux we have

Φmp1(r) = 0.61 · Φsp(r) + 0.39 · Φout(r),

and (subscriptmp denotes “multi-path”)

Φmp2(r) = 0.5027 ·Φsp(r) + 0.3763 ·Φout(r) + 0.121 ·Φin(r),

where the former yields a maximum flux of0.397 ·Λ, and the latter
a maximum flux of0.3763 · Λ, i.e., the flux corresponding to the
outer radial-ring paths at the boundary. The numerical results are
given in Table 1, where rows indicated with 1) and 2) correspond
to the optimal weights for randomized path selection with the given
two and three path sets, respectively, and column “multi-path” con-
tains the corresponding maximum scalar fluxes.

However, according to Proposition 1, multi-path routesmp1 and
mp2 cannot be an optimal solution to the load balancing problem,
and, in particular, the corresponding single-path routes, denoted by
sp1 and sp2, obtained using (14) yield a lower maximum scalar
packet flux. This maximum scalar flux can be computed numer-
ically and the corresponding results are given in column “single-
path” in Table 1. We note that in both cases combining the multi-
path traffic flows to single-path improves the situation considerably,
as expected.

3.3 Further Optimization
Instead of using the proportions optimal with respect to the ran-

domized multi-path routing, one can also treat the route selection
probabilitiesαi as free optimization parameters for the resulting
single-path routing. As an example, let us consider combinations
of the same basic routes consisting of two and three path sets. It
turns out, that in this case, the optimal proportions for the two path
sets (straight and outer) remain the same, as given in row 1) in Ta-
ble 1. However, for the three path sets (straight, outer and inner) the
optimal proportions are different and are given in row 3). In par-
ticular, with these optimized weights the corresponding single-path
route set, denoted bysp3, yields a maximum scalar packet flux of
0.343·Λ, which is, to best of our knowledge, considerably less than
what is obtained with any previously proposed set of paths. For the
reference, the circular paths introduced in [11] yield a maximal flux
of 0.424 · Λ, and in [12] a modified version of this path set, after
numerical optimization, gives a maximal flux of0.384 · Λ.
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Figure 6: Single-path routes towards point(0.6, 0) obtained by
combining multi-path routes mp1 and mp3 to corresponding
single-path routessp1 and sp3 (rows 1) and 3) in Table 1).

Figure 7: Single-path routessp3 from the positive x-axis to
(0.6, 0) (left fig.), and the reverse paths from(0.6, 0) back to
positivex-axis (right fig.). Paths are clearly not bidirectional.

The resulting scalar fluxes for the single-path routessp1 andsp3
are illustrated in Fig. 5. Interestingly, withsp3 the scalar packet
flux at the center of the area is clearly lower than the maximum.
This suggests that there is still some room for improvement, e.g.,
by choosing a different set of base routes.

Fig. 6 illustrates the single-path routessp1 andsp3 for destina-
tion pointr = (0.6, 0) (the lower half plane is symmetric). From
the figure it can be seen that the ring with radius0.6 has a specific
role and acts as a “highway” towards the destination. This is due to
the fact that both radial-ring paths guide most of the traffic going
to (0.6, 0) to this ring yielding a singularity in the corresponding
d-flow (i.e., a delta function). This singularity is then also present
in the resulting single-path routes. Intuitively, from the figure one
can see that neither of these single-path routes can be optimal, e.g.,
paths just above point(1 − ε, 0) are perpendicular to the “correct”
direction. The resulting paths deviate from the intuitive ones even
more whend→ 0 or whend→ 1.

Finally we note that the obtained single-path routes are not gen-
erally bidirectional. This can be seen, e.g., from Fig. 7 which il-
lustrates the single-path routessp3. The left graph depicts paths
from the positivex-axis to(0.6, 0) and the graph on right depicts
the reverse paths from(0.6, 0) back to the positivex-axis. Clearly
the paths are different and thus the single-path routes are not bidi-
rectional. This along with the fact that some of the reverse paths
cross each other two times suggests that the paths are not optimal
and the result can further be improved.

