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Abstract—Many of the cryptographic primitives can be used
in several ways. One interesting application of the Shamir’s
secret sharing scheme in the context of privacy aware traffic
monitoring is to escrow a secret key afterm suspicious events
have been observed [1]. In the proposed system, a so-called front-
end component encrypts the monitored data traffic, which is then
stored at the back-end. At the same time, the front-end analyzes
the traffic, and if suspicious packets are observed, this is indicated
to the back-end by revealing one share of the corresponding
encryption key. Once m suspicious events have been detected,
the back-end can disclose the secret key, decrypt the particular
traffic flow, and carry out further investigations. In this pa per we
study the secret sharing scheme as a counter at the limit when
the threshold m is relatively large. We first analyze how the
scheme behaves asm approaches the maximum possible value
of p − 1, where p is a prime number (design parameter). Then,
we also analyze a probabilistic version developed to overcome
the limited counting range, or excessive reporting overhead, by
revealing shares only with a certain probability after eachevent,
and provide expressions describing the resulting inaccuracy from
the introduced randomness. Finally, we also propose a hybrid
solution to mitigate the otherwise detoriating performance by
using a forward error correction scheme similar to LT codes to
encode the shared secret revealing process.

Index Terms—Shamir’s secret sharing, key escrow, LT codes.

I. I NTRODUCTION

Many coding and cryptographic schemes share similar
mathematical constructions. Moreover, cryptographic primi-
tives such as RSA can be used, e.g., to guarantee authentity
by a digital signature, or to allow the public to send encrypted
messages which only a certain party can decrypt. In other
words, these schemes are very versatile and by creative use,
they can be applied to a multitude of problems.

In an ideal case one can trust the involved parties, making
the cryptographic techniques obsolete at the same time. In
practice, this unfortunately is not the case, but instead such
methods must be used to ensure that each party has access only
to the data they are entitled to. In a recent paper [1], Bianchi
et al., present an interesting approach for privacy-preserving
traffic monitoring in data networks. The authors devise a
scheme which efficiently combines data anonymization with
anomaly detection by using several cryptographic primitives as
building blocks. The aim is to prevent the higher layer party
from identifying flows and users unless it is justified due to
a suspicion of anomalous traffic. One important part of the
system is the use of the Shamir’s secret sharing mechanism
to escrow a secret key to the higher layer afterm anomalous
events have been observed, i.e., each suspicious event triggers
the system to publish one share. The secret key discloses the
identity of the malicious flow and allows further investigations.

In the present paper we consider this particular usage of
the Shamir’s secret sharing algorithm to count events in such
a way that the secret is disclosed only when a given threshold
m is exceeded. In the limit of largem, the scheme has certain
reliability problems due to a positive probability of acciden-
tally revealing the same share twice. Our aim is to explore the
possibilities to extend the counting range beyond the limits
of the straightforward scheme by occasionally revealing also
combined shares in analogy with the rateless LT codes [6].

The rest of the paper is organized as follows. Section II
contains the necessary definitions. In Section III, the basic
and thinning schemes are analyzed. In Section IV, we propose
and analyze a hybrid extension that efficiently mitigates the
reliablity problem for largem. Section V concludes the paper.

II. PRELIMINARIES

In this section, we will provide the necessary background
and notation for the later analysis.

A. Shamir’s Secret Sharing Scheme

The task of secret sharing schemes is to distribute a certain
secret ton parties in such a way that this information is only
useful when a sufficient number,m ≤ n, of the parties together
decide to disclose the secret [2]. Such a system is called a
(m, n)-threshold scheme, and is considered to besecureonly
if no combination of fewer thanm shares reveals any extra
information about the secret. One such elegant and secure
scheme, proposed by Shamir in [3], is based on polynomial

P (x) = am−1x
m−1 + am−2x

m−2 + . . . + a1x + a0, (1)

wherea0 is the shared secret. Computations are carried out
using modulo arithmetic in finite field defined by some large
primep, i.e., the field consists of the elements{0, 1, . . . , p−1}.
Thus,0 ≤ ai < p and also0 ≤ x < p. The secret sharing is
achieved by distributingn pairs,

