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Abstract—We consider a system of parallel servers, where
arriving jobs are routed to one of the servers upon arrival.
The standard objective of minimizing the mean sojourn time
(delay) does not enforce any kind of fairness in the system and
it is acceptable, e.g., to delay one job a lot if it reduces the
sojourn time of some other jobs. We take fairness into account by
defining a linearly increasing instantaneous holding cost rate by
two job-specific non-negative random variables, (αi,βi), that can
depend on the service time. We focus on first-come-first-served
(FCFS) and preemptive last-come-first-served (LCFS) scheduling,
and derive the so-called value functions for the corresponding
M/G/1 queues. Then we apply these results and obtain cost-
aware dispatching policies by means of policy improvement and
lookahead. The policies are finally evaluated numerically.

I. INTRODUCTION

We consider a system of parallel servers, where arriving jobs
are routed to one of the servers upon arrival. This system is
known as a dispatching system and it arises in many contexts
such us manufacturing and transportation systems, as well as
modern ICT systems such as web server farms. Optionally,
servers can be switched off when they become idle in order
to save energy. This, induces a setup delay when a server is
switched back on in response to an arriving job (see [1], [2]).

The standard objective is to minimize the mean sojourn time
(delay) or its weighted version, where jobs have individual
holding costs. However, this objective does not enforce any
kind of fairness and it is acceptable, e.g., to delay one job a
lot if it reduces the sojourn time of some other jobs. However,
longer waiting time is likely to increase the “anxiety level”
of a queueing customer. In this paper, we take fairness into
account by defining a linearly increasing holding cost model,
where the holding cost of job i is defined by two non-negative
parameters (αi, βi), giving the instantaneous holding cost rate

αi + βit,

where t denotes the time the job has already spent in the
system. With αi = 1 and βi = 0 one obtains the standard
objective of minimizing the mean delay. The holding cost
structure is illustrated in Fig. 1, where upper lines correspond
to case with α = 1 and β = 0.35, and the lower to the standard
sojourn time cost model. The left figure illustrates the holding
cost rate (per unit time), and the right figure corresponds to
the total cost incurred. Our cost structure is general in the
sense that (αi, βi) are random variables that can depend on
the service requirement.
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Fig. 1. A linear holding cost model promotes fairness by increasing the cost
rate as a function of sojourn time.

We focus on the two standard scheduling disciplines,
first-come-first-served (FCFS) and preemptive last-come-first-
served (LCFS). FCFS is the best nonpreemptive discipline (for
convex identical costs) [3], and also optimal when service
times are unknown, but have increasing failure rate. Moreover,
deviating from FCFS might cause social injustice [4].

The main contributions of this paper are: (i) closed-form
expressions for the mean cost according to the general cost
structure for M/G/1-FCFS and LCFS queues subject to random
i.i.d. setup delays; (ii) closed-form expressions for the corre-
sponding size-aware value functions yielding efficient cost-
and state-aware dispatching policies, (iii) a comparison of
M/G/1-FCFS with M/G/1-LCFS, including the relative im-
pacts of variability on costs. As a special case one obtains the
mean squared sojourn time in M/G/1-FCFS and LCFS queues.
Additionally, several interesting theoretical observations are
discussed separately. For example, we find that, although
for a single queue LCFS can be better than FCFS when
service times are highly variable, a good dispatching policy
can mitigate this effect.

II. PRELIMINARIES

Each job i is characterized by its size xi and the holding
cost rate parameters (αi, βi). The constant component of the
cost function corresponds to the weighted sojourn time T ,∫ T

0

αi dt = αiT =: aiT,

and the linear component to the weighted squared sojourn time∫ T

0

βit dt =
βi
2
T 2 =: biT

2.
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That is, our cost function is equivalent to assuming that the
jobs pay a total cost which is a function of the sojourn time
T and its square T 2,

Ci = aiTi + biT
2
i , where

{
ai = αi,
bi = βi/2,

The parameters of jobs arriving in future are i.i.d. random
variables, (Xi, Ai, Bi) ∼ (X,A,B), where Ai and Bi may
depend on Xi. This enables performance metrics such as
slowdown, where Ai = 1/Xi and Bi = 0. We assume that
(xi, ai, bi) becomes known upon the arrival. For FCFS, the
payment can occur upon arrival to the queue, whereas with
LCFS the payment must be delayed until departure.