3.4 Routes according to heat conduction
The circular paths studied in [11, 12] can be related to the opti-

cal paths with a certain index of refraction. An alternative set of

routes can be obtained by considering heat conduction in a given
homogeneous area. The temperature fieldφ(x) in stationary state
is governed by the equation (with appropriately chosen constants)

∇2φ(x) = −q(x),

whereq(x) is the heat source density. In particular, considering a
heat sink at pointr and, e.g., uniformly distributed heat sources in
given area yields a vector field corresponding to the heat flowing
towards the sink atr. These heat flows can be interpreted as paths
to r fulfilling the single-path routing requirement given in Def. 7
(i.e., destination based forwarding).

Heat flow in a unit disk can be solved by the well-known meth-
ods of complex analysis, see, e.g., [13]. Let the position of a
point (x, y) on the disk be represented by the complex number
z = x + iy. Let w(z) = φ(z) + iψ(z) be the complex poten-
tial function such that the curvesφ(z) = const. represent isotherms
and curvesψ(z) = const. represent the flow lines of heat flow field.
The potential functionw(z) of a unit flow between a source atz1
and a sink atz2 is given by

w(z) = ϕ+(z, z2) + ϕ−(z, z∗2) − ϕ+(z, z1) − ϕ−(z, z∗1),

where(·)∗ denotes complex conjugation and

ϕ±(z, z1) = log

„
1 − z

1 + z
∓ 1 − z1

1 + z1

«
.

Potentialφ(z) is obtained as the real part ofw(z). Explicitly, de-
noting the the source and destination location vectors correspond-
ing to z1 andz2 by s andr, we get (up to a constant that depends
ons andr but not onx)

φ(x, s, r) =
1

4π
log

„
(x− rx)2 + (y − ry)2

(x− sx)2 + (y − sy)2
·

1 − 2xrx − 2yry + (x2 + y2)(r2x + r2y)

1 − 2xsx − 2ysy + (x2 + y2)(s2x + s2y)

«
.

The d-flow intensityJ(x, r) directed to destinationr for uniformly
distributed sources and sinks with total trafficΛ is obtained by in-
tegrating with respect tos over the whole disk,

J(x, r) = − Λ

π2

Z
∇xφ(x, s, r) d2s. (15)

Note that here, similarly as in the case considered in 3.2, through
every pointx there is a multiplicity of paths (corresponding to dif-
ferent source pointss) going tor. Again, by Proposition (1), a
lower scalar flux is obtained by replacing the routes tor with the
flow lines of the flow field (15). The resulting scalar packet flux,
Φ(x) =

R |J(x, r)|d2r, is depicted in Fig. 8 together with the
scalar flux corresponding to circular paths. Interestingly, it turns
out that the maximum scalar flux obtained in the center of the unit



0.9 1 1.1 1.2 1.3 1.4 1.5

0.4

0.6

0.8

1

SP

circ

mod

Rin

Rout

rnd1

rnd2

heat

sp1
sp3

max
r

Φ(r)

mean path length̀

SP bound

distance bound

Figure 9: Trade-off between maximum scalar flux (y-axis) and
the mean path length (x-axis) for different path sets together
with two lower bounds (see [11,12]).

disk is exactly the same,0.424, for these two path sets. How-
ever, elsewhere the scalar packet fluxes are different. The paths
according to heat flow push more traffic to the outskirts of the area,
while in the middle there is less traffic. Computing the average
scalar packet flux, which is directly proportional to the mean path
length, reveals that the circular paths are indeed better as they yield
a slightly lower average scalar packet flux, i.e., the average path
length is slightly smaller. Both fall short of the result obtained in
3.3 with the single-path routing derived from 3-path routing.

3.5 Discussion
The shortest paths yield by definition the shortest possible mean

path length, or equivalently, the smallest possible average scalar
packet flux. In order to lower the maximum scalar packet flux one
needs to bend some paths away from the congested area, which in-
creases the mean path length and thus also the average scalar flux.
In other words, there is a trade-off between the achievable mini-
mum maximum scalar flux and the average scalar flux. In particu-
lar, from [11,12],

max
r

ΦP(r) ≥ Λ · `(P)

A
, (16)

where`(P) denotes the mean path length with path setP . This is
illustrated in Fig. 9. Especially, we observe that the new solution
sp3 is very close to lower bound (16). In fact, all path sets located
on the distance bound (16) have flat scalar packet flux distribution.