{x1, P (x1)}, {x2, P (x2)}, . . . {xn, P (xn)},

to n different parties, where thexi 6= 0, xi 6= xj ∀ i 6=
j, and n ≥ m. As each pair{xi, P (xi)} corresponds to a
point in a curveP (x), we refer to these bits of information
as points. It follows that the knowledge of anym pairs out
of n defines, in straightforward manner, the polynomialP (x),
and consequently, also the constanta0, which plays the role
of the shared secret. Furthermore, knowledge of anym − 1
points gets one no where. Hence, this scheme provides the
means forn parties to share a secret in such a way that any
combination ofm parties is capable of disclosing it, and that
no combination ofm− 1 or less parties can derive the secret.
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Fig. 1. Two-tier design for privacy-aware traffic monitoring.

B. Gradual Disclosure of Secret

Let us next briefly motivate the unconventional way to use
the previously described secret sharing primitive.

1) Privacy-aware traffic monitoring:In [1] the authors
consider the Shamir’s secret sharing scheme as part of a
network traffic anomaly detection system consisting of two
active parts, as illustrated in Fig. 1. The so-called front-
end encrypts the traffic flows in real time and, at the same
time, it also detects potentially malicious events. Each flow
has a unique flow identification number (ID), e.g., based on
the traditional 5-tuple, and a corresponding encryption key
(KEY). The so-called back-end stores the encrypted flows,
and if an anomaly is suspected, it can “dig” further into the
problem. The secret key escrow scheme is used to reveal
(ID,KEY)-pairs gradually as suspicious events are observed.
More specifically, upon observing an event corresponding toa
suspected malicious activity, the front-end discloses a share of
the corresponding secret to the back-end (“decryption hints”
in Fig. 1). This way, the back-end will not be able to analyze
any non-suspicious flows, which would violate users’ privacy.
That is, the raw data is exposed to the system in full only at the
front-end, which task is to protect it in such a way that, given
a strong enough reason, any relevant part of the information
conveyed to the back-end, can be disclosed independently of
the any other parts. Note that the secret key can stand for
miscellaneous things including a malicious source IP address,
decryption key for particular flows, etc. Moreover, there may
not even be a need to deliver encrypted packet flows or flow
data to the back-end, if, e.g., the source IP address is the
only relevant information for the particular traffic monitoring
application.

For a real time operation, it is essential that the computa-
tional burden in the front-end is kept minimal. The possible
huge number of concurrent flows implies that keeping per flow
state information is not feasible. To this end, the per flow keys
can be computed from the flow IDs by an appropriately chosen
pseudorandom function. Note also that the stateless operation
facilitates multiple front-ends operating in distributedfashion.

2) Sensor networks:Similar counting mechanisms can be
found useful in sensor networks consisting of large numbers
of sensors [4]. Such networks can be used to monitor some
activity such as movement. Assume that the task is to raise
an alarm with the location information if at the given point
more thanm suspicious events have occurred. In this case,
each activated sensor transmits information about the observed
event by sending a share or shares of the secret eventually

revealing the location of the corresponding nodes to a central
monitoring point. The monitoring party can compute the
corresponding location when he has receivedm shares from
the sensor around the same location. In particular, there isno
useful information available about the movement activity until
the given threshold has been exceeded.

C. Reference Model

The reference model considered in this paper is as follows:

• Sensorreveals secrets once evente has occuredm times.
• Public should not gain any information about the secret

before themth event.
• Sensorhas limited processing capability and should be

stateless (i.e., it cannot count itself).
• Public has less strict computational requirements.

Thus, the sensor knowss or can derive it frome. As events
occur, sensor starts to leak or spray bits of information in
such a manner that after themth event the secret should be
disclosable by the public. The elegant solution proposed in[1]
achieves this by relying on the Shamir’s scheme:

Basic Scheme:

1) Upon detecting an evente, sensor sends a point
{xi, P (xi)}, where thexi is chosen in random,0<xi<p.

2) As soon as the public has receivedm (different) points,
it can computeP (x) and disclose the secrets = P (0).

Note that in an ideal case, the sensor ensures thatxi 6=
xj ∀ i 6= j. For m ≪ p, choosing thexi independently in
uniform from{1, 2, . . . , p−1} already, in practice, guarantees
this. Consequently, in this case the sensor disclosing the points
does not need to keep any state information about the number
of occurred events or the points disclosed, which clearly
facilitates a stateless operation.