A. Setup Delay

Many results are easier to derive first for a fixed setup delay
s, and then to generalize to the case where the setup delays
are i.i.d. random variables Si ∼ S. Let Z denote an arbitrary
performance measure (e.g., T 2). For M/G/1 with setup delays,

E[Z] =

∫
E[Z|s]π(s) dF (s), (1)

where E[Z|s] is the expected value of Z given a fixed setup
delay s, and (see [5])

π(s) =
1 + λs

1 + λE[S]
.

B. Value functions

The central notion for developing good dispatching heuris-
tics is the value function for each queue in isolation,

v(z) := lim
t→∞

E[Vz(t)− r · t], (2)

where Vz(t) denotes the costs incurred during (0, t) when
initially in state z, and r is the mean cost rate. We have
implicitly assumed a stable and ergodic system (λE[X] < 1).
Moreover, we consider size-aware state information, where
the (remaining) service times of all jobs, as well as the
(remaining) setup delay, are available. The important quantity
for dispatching is actually the difference, v(z′)− v(z), which
describes how much more or less it costs to start an ergodic
system from state z′ instead of state z. Finally, it is easy to
see that the value function for our cost structure decomposes,

v(z) = vA(z) + vB(z), (3)

where vA(z), corresponding to AT , depends on A, and vB(z),
corresponding to BT 2, on B.

III. ANALYSIS OF M/G/1-FCFS

The cost structure with respect to waiting and sojourn time,
including their squares, in an M/G/1-FCFS has been already
discussed in [6]. Here we first restate some of the main results,
and then derive an explicit expression for the value function
with respect to T 2. Finally, we utilize (3) and obtain the value
function with respect to our cost rate model.

A. Mean costs

In the general case, the coefficients (A,B) for T and T 2 in
the cost function may depend on the service time of the job,
X . Recalling that with FCFS, T = W +X , we first assume a
general cost structure where the cost is a random polynomial
function of kth degree,

C =

k∑
i=0

CiT
i =

k∑
i=0

Ci(W +X)i,

where Ci denotes the random coefficient that may depend on
X , but not on the waiting time W . The above reduces to

C =

k∑
i=0

Ci

i∑
j=0

(
i

j

)
W jXi−j =

k∑
i=0

DiW
i,

where Di =
∑k
j=i

(
j
i

)
CjX

j−i. The Di are i.i.d. random
variables that depend on X but not on W (or the scheduling
discipline). Therefore, the cost of a job in the general case is

E[C] =

k∑
i=0

E[Di]E[W i].

With our cost structure, C0 = 0, C1 = A, and C2 = B,
which gives D0 = AX+BX2, D1 = A+2BX , and D2 = B.
The cost of a job is

C = AX +BX2 + (A+ 2BX)W +BW 2. (4)

Therefore, the mean cost of a job can be written as

E[C] = E[AT ] + E[BT 2], (5)

where

E[AT ] = E[AX] + E[A]E[W ],

E[BT 2] = E[BX2] + 2E[BX]E[W ] + E[B]E[W 2].

The mean waiting time and the mean squared waiting time
in an M/G/1-FCFS with a fixed setup time s are given, e.g., in
[6]. Those results can be generalized to a system where setup
times are arbitrary i.i.d. random variables Si ∼ S, using (1):

Lemma 1: The mean waiting time and the mean squared
waiting time in an M/G/1-FCFS with setup time S are

E[W ] =
λE[X2]

2(1− ρ) +
2E[S] + λE[S2]

2(1 + λE[S])
, (6)

E[W 2] =
3λ2 E[X2]2 + 2λ(1− ρ)E[X3]

6(1− ρ)2 +

λ(2E[S] + λE[S2])E[X2]

2(1− ρ)(1 + λE[S])
+

3E[S2] + λE[S3]

3(1 + λE[S])
.

(7)

We note that (6) and (7) can be also obtained, e.g., from [7,
Theorem 6]. Now, from (5), (6) and (7), we can give explicit
expressions for the mean cost E[C]:

Theorem 2: The mean costs of a job in an M/G/1-FCFS
queue when (A,B) may depend on X are

E[AT ] = E[AX]+E[A]
(
λE[X2]

2(1− ρ) +
2E[S]+λE[S2]

2(1 + λE[S])

)
, (8)
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E[BT 2] = E[BX2]+

E[BX]

(
λE[X2]

1− ρ +
2E[S] + λE[S2]

1 + λE[S]

)
+E[B]

[
3λ2 E[X2]2 + 2λ(1− ρ)E[X3]

6(1− ρ)2 +

λ(2E[S] + λE[S2])E[X2]

2(1− ρ)(1 + λE[S])
+

3E[S2] + λE[S3]

3(1 + λE[S])

]
.