4. CONCLUSIONS
In this paper we have considered the load balancing problem in

massively dense (wireless) multi-hop networks, i.e., by choosing
the routes appropriately our aim is to decrease the maximum nodal
forwarding load in the network represented by the so-called scalar
flux. In particular, we have focused on comparing the multi-path
routes to the single-path routes, and showed that in this case the op-
timal load balancing can always be obtained by a single-path routes
between each source-destination pair, which is the main contribu-
tion of this paper. This is in strike contrast with the traditional fixed
networks, where the use of multiple paths often yields a better load
balancing and higher throughput in the network. Moreover, we
have shown that in the bottleneck area the optimal paths are bidi-
rectional meaning that the same path is traversed in both directions.

By using the single-path routes, we were able to find new so-
lutions for the example case of a multi-hop network in a unit disk
with uniform traffic demands. The new routes, to best of our knowl-
edge, outperform the previously known single- and multi-path so-

lutions [11, 12]. In particular, the best optimized single-path so-
lution yields a maximum packet flux of0.343 · Λ corresponding
to about46% improvement when compared to the shortest path
routes, which tend to concentrate unnecessarily much traffic in the
center of the network (in the uniform case).
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APPENDIX

A. SOME D-FLOW INTENSITIES
Let us explicitly write down thed-flow intensities for SP and

radial-ring paths in unit disk with uniform traffic demand density,
λ(x, r) = Λ/π2. Note that for single-path routes the angulard-flux
consists of delta-function. Without loss of generality we can as-
sume that the destination is on the positivex-axis at pointr=(d, 0).

For radial-ring paths, consider the upper half plane and denote
the source pointx with (r, α) in polar coordinates. Starting from
Fig. 10, it is straightforward to derived-flow intensities, which are
given in Table 2. (Due to lack of space the details are omitted.)

For the shortest paths it is more convenient to use cartesian co-
ordinates(x, y) for point x. Let s0 denote the distance betweenr
andx, z = |x − r|, ands1 the distance to the boundary fromr in
the direction of source pointx. For these we have,

z =
p
d2 − 2 dx+ x2 + y2,

a =
d2 − dx+

p
d2 − 2 d x+ x2 + (1 − d2)y2p
d2 − 2 d x+ x2 + y2

.

Then, (7) immediately yields

Jsp(x, y;d) =
Λ

π2
· a

2 − z2

2z
er−x, whenz > 0,

which can be further simplified yielding the expression in Table 2.

B. FORMULATION IN FIXED NETWORK
The load balancing problem in traditional fixed network can be

formulated as an LP-problem. Letdij , i 6= j, denote the traffic de-
mand fromi to j, anddjj the total traffic offered toi,

P
i6=j dij =

−djj . Let λ(k)
ij denote the traffic on linki → j having the final

destination atk. Then the load balancing problem can be stated as,

minα

such that X
k

λ
(k)
ij ≤ α ∀ i, j,

X
i∈L(j)

λ
(k)
ji − λ

(k)
ij = djk ∀ j, k,

whereL(j) denotes the set of nodes connected to nodej.

Table 2: d-flow in unit disk for SP and radial-ring paths.

Inner radial-ring paths :

Jin(r, α; d) =
Λ

π2

8>>><
>>>:

(1 − r2)/(2r) eα−π, r>d,

(π−α)(r+(1−d2) · δ(r−d)) eα−π/2, r≤d, α>0,

πr · δ(α) e0, r<d, α=0,

0, r=d, α=0.

Outer radial-ring paths :

Jout(r, α; d) =
Λ

π2

8>>><
>>>:

(r/2) eα, r<d,

(π − α)r(1 + d · δ(r − d)) eα−π/2, r≥d, α>0,

π(1 − r2)/r · δ(α) eπ , r>d, α=0,

0, r=d, α=0.

Shortest paths:

Jsp(x, y; d)=
Λ

2π2

2
64

“
d(d−x)+

p
(d−x)2+(1−d2)y2

”2

((d−x)2+y2)2
−1

3
75(d−x,−y).