D. Several Threshold Type Criterion

The basic secret threshold counting scheme considered in
[1] consists of a single counter,A, and the criteria for revealing
a secret corresponding to the malicious event is of type

A ≥ m.

A straightforward extension is to consider, e.g., two or more
(independent) counters. LetB denote the second counter. Then
the criteria can be,

1) A + B ≥ m, which is achieved by lettingA and B
reveal shares from a same secret (sharing scheme).

2) min{A, B} ≥ m, obtained by using two independent
shares that are combined in a higher layer shared secret
(two levels). This can be generalized in a straightforward
manner leading to a tree structure. Roughly speaking,
this condition means “bothA andB”.

3) max{A, B} ≥ m, obtained by having two different
shared secret configurations with equal secret, i.e., two
polynomialsP1(x) andP2(x) with P1(0) = P2(0) = s.
This condition means “eitherA or B”.



(a) (b)

Fig. 2. Hyperplane defined by a criteria (a),S + A + B = m, and a more
complicated criteria (b) defined by,S + max{A, B} = m.

Example 1: Consider a case with one strong indicator,S,
and two weak indicatorsA andB, each representing number
of corresponding events, and two threshold criterion:

1) S + A + B ≥ m, or
2) S + max{A, B} ≥ m,

as illustrated in Fig. 2.
Note that randomness is a consequence of the requirement

that the sensor is stateless. These types of conditions are
straightforward to implement. For example, for the latter
condition consider two polynomials,P1 and P2, defined in
a shifted finite field consisting of the elements{−t, . . . , p −
1− t}, wheret is an appropriately chosen constant. DefineP1

and P2 so that they agree on the positive axis, and disagree
on the negative axis. Each strong eventS reveals a share from
the positive axis, which is useful with respect toP1 andP2,
and the secret can be disclosed as soon asA + S > m or
B + S > m. This type of combined criterion and multiple
counters can be extremely useful and powerful in practice. In
this paper we, however, do not pursue further in this direction,
but instead focus on studying a single counter at its limit.

III. A NALYSIS

Let us next consider certain cases where the basic scheme
has difficulties. Firstly, consider a situation where the chosen
thresholdm is large compared top. In this case, choosing the
xi uniformly in random eventually leads to clashes, i.e., it is
likely that xi = xj for somei 6= j. Secondly, publishing a
large number of shares means a higher overhead, which may
become an obstacle for certain applications. Moreover, large
m means polynomials of degreem − 1, i.e., computational
complexity increases somewhat too. This type of obstacles
can be tackled (at least) in two different and complementary
ways:

i) One can use standard thinning approach by revealing one
point after each event only with probability ofq. This
way, m can be kept small,m ≪ p, and on average about
m/q events are needed before the secret is disclosed.1

ii) Alternatively, one can accept a possibility that somexi =
xj , resulting in some unnecessary overhead (which may
or may not be acceptable depending on the situation).

Due to the random nature of the process, the unavoidable
drawback in both cases is that the actual number of events

1Note that, in the limitm = 1, the Shamir’s secret sharing scheme is
actually replaced by explicitly revealing the secret with probability of q, and
the disclosure occurs after1/q events on average.

required for the disclosure of the secret may in some cases
be considerably larger than desired. Note, e.g., that i) allows
counting up to∞ asq → 0. In general case, combining i) and
ii), we have the following scheme:

Thinning Scheme:

1) When a sensor detects an event, with probability ofq it
reveals one of thek available shares,k < p − 1.

2) Probability of revealing sharexi is qi,

qi =

{

q/k, when0 < i ≤ k,
1 − q, wheni = 0. (thinning)

(2)

where “share” x0 means that nothing is disclosed.
3) Knowledge ofm shares allows one to disclose the secret.

Note that, as all pointsxi are statistically identical, it is
sufficient to consider a distribution as defined by (2).