(9)

By setting A = 1 in (8) we get that E[T ] depends on the
first two moments of X and S, and by setting B = 1, we get
that E[T 2] depends on the first three moments of X and S,

E[T 2] = E[X2] + E[X]

(
λE[X2]

1− ρ +
2E[S] + λE[S2]

1 + λE[S]

)
+

3λ2 E[X2]2 + 2λ(1− ρ)E[X3]

6(1− ρ)2

+
λ(2E[S] + λE[S2])E[X2]

2(1− ρ)(1 + λE[S])
+

3E[S2] + λE[S3]

3(1 + λE[S])
.

(10)

B. Value functions

Next we consider the effect of different starting states of the
system. More specifically, we derive the value function for an
M/G/1-FCFS queue with a setup delay with respect to the
general cost structure. With FCFS, we adopt the convention
that the costs are incurred upon arrival. This is feasible as the
current state of the system defines the waiting and sojourn
times. Consequently, the value functions characterize the state
of the system for the jobs arriving in the future. This means
that a sufficient state description is the virtual backlog u that
includes the possible remaining setup delay δ.

The explicit expression for the value functions with respect
to waiting time for systems with a fixed setup time s are
already available from [6],

vW (u)− vW (0) =
λu

2(1− ρ)

(
u− s(2 + λs)

1 + λs

)
, (11)

vW2(u)−vW2(0) =
λu

1− ρ

[
u2

3
− s2(3 + λs)

3(1 + λs)

+
λE[X2]

2(1− ρ)

(
u− s(2 + λs)

1 + λs

)]
.

(12)

When setup times are arbitrary i.i.d. random variables we have
Lemma 3:

vW (u)− vW (0) =
λu

2(1− ρ)

[
u− 2E[S] + λE[S2]

1 + λE[S]

]
, (13)

and

vW2(u)−vW2(0) =
λu

1− ρ

[
u2

3
− 3E[S2] + λE[S3]

3(1 + λE[S])

+
λE[X2]

2(1− ρ)

(
u− 2E[S] + λE[S2]

1 + λE[S]

)]
.

(14)

Proof: In general, when the value function depends only
on the virtual backlog u, we have

v(u) = E[V (u)]− rE[B̃(u)] + v(0),

where V (u) denotes the mean cost the system incurs during
the remaining busy period, E[B̃(u)] is the mean length of the
remaining busy period,

E[B̃(u)] =
u

1− ρ
,

and r is the mean cost rate. We refer to the system with fixed
setup delay s with superscript s, and superscript S corresponds
to a system with i.i.d. random setup delays Si ∼ S. Clearly,
V (s)(u) = V (S)(u) as the setup delay does not affect the
costs incurred during the remaining busy period. Therefore,
v(S)(u)−v(S)(0) = v(s)(u)−v(s)(0)+(r(S)−r(s))u/(1−ρ).
Using (11) for v(s)W (u)−v(s)W (0) ((12) for v(s)W2(u)−v(s)W2(0))
and (6) for r(S)W −r

(s)
W ((7) for r(S)W2−r

(s)
W2) completes the proof.

The value function for an M/G/1-FCFS queue with respect
to sojourn time is the same as with respect to waiting time,
vT (u) = vW (u), given in (13). For the squared sojourn time,
there is a small change to vW2(u) given in (14):

Lemma 4: The relative value function for an M/G/1-FCFS
queue with respect to the squared sojourn time T 2 is

vT2(u)− vT2(0) =
λu

1−ρ

[
u2

3
− 3E[S2] + λE[S3]

3(1 + λE[S])

+

(
λE[X2]

2(1−ρ)+E[X]

)(
u− 2E[S] + λE[S2])

1 + λE[S]

)]
.

(15)

Proof: As in [6], we can consider the remaining busy
period for a queue initially in state u, where u is the virtual
backlog, that includes any remaining setup time. By definition,

vT2(u) = E[T 2
1 + . . .+ T 2

Nu
]− rT2 E[B̃(u)] + vT2(0),

where Nu is the number of jobs arriving during the remaining
busy period, the Ti are their sojourn times, and B̃(u) is the
length of the remaining busy period. As Ti = Wi +Xi,

vT2(u)− vT2(0) = E[W 2
1 + . . .+W 2

Nu
]

+ 2E[W1X1 + . . .+WNuXNu ]

+ E[X2
1 + . . .+X2

Nu
]− rT2 E[B̃(u)].