Generalized version: In above, we have a single sensor
guarding the secret and the number of sharesk must be equal
to m or greater, i.e., the sensor knows the secret and we could
as well setk = p − 1. However, in a more general case, the
secret may be shared among several sensors working indepen-
dently in distributed fashion. In such a case, a single sensor j
may be assigned to work withkj < p − 1 shares in order to
obtain a desired type of secret revealing process. For example,
some sensors may provide a more reliable indication and thus
should have a stronger weight in the process, which can be
implemented simply by assigning them more shares. Similarly,
kj < m means that a positive indication is required from more
than one sensor, and moreover, a single sensor does not need to
know the secret. As each sensors operates independently, the
analysis of how the shares get disclosed remains essentially the
same. Hence, for simplicity of presentation we limit ourselves
to analyze a single disclosure process for the rest of the paper.

Example 2: Pure thinning approach i) corresponds toq0 =
1 − q and qi = q/(p− 1), ∀ i = 1, 2, . . . , p − 1. In particular,
for m ≪ p we have

E[M ] ≈
m

q
and V[M ] ≈

m(1 − q)

q2
,

where a smallq implies a large variance, which, depending on
the particular application, may become an obstacle for using
the thinning approach to extend the counting range.

It is easy to see that the corresponding secret disclosure
process can be described as a Markov chain [5]. The current
state is defined by the shares or points disclosed, and the
transition probabilities are clearly independent of the previous
states yielding a Markovian system. With this insight, the
analysis of the disclosure process is rather straightforward.
Let random variableM denote the number of steps occurring
before the secret is disclosed, i.e.,

M = number of steps beforem unique shares disclosed.

By definition,M ≥ m. The interesting quantities in this case
are, e.g.,P{M = m}, i.e., the probability that disclosure
occurs exactly afterm steps, and the first two moments of
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Fig. 3. Pure birth-process describing the disclosure of thesecret according
to thinning scheme.

M yielding the meanE[M ] and the varianceV[M ], where
the latter, in most cases, is minimized for obvious reasons.

Consider next the general case given by (2). The state space
of the corresponding Markov chain can be reduced by state
aggregation to a linear state space with states0, . . . , m as
illustrated in Fig. 3 (state-dependent birth process). Letq̃i

denote the birth-probability, i.e., the probability of moving
from statei to statei + 1, for which we have

q̃i = q ·
k − i

k
.

Let Ti denote the number of events it takes to move from state
i to statei + 1. From Fig. 3 one immediately obtains,

M = T0 + T1 + . . . + Tm−1,

whereTi ∼ geometric(q(k−i)/k), i.e., theTi obey geometric
distributions with parametersq(k − i)/k. In particular, theTi

are independent random variables. Consequently,

P{M = m} =
qmk!

(k − m)! km
. (3)

This is illustrated in Fig. 4 (left) fork = p16 − 1 where
p16 denotes the largest prime less than216, p16 = 216 − 15.
The 16 bit long numbers are rather small with respect to the
capabilities of the today’s PC’s, but can be argued for in many
embedded solutions with limited computational capabilities.

Similarly, in Fig. 4 (right) we have depicted the maximum
threshold valuesmmax for which the probability of clashes
remains below0.2%, 1% and2% as a function of the number
of available sharesk. Observe that the maximal threshold
values increase rather slowly as a function ofk. Assuming
the 1% clash probability is the design criteria, for16/32-bit
arithmetic implementation (k = p16 − 1) the basic scheme
allows counting up to a thresholdm ≈ 35, and relaxing the
criteria a bit to2% allows threshold up tom ≈ 50.

It is also straightforward to see that the mean number of
steps before the secret is disclosed,E[M ], is given by

E[M ] =
k

q
(Hk − Hk−m), (4)

whereHi denotes a partial sum of the harmonic serie,Hi =
∑i

j=1 1/j, i.e., the ith harmonic number. Moreover, for the
variance one obtains (sum of independent random variables),

V[M ] =
k

q2

m−1
∑

i=0

k(1 − q) + iq

(k − i)2
(5)

≥
1

kq2

m−1
∑

i=0

k(1 − q) + iq =
m(1 − q)

q2
+

m(m − 1)

2kq
.
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In general, using chain rules of expectation and variance for
state-independent thinning byq yield

E[M ] =
E[M∗]

q
, and V[M ] =

(1−q)E[M∗]+V[M∗]

q2
, (6)

where M∗ denotes the number of steps without thinning
(q=1). From the above, it is clear that using thinning,q<1,
leads to a significant increase in variance ofM , i.e., V[M ] ∝
1/q2 whenq is small, andV[M ] ∝ 1/q for q ≈ 1. From (5),

V[M ] ≈
m(1 − q)

q2
+

m(m − 1)

2kq
, whenk ≫ m, (7)

in which case we have the following special cases:

V[M ] ≈
1 − q

q2
whenm = 1, (8)

V[M ] ≈
m(m − 1)

2k
whenq = 1, (9)

V[M ] ≈
m(1 − q)

q2
whenk ≫ m2. (10)

The last case corresponds to Example 2. In Fig. 5 we have
depicted the standard deviation ofM , σ(M), as a function of
E[M ] when k = p16 − 1 and q = 1/2, 1. Without thinning
σ(M) is initially relatively small and at acceptable level for
many applications. However, when the target thresholdE[M ]
is higher than about145000, the thinning approach becomes
more reliable. This is due to the fact that without thinning
the parameterm starts to approachk and hitting the last new
shares may take some time.

Using (3) typically means that the scheme is required to
count exactly tom before the disclosure. However, in many
cases it is acceptable if the counting process involves a small
degree of randomness. In this case, the meanE[M ] is adjusted
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accordingly and the varianceV[M ], corresponding to the
randomness, is minimized by choosing the three parameters,
m, k and q, appropriately. Thinning parameterq can be
obtained from (4) as a function ofE[M ], m and k. Then
the number of available shares,k, can be considered as given,
leaving us withm which optimal value we are interested in.
This is illustrated in Fig. 6, where we have chosen a target
threshold ofE[M ] = 1000 andk = 25, 50, 75, 100 shares. The
curve withk = ∞ represents a lower bound when the thinning
process is solely responsible for the randomness. Note thatin
each of the four cases with a finite pool of shares the optimal
point does not deviate much from the lower bound, i.e., the
thinning process is the dominating factor for the uncertainty.

In conclusion, the straightforward thinning extension of the
basic scheme using random selection increases variance. For a
finite number of shares,k, various combinations of threshold
m and thinning probabilityq provide the same mean number
of eventsE[M ] to the disclosure. The optimal value form for
largerE[M ] is generally always less thank, i.e., it makes sense
to thin the process more than absolutely necessary. This also
means that the degree of the polynomial guarding the secret
is smaller than otherwise. In the next section we propose an
alternative approach to mitigate the problem due to the random
operation stateless operation by using rateless fountain coding
type approach to minimize the variance.

IV. N EW APPROACHBASED ON RATELESSCODES

To recap, we have a finite set of points{xi, P (xi)}, i =
1, . . . , k, corresponding to a certain secrets, andk is small
in comparison to the targetedE[M ] (andm ≤ k). Moreover,
we want to minimizeV[M ], as a high variance corresponds to
unreliable disclosure scheme, which in the worst case can take
ages before revealing the secret. In this section we consider
the possibility of using the fountain coding scheme (see, e.g.,
[6]–[9]) to decrease the varianceV[M ] considerably and thus
improving the reliability of the counting scheme.

A. Fountain Coding

Assume that the original message consists ofm blocks
and the task is to transmit the message over an erasure
channel (a channel where transmission is either successful,
or nothing/error is received). In order to transmit the message
reliably one can rely on forward error correction code such
as Reed-Solomon. In particular,(n, m) Reed-Solomon codes
can be used to generaten > m symbols in a way that any
subset ofm symbols out ofn would lead to disclosure of the

original message. However, the Reed-Solomon codes are not
practical for largen, m, while, in contrary, the so-called LT
codes have extremely low computational complexity allowing
efficient schemes for large values ofm.

A so-called fountain coding principle states that any subset
of m + ǫ received symbols should allow one to decode
a message of lengthm. The name fountain coding stems
from the fact that an encoder can generate practically infinite
number of statistically identical packets (water drops), and the
decoder can reconstruct the message (with high probability) as
soon as it has receivedm+ ǫ packets (“collecting water drops
to a bucket”). The LT codes, proposed by Luby in [6], realize
this principle and work as follows. First, the message to be
transmitted is divided intom equally long blocks:2

X = {x1, x2, . . . xm}.