(16)

The mean cost rate for the squared sojourn time is

rT2 = λE[T 2] = λE[W 2] + 2ρE[W ] + λE[X2].

Substituting this into (16) gives

vT2(u)−vT2(0) = E[W 2
1+ . . .+W 2

Nu
]−λE[W 2]E[B̃(u)]

+ 2E[W1X1 + . . .+WNuXNu ] + E[X2
1 + . . .+X2

Nu
]

− (2ρE[W ] + λE[X2])E[B̃(u)],

(17)

which, because of the FCFS discipline, reduces to

vT2(u)− vT2(0) = vW2(u)− vW2(0)
+ 2E[W1 + . . .+WNu ]E[X] + E[Nu]E[X2]

− (2ρE[W ] + λE[X2])
u

1− ρ .
(18)

For E[W1 + . . .+WNu
] we have

vW (u)− vW (0) = E[W1 + . . .+WNu
]− λE[W ]

u

1− ρ
.
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From (13), we obtain

E[W1 + . . .+WNu
] =

λ

2(1− ρ)

(
u2 +

λE[X2]

1− ρ
u

)
, (19)

which is independent of the setup delay1 S. Then,

E[Nu] = λE[B̃(u)] =
λu

1− ρ
. (20)

Substituting (19) and (20) into (18) gives

vT2(u)−vT2(0) = vW2(u)−vW2(0) +
ρ

1− ρ

(
u2+

λE[X2]

1− ρ u

)
+
λE[X2]

1− ρ u− (2ρE[W ] + λE[X2])
u

1− ρ ,

which gives that vT2(u)− vT2(0) is equal to

vW2(u)− vW2(0) +
ρ

1− ρ

(
u2 +

λE[X2]

1− ρ
u− 2E[W ]u

)
.

Using (6) for E[W ] gives that vT2(u)− vT2(0) is equal to

vW2(u)−vW2(0)+
ρ

1− ρ

(
u2 − 2E[S] + λE[S2]

1 + λE[S]
u

)
. (21)

Combining (14) and (21) gives (15).
Now we suppose that we have random coefficients (A,B)

that may depend on the service requirement X . Again, the
value function can be derived:

Theorem 5: The value function of an M/G/1-FCFS queue
with respect to total cost is given by

v(u)−v(0) = λu

2(1−ρ)

[
h1

(
u2−3E[S2]+λE[S3]

3(1 + λE[S])

)
+ h2

(
u−2E[S]+λE[S2]

1 + λE[S]

)]
,

(22)

where (A,B) may depend on X , and

h1 =
2E[B]

3
, h2 = E[A]+2E[BX]+

λE[X2]E[B]

1− ρ
.

Proof: From (4) we deduce that

v(u) = E[A+ 2BX] vW (u) + E[B] vW2(u).

Substituting (13) and (14) into above gives

E[A+ 2BX]

[
λu

2(1− ρ)

(
u− 2E[S] + λE[S2]

1 + λE[S]

)]
+

λuE[B]

1− ρ

[
u2

3
+
λE[X2]

2(1− ρ)

(
u−2E[S]+λE[S2]

1 + λE[S]

)
3E[S2]+λE[S3]

3(1+λE[S])

]
which yields (22).

1The virtual backlog u includes the possible remaining setup time. That is
the only thing that matters to the jobs arriving during the current busy period.

TABLE I
NOTATION FOR THE SYSTEM OF PARALLEL SERVERS.

System parameters: According to the basic policy:
m number of servers λi arrival rate to server i
νi service rate of server i Xi job size distribution
si setup delay of server i to server i
λ total job arrival rate
X job size distribution

C. Dispatching and policy iteration

Let us next consider the complete system of parallel servers
illustrated in Fig. 2. The system parameters are given in
Table I. The primary application of the value functions is to
develop a dispatching heuristic based on policy improvement,
i.e., we can carry out the first policy iteration (FPI) step.
We start with an arbitrary static policy α0, referred to as
the basic policy. A simple example is the Bernoulli split
(RND), which chooses the server for each job at random with
some probabilities p1, . . . , pm. With a static policy, the arrival
process to each server i is (independent) Poisson process with
some rate λi and i.i.d. service times Xi, and the system
decomposes to m independent M/G/1 queues. Hence, the value
function is the sum of the server-specific value functions,

v(z) =
∑
i

v(i)(ui),

where z = (u1, . . . , um) denotes the state of system with ui
denoting the backlog in server i. Given the value function,
the policy iteration step can be carried out. We compute the
cost of assigning the new job to queue i, and then choose the
queue with the smallest expected cost. Formally, let

ui ⊕ x =

{
ui + x/νi, if ui > 0,
si + x/νi, if ui = 0,

i.e., ui⊕x denotes the backlog in queue i once a job with size
x has been added (including a possible setup period). Then,

αFPI(z, x) = arg min
i

ai(ui, x),

where ai(ui, x) denotes the so-called admission cost,

ai(ui, x) = ci(ui, x) + vi(ui ⊕ x)− vi(ui).

When minimizing the costs according to T 2,

ai(ui, x) = (ui ⊕ x)2 + v
(i)
T2 (ui ⊕ x)− v(i)T2 (ui) .

Note that the server-specific value functions v(i)T2(u) depend
on the static basic policy α0 through the corresponding arrival
process (λi, Xi), see Table I.

Given the value function with respect to the total costs AT+
BT 2, we can similarly obtain the corresponding FPI policy.

D. Lookahead

Lookahead is a recent idea to close the gap between FPI
and the optimal policy determined by repeated policy iteration
[8]. The basic idea is to consider jointly the assignment of the
present and the next job. To this end, it is convenient to define
the so-called Lookahead value:
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Definition 1: L(z, λ∗, X∗) is the expected difference in
cumulative cost between the queue in equilibrium and a queue
initially in state z receiving the next job X∗ at Poisson rate
λ∗ after which the arrival process based on the basic policy
resumes. The convention is to denote the event that a job is
assigned elsewhere by an empty job, X∗ = ∅.

The lookahead policy (LH) considers actions (i0, i1), where
i0 denotes the server of the current job, and i1 the server where
the next job is (tentatively) assigned. As with FPI, LH chooses
the server with the smallest cost,

αLH(z, x) = arg min
i0

(
min
i1

ai0,i1

)
. (23)

We can proceed similarly as with FPI, and choosing the action
to drop this and the next job as the reference, the admission
cost for action (i, i) is

ai,i(z, x) = ci(ui, x) +

L(i)(ui ⊕ x, λ∗, X∗/νi)− L(i)(ui, λ
∗, ∅), (24)

and for i 6= j,

ai,j(z, x) = ci(ui, x) +
L(i)(ui ⊕ x, λ∗, ∅)− L(i)(ui, λ

∗, ∅) +
L(j)(uj , λ

∗, X∗/νj)− L(j)(ui, λ
∗, ∅).

(25)

Due to lack of space, we leave the explicit expressions to
reader, but show both FPI and LH in action later in Section VI.

IV. ANALYSIS OF M/G/1-LCFS
Let us next consider preemptive LCFS scheduling, i.e.,

where the job that has arrived (if any) most recently receives
service. This means that LCFS works as a stack. It has strong
insensitivity properties [5]. For example, the mean sojourn
time in an M/G/1 with preemptive LCFS and an i.i.d. random
setup delay S is [5, Eq. (7)]

E[T ] =
E[X]

1− ρ
+

E[S] + (λ/2)E[S2]

1 + λE[S]
, (26)

i.e., it depends only on the service time through its mean.

A. Busy periods

In general, the analysis of LCFS reduces to the analysis of
the busy periods as each arriving job can be seen to start a
mini busy period at the end of which it then departs. In order
to deduce the corresponding results with respect to the squared
sojourn time, we let B̃(u) denote the length of the remaining
busy period in a work-conserving M/G/1 queue with the initial
backlog of u including a possible (remaining) setup delay δ.
The first two moments of the length of the busy period are [9]

E[B̃] =
E[X]

1− ρ
, and E[(B̃)2] =

E[X2]

(1− ρ)3
.

We need similar expressions for the remaining busy period:
Lemma 6:

E[B̃(u)] =
u

1− ρ
. (27)

and
E[B̃(u)2] =

λE[X2]u

(1− ρ)3
+

u2

(1− ρ)2
. (28)

Exp(λ)

empty working

S

setup

B*

B

Fig. 3. One busy cycle consists of three phases: an empty system, a setup
phase of s, and a working phase during which jobs are actually processed.

Proof: The remaining busy period is equal to a random
sum,

B̃(u) = u+ B̃1 + . . .+ B̃N ,

where the B̃i are i.i.d. busy periods and N ∼ Poisson(λu).
Thus,

E[B̃(u)] = u+ λuE[B̃] =
u

1− ρ
.