At each round, the encoder choosesd blocks from X in
random, where the packet’s degreed is drawn from a so-called
degree-distribution. The chosen blocks are combined using
exclusive-or operation and transmitted over to the recipient(s),
i.e., letting theai, i = 1, . . . , d, denote the uniformly in
random chosen blocks, the packet to be sent is

xa1
⊕ xa2

⊕ . . . ⊕ xad
,

where⊕ (typically) denotes exclusive-or operator. The task of
the receiver is to collect enough encoded packets in order to
decode the original blocks. To be exact, the decoding process
corresponds to solving a linear system of equations withm
unknowns, which means that the decoding is possible as soon
asm linearly independent packets have been received. Assum-
ing each block is included independently with probability of
1/2, then one can show that thisideal decoderyields

E[ǫ] < 2, and V[ǫ] < 3, ∀ m = 2, 3, . . . (11)

However, the proposed LT decoder relies on a considerably
simpler approach and operates only with degree-1 packets
(which correspond to the original blocks). Each time a new
degree-1 block is discovered, it can be subtracted away from
the other received packets including the discovered block.This
way eventually more and more blocks are discovered, and
the decoding process continues. The subtraction of known
blocks is carried out also for each arriving packet. Thus, in
order for decoding to start one needs at least one degree-
1 packet. It is worth noting that the performance of the LT
codes depends strongly and solely on the degree distribution,
and, e.g., the optimal distribution for ideal decoder is notreally
practical. For large values ofm, a so-called soliton distribution
guarantees that on average only a small amount of additional
packets (more thanm) are needed to complete the decoding.
For further details, we refer to [6]–[8].

B. Extending the Basic Scheme by LT codes

Next we describe a new hybrid approach which extends
the basic scheme by combining it with a forward error

2The re-use of the same symbolm here is no coincidence.



correction scheme based on LT codes [6], [8]. There is,
however, two fundamental differences between our scenario
and the problem that LT codes are designed for. Firstly, the
LT codes aim at delivering the whole message ofm blocks,
i.e., “k = m = p − 1”. In contrast, in our casem ≤ k,
i.e., a successful event corresponds to a partially decoded
message in standard LT coding scenario. In fact, any(n, m)-
threshold secret sharing scheme can be seen as a special type
of forward error correction (FEC), where efficiency is not such
an important factor. Secondly, in secret sharing scheme it is of
uttermost importance that no information about the secret leaks
out until the grand moment. The gain of combining shares is
best explained by a simple example:

Example 3: Letk = 2, i.e., sensor has two shares,P (x1) and
P (x2), whereP (x) = a1x + a0 mod p. The basic scheme
discloses eitherP (x1) or P (x2) after each event, and an
example realization could be{P (x1), P (x1), P (x2), . . .},
leading to disclosure of the secret in three steps. The disclosure
probability after two steps is1/2. In an alternatively hybrid
approach, the sensor disclosesP (x1), P (x2) or P (x1) ⊕
P (x2), and, e.g., a realization{P (x1), P (x1)⊕P (x2), . . .}
already reveals bothP (x1) andP (x2), and consequently also
the secret. Assuming that after each event one of the three
shares is chosen uniformly in random, it follows that the
probability of disclosing the secret after two rounds is2/3
instead of1/2 obtained with the basic scheme.

The important property with the Shamir’s scheme is that
knowledge of P (x1) yields no further information about
P (x2), i.e., P (x1) andP (x2) are independent and the condi-
tional distributionP{P (x2)=i | P (x1)=j} remains uniform.
However, in our case, the exclusive-or operation can be
extremely harmful. In Example 3 withx1=1, x2=2 andp=5,
revealing a single share ofP (x1) ⊕ P (x2) = 7 implies that
P (x)=4x or P (x)=x + 2 leaving only two possible values
left for the secret, i.e.,a0=0 or a0=2. This deficiency can be
overcome by using addition modulop instead of the exclusive-
or. In general, a modulop sum of k independent random
variablesXi ∈ {0, . . . , p − 1} is uniformly distributed and
independent of any partial sum of theXi. Consequently, the
hybrid scheme possesses the same property of not “leaking
out” any information about the secret before themth linearly
independent share has been revealed. Thus, we have:

Hybrid Scheme:

1) Upon detecting an event, the sensor draws a random
degreed from the degree distribution.

2) Sensor choosesd random shares{xi1 , . . . , xid
}, and

reveals
∑

j P (xij
) mod p.