Similarly, for the second moment we get, by conditioning,

E[B̃(u)2|N ] = u2+N E[B̃2]+2N E[B̃]u+N(N−1)E[B̃]2.

Consequently, unconditioning gives (28).

B. Mean costs

In this section, we will discuss the mean costs in an M/G/1-
LCFS queue. To this end, let Z denote the sum of the service
time of a job X and the remaining setup delay R upon arrival,
Z = R + X . Thus, without new arrivals, Z would be the
sojourn time of the given job. In what follows, we need the
first two moments of Z.

Lemma 7:

E[Z] = E[X] +
(1− ρ)

1 + λE[S]

[
E[S] + λ

2
E[S2]

]
, (29)

E[Z2] = E[X2] +

1− ρ
1+λE[S]

[
2E[X]E[S] + (1 + ρ)E[S2] +

λ

3
E[S3]

]
.

(30)

Proof: The first moment, E[Z], is already available from
[5], while E[Z2] can be obtained using PASTA. Conditioning
on X = x and S = s,

E[Z2|x, s] = 1/λ

E[`]
(x+ s)2 +

s

E[`]

s∫
0

1

s
(x+ δ)2 dδ +

E[B̃∗]

E[`]
x2

where ` is the busy-idle-setup cycle length, and B̃∗ is the
remaining busy period once the setup phase has completed
(see Fig. 3). From [5], we have

E[B̃∗|S = s] =
(1 + λ s)E[X]

1− ρ
, (31)

E[`|S = s] =
1/λ+ s

1− ρ
. (32)

Consequently,

E[Z2|x, s] = x2 +
1− ρ

3(1 + λs)
s(6x+ 3(1 + λx)s+ λs2),
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and therefore

E[Z2|s] = E[X2]+
(1− ρ)s

1 + λs
(2E[X]+(1+λE[X])s+

λ

3
s2).

Then, using (1), yields (30) after some manipulation.
Similarly, we will need the first two moments of the remaining
setup delay R an arbitrary arriving job sees:

Corollary 8:

E[R] =
1− ρ

1 + λE[S]

(
E[S] +

λ

2
E[S2]

)
, (33)

E[R2] =
1− ρ

1 + λE[S]

(
E[S2] +

λ

3
E[S3]

)
. (34)

Proof: First we recall that Z = X +R and (33) follows
immediately from (29). Similarly,

E[Z2] = E[(X +R)2] = E[X2] + 2E[X]E[R] + E[R2],

and utilizing (30) and (33) yields (34).
Next we assume that (A,B) may depend on the service

requirement X .
Theorem 9: The mean costs of a job in an M/G/1-LCFS

queue when (A,B) may depend on X are

E[AT ] =
E[A]

1 + λE[S]

(
E[S] +

λE[S2]

2

)
+

E[AX]

1− ρ
. (35)

and

E[BT 2] =
λE[X2]E[BX]

(1− ρ)3 +
E[BX2]

(1− ρ)2

+
1

(1− ρ)(1 + λE[S])

[
E[B]

(
E[S2] +

λ

3
E[S3]

)
+

(
λE[X2]

1−ρ E[B] + 2E[BX]

)(
E[S] + λ

2
E[S2]

)]
.

(36)

Proof: First,

E[AT ] = E[AB̃(Z)],

where Z = R+X . Conditioning

E[AT ] = E[E[AB̃(Z)|Z]]

= E[
AZ

1− ρ
] =

E[A]E[R] + E[AX]

1− ρ
.

Substituting E[R] from (33) gives (35).
For the quadratic cost term E[BT 2] we obtain similarly

E[BT 2] = E[E[BT 2|X,R,B]],

which gives, from (26),

E[BT 2|X,R,B] =
λE[X2]BZ

(1− ρ)3
+

BZ2

(1− ρ)2

=
λE[X2]BX +BR

(1− ρ)3
+
BR2 + 2BRX +BX2

(1− ρ)2
.

Then substituting E[R] and E[R2] from Corollary 8 and taking
the expectation yields (36).

We note that the extra term due to setup delay in E[AT ]
is the same as with FCFS. However, for E[BT 2] this is no

longer the case. The result for the mean squared sojourn time
in an M/G/1-LCFS follows as a special case:

Corollary 10: The mean squared sojourn time in M/G/1-
LCFS with a setup delay S is

E[T 2] =
E[X2]

(1− ρ)3

(
1 +

λ(1− ρ)(E[S] + λ
2
E[S2])

1 + λE[S]

)
+

2E[X]E[S] + (1 + ρ)E[S2] + λ
3
E[S3]

(1− ρ)(1 + λE[S])
.