3) Public first decodes the individual sharesP (xi) by
subtracting known points from the combined.

4) Whenm or more points of the polynomialP (x) are
known, the public can disclose the secrets = P (0).

It is more probable that the combined shares can be decoded
when m ≈ k, or evenm = k. Moreover, when a secret
corresponds, e.g., to a potential malicious traffic source,it
is clear that these events do not (normally) occur frequently.

Therefore, it may even be desirable that an additional work
in form of solving a system of linear equations needs to be
accomplished before the secret is revealed (cf. key strength-
ening), and the corresponding traffic flow can be analyzed. In
particular, solving such an equation for a moderate number of
unknowns is feasible:

Example 4: Assumek=m=25, 50, 75, 100, target E[M ] =
1000 and an ideal decoder. Substituting(11) into (6) gives
σ(M) ≈ 201, 139, 112, 95, respectively. Hence, a clear im-
provement is achieved (cf. Fig. 6), while there is still no way
to avoid the inaccuracy due to the thinning procedure.

To further elaborate the hybrid approach, let us next describe
another similar scheme (“a toy example”), where shares are
paired and occasionally a combined pair is also disclosed.

Example 5: Consider a simple pairing scheme where the
original number of shares is an even number,k = 2n. Then
one can pair the2n shares in some manner,

(a1, b1), (a2, b2), . . . (an, bn).

The basic scheme in this case works by first choosing the
pair i in random, and then eitherai or bi. Two stage
approach is functionally equivalent to the original scheme.
In an alternative pairing scheme, we extend each pair to a
triple,

(a1, b1, a1 ⊕ b1), (a2, b2, a2 ⊕ b2), . . . (an, bn, an ⊕ bn).

Otherwise the procedure remains the same, first choose triple i
in uniform, and then one of the three choices again in uniform.

For casen = 1 andm = 2, the pairing scheme improves the
performance (see Example 3). It turns out that both schemes
can be analyzed and expressions for the exact disclosure
probability, P{M = m}, can be derived. For the basic case,
(3) yields

P{M = m} =
(2n)!

(2n − m)! (2n)m
=

(

2n

m

)

m!

(2n)m
, (12)

and for the pairing scheme we have (see Appendix)

P{M = m} =

imax
∑

i=imin

(

n

i

)(

n − i

m − 2i

)

m!

nm
·
2m−2i

3m−i
, (13)

whereimin = max{0, m−n} andimax = ⌊m/2⌋. With respect
to this criteria, the pairing scheme is better than the basic
scheme when the counting thresholdm is about70% or more
of the k, which is illustrated in Fig. 7. The hybrid pairing
scheme is better in the higher blue triangle, and the basic
scheme in the lower yellow triangle.

The first few cases forP{M = m} are also given in Table I.
We note that this extreme case, where each share is required
for a successful disclosure, is the most favorable for the hybrid
approaches, and consequently, even this simple pairing scheme
offers huge improvement over the basic scheme as the number
of sharesm increases. Moreover, with these two schemes the
probability P{M = m} is very small already form ≥ 20
making it impractical (and also, hard to validate by numerical
simulations). Consequently, we should havem < k for all
practical purposes with these two schemes.
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Fig. 7. Optimal choice between the basic scheme (lower yellow area) and
hybrid pairing scheme (upper blue area) for1 ≤ m ≤ k ≤ 250. It appears
that as soon asm is about70% or more ofk, then the pairing scheme becomes
superior. Before that the risk of individual clashes is smaller than the risk of
choosing isolated combined shares.

V. CONCLUSIONS

In this paper we have analyzed a new interesting application
of the Shamir’s secret sharing algorithm to escrow a secret
key as a result of acounting process[1]. The basic scheme
is defined by thresholdm (degree of the secret sharing
polynomial ism−1), prime numberp defining the finite field,
and the number of available sharesk, wherem ≤ k < p.
For m ≪ k, the basic scheme works flawlessly and allows
counting up tom in a way that the mean number of steps
E[M ] ≈ m. In contrast, our focus has been in cases where
one, for some reason, wants to increase the counting target
E[M ] beyond the limits of the basic scheme. In this case the
randomness comes into play. Thinning the events by a constant
probability of q still facilitates a stateless operation, while
allowing one to count to any number (on average) at the same
time. Randomness, however, introduces also variance inM
which translates to an inaccuracy in the counting process. We
have analyzed this process and give expressions that allow one
to choose the optimal values for the parameters that minimize
the variance.