(37)

Proof: Set B = bi = 1 in (36).
Similarly, (26) can be re-derived from (35) with A = ai = 1.

C. Value function

The state description for a size-aware M/G/1-LCFS queue
with a setup delay s is z = (δ; (τ1,∆1), . . . , (τN ,∆n)),
where δ denotes the remaining setup time, and (τi,∆i)
are the time job i has already spent in the system and
its remaining service time, respectively. In the general case
with job-specific cost factors the state is given by z =
(δ; (τ1,∆1, a1, b1), . . . , (τN ,∆n, an, bn)). First we consider
the general case and assume that the cost factors (A,B) may
depend on the service requirement X . Let ui = δ+

∑i
j=1 ∆j ,

u = un, and job 1 (if any) is currently receiving service.
Theorem 11: The relative value function with respect to the

cost term AT in an M/G/1-LCFS is

vA(z)− vA(0) =

n∑
i=1

ai

(
τi +

ui
1− ρ

)
+

λE[A]

1− ρ

(
δ2

2
− u

1 + λE[S]

(
E[S] +

λE[S2]

2

))
.

(38)

Proof: Clearly,

v(z) = E[V0(z) + V1(z)− rB̃(z)] + v(0),

where V0(z) denotes the costs the present jobs incur, V1(z)
the costs the jobs arriving during the remaining busy period
incur, and r is the mean cost rate, λE[AT ]. First,

E[V0(z)] =
∑
i

ai

(
τi +

ui
1− ρ

)
.

Then,

E[V1(z)] =

∫ δ

0

λ
E[A(t+X)]

1− ρ
+ λ

(
u

1− ρ
− δ
)

E[AX]

1− ρ
,

where the integral corresponds to the mean contribution by
the jobs arriving during the remaining setup delay δ, and the
second term to the jobs arriving after that. This gives

E[V1(z)] =
λ

1− ρ

(
δ2

2
E[A] +

E[AX]u

1− ρ

)
.

Finally, the mean cost rate is given by (35) and

E[rB̃(z)] =
λu

1−ρ

(
E[A]

1+λE[S]

(
E[S] +

λE[S2]

2

)
+

E[AX]

1− ρ

)
.

When combining these, the terms with E[AX] cancel each
other, and (38) is obtained.

6



Note that here we assume a general setup delay distribution
S for future setups, but also assume the exact information
regarding the remaining setup delay δ in the current busy
period. Moreover, even though the mean cost E[AT ] depends
on E[AX] according to (35), the corresponding value function
depends only on the means E[A] and E[X].

Theorem 12: The value function with respect to the cost
term BT 2 in an M/G/1-LCFS is

vB(z)− vB(0) =∑
i

bi

[
τ2i +

ui
1− ρ

(
2τi +

λE[X2]

(1− ρ)2

)
+

u2
i

(1− ρ)2

]
+

λδ2

(1− ρ)2

(
λE[X2]E[B]

2(1− ρ) + E[BX] +
δ E[B]

3

)
− λu

(1− ρ)2(1 + λE[S])

[
E[B]

(
E[S2] +

λ

3
E[S3]

)
+

(
λE[X2]E[B]

1−ρ + 2E[BX]

)(
E[S] + λ

2
E[S2]

)]
.

(39)

Proof: We prove this by considering the remaining busy
period of length B̃(u). Again we can write

v(z) = E[V0(z) + V1(z)− r · B̃(u)] + v(0),

where V0(z) denotes the costs the present n jobs incur, V1(z)
the costs the jobs arriving during the remaining busy period
will incur, and r is the mean cost rate, where now r = λE[T 2],
and E[T 2] is given by (37). For E[V0(z)] we obtain

E[V0(z)] =
∑
i

biE[(τi + B̃(ui))
2]

=
∑
i

bi

[
τ2i +

ui
1−ρ

(
2τi +

λE[X2]

(1− ρ)2

)
+

u2i
(1−ρ)2

]
,

as the remaining sojourn time of job i corresponds to the
(conditional) remaining busy period, where Lemma 6 can be
utilized for each job i. The mean cost of a job arriving during
the remaining setup delay δ is

E[BB̃(X + δ)] = E[B
(
λE[X2](X + δ)

(1− ρ)3 +
(X + δ)2

(1− ρ)2

)
]

=
λE[X2]

(1− ρ)3 (E[BX] + δ E[B])+
E[BX2] + 2δ E[BX]+δ2 E[B]

(1− ρ)2 .