Moreover, we have also proposed a hybrid scheme in order
to mitigate the reliability problem when the thresholdm is
close to the number of sharesk. The hybrid scheme combines
the ideas of the LT codes with the original scheme, and can
provide a considerable improvement in the variance whenm ≈
k. The complexity increases only minimally, and in particular,
the nature of stateless operation is not changed, which is the
fundamental requirement, e.g., for the key escrow in a traffic
monitoring system as proposed in [1]. With respect to the
design of the degree distribution for the LT codes, the objective
function in this context can be seen as the generalization where
the decoding process is considered to be successful whenm ≤
n blocks have been recovered (instead of the full message,
m = n). The design of such a degree distribution is also an
interesting topic for future research.

TABLE I
COMPARISON OF THE BASIC SCHEME TO THE PAIRING SCHEME. THE GAIN

FROM THE PAIRING INCREASES CONSIDERABLY ASm INCREASES.

length Success probabilityP{M = m} improvement
m = k basic pairing from pairing

2 1/2 2/3 33%
4 3/32 1/6 78%
6 5/324 80/2187 137%
8 0.0024 0.0076 216%
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APPENDIX

Here we analyze the pairing scheme of Example 5, and
derive (13) giving the probability that the secret can be
disclosed after exactlym steps. Letℓ denote the number of
choices in each “bin” (two or three), whereℓ = 2 is equivalent
to the basic scheme with no combined share, andℓ = 3
corresponds to the pairing scheme with three types of shares.
For the basic scheme,ℓ = 2, we already have (12) as a
corollary of (12). For the pairing scheme withℓ = 3, the
situation is somewhat more complicated.

Let us next consider the general case withℓ = 2 or ℓ = 3,
even though (12) already holds forℓ = 2. There is a clear
analogy to placingm balls inton bins and assigning each of
them with one of theℓ colors. We will use this terminology,
and by colors red, blue and green we refer toai, bi andai⊕bi,
respectively. In caseℓ = 2, we have only red and blue balls.
Let random variableI denote the number of bins with two
balls. Note that if any bin has more than two balls, then thereis
necessarily a clash andM > m. Thus,I = i means thati bins
have two balls andm − 2i bins have one ball. Consequently,



the parameteri can have values fromimin to imax,

imin = max{0, m− n}, and imax = ⌊m/2⌋.

Conditioning on the event thatI = i, gives

P{M = m} =

imax
∑

i=imin

P{I = i} · P{M = m | I = i}.

The latter probability forℓ = 2 is simply

P{M = m | I = i} =

(

1

2

)i

.

For ℓ = 3, the bins with a single ball can also cause a problem
if the ball is painted with green color (i.e., a combined share).
Hence,

P{M = m | I = i} =

(

2

3

)i

·

(

2

3

)m−2i

=

(

2

3

)m−i

The former probability,P{I = i}, can be derived by combi-
natorial means. First note that the bins can be chosen in

(

n

i

)(

n − i

m − 2i

)

,

different ways. Then, them balls can be assigned in

[

ℓm−2i(m − 2i)!
]

[

ℓ2i (2i)!

2i

] (

m

2i

)

,

different ways to these given bins, where the first part cor-
responds to assigning single ball tom − 2i bins, the middle
part to assigning two balls toi bins, and the last binomial
coefficient to the number of ways one can splitm to 2i and
m− 2i groups. The total number of possible combinations is
(ℓ · n)m. Combining these, after some manipulations, yields

P{I = i} =

(

n

i

)(

n − i

m − 2i

)

m!

nm

(

1

2

)i

.

Hence, the final formulæ are

P{M = m} =






















imax
∑

i=imin

(

n

i

)(

n − i

m − 2i

)

m!

nm
·

1

4i
, if ℓ = 2,

imax
∑

i=imin

(

n

i

)(

n − i

m − 2i

)

m!

nm
·
2m−2i

3m−i
, if ℓ = 3.

where the caseℓ = 2 is equal to (12), and the caseℓ = 3
corresponds to (13).