For jobs arriving during the remaining setup and busy period,
we take the remaining setup delay into account using the
above, and denote f(t) = E[BB̃(X + t)]. From PASTA,

E[V1(z)] =

∫ δ

0

λ f(t) dt+ λ

(
u

1− ρ
− δ
)
f(0).

The first integral corresponds to new jobs arriving during the
remaining setup period, and the latter to new jobs that see the
server already running. These reduce to

E[V1(z)] =
λδ

6(1− ρ)3

(
3E[X2](2λE[BX] + λδ E[B]) +

2(1− ρ)(3E[BX2] + δ(3E[BX] + δ E[B]))

)
+ λ

(
u

1− ρ
− δ
)(

λE[X2]E[BX]

(1− ρ)3
+

E[BX2]

(1− ρ)2

)
.

The mean cost rate, λE[BT 2], times the mean duration of the
remaining busy period, E[B̃(u)], is

λu

1− ρ
E[BT 2],

where E[BT 2] is given in (36). Then, for E[V 1(z)]−(λµ/(1−
ρ))E[BT 2], after some manipulation, one obtains

λδ2

(1− ρ)3

(
λE[X2]E[B]

2
+ (1− ρ)

(
E[BX] +

δ E[B]

3

))
− λu

(1− ρ)2(1 + λE[S])

[
E[B]

(
E[S2] +

λ

3
E[S3]

)
+

(
λE[X2]

1−ρ E[B] + 2E[BX]

)(
E[S] + λ

2
E[S2]

)]
.

Finally, adding E[V0(z)] yields (39).
We note that again the value function is more “robust”

than the mean cost rate as (39) does not depend on E[BX2],
whereas the mean cost E[BT 2] does. Moreover, the value
function with respect to the squared sojourn time with LCFS
is a quadratic function of the workloads ui, whereas the
corresponding value function with FCFS depends also on u3.
That is, adding very large jobs is more expensive under FCFS
than under LCFS. This holds both for the sojourn time and its
square. The value function with respect to the sojourn time is
given in [5, Eq. (10)].

Corollary 13: The value function for M/G/1-LCFS with
respect to the squared sojourn time with a setup delay s is

vT2(z)− vT2(0) =∑
i

[
τ2i +

ui
1− ρ

(
2τi +

λE[X2]

(1− ρ)2

)
+

u2
i

(1− ρ)2

]
+

λ

(1−ρ)2

[
δ2
(
λE[X2]

2(1− ρ) + E[X] +
δ

3

)
−

us

1+λs

(
2E[X]+s(1 + ρ+

λs

3
)+
λE[X2](2+λs)

2(1− ρ)

)]
,

(40)

where ui = δ + ∆1 + . . .+ ∆i, and u = un.
Proof: Set B = bi = 1 and S = s (constant) in (39).

D. Policy iteration and lookahead

Let us next return again to the complete system of m parallel
servers. For LCFS, a sufficient state description for server i is

zi = (δ; (τi,1,∆i,1), . . . , (τi,ni
,∆i,ni

)),

where δ denotes the remaining setup delay, and (τi,j ,∆i,j) are
the elapsed time and the remaining service time of job j of
server i. The state of the system is z = (z1, . . . , zm). We let
zi ⊕ x denote the new state of server i with a job of size x
added,

zi⊕x =

{
(δ; (0, x), (τi,1,∆i,1), . . . , (τi,ni ,∆i,ni), if ni > 0,
(s; (0, x)), if ni = 0.

To illustrate FPI, let us consider again the cost structure
according to the squared sojourn time T 2. The value function
is given in (40), and as the “squared sojourn time cost” is
paid upon the departure, there is no immediate cost associated
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Fig. 4. Comparison of LCFS to FCFS in M/G/1 with respect to the mean
sojourn time E[T ] (left) and the mean squared sojourn time E[T 2] with
(dashed line) and without (solid line) setup time.

with adding a job to a queue. Hence, FPI (see Section III-C)
reduces to

αFPI(z, x) = arg min
i

(
v
(i)
T2(zi ⊕ x)− v(i)T2(zi)

)
.

The lookahead policy can be derived similarly as for FCFS
in Section III-D. We omit the details due to lack of space.

V. COMPARISON OF LCFS AND FCFS

With exponentially distributed service times (M/M/1-
queue), FCFS and LCFS achieve the same mean sojourn time
for any i.i.d. random setup time S, E[T ](LCFS) = E[T ](FCFS) [5].
However, the well-known deficiency of LCFS (without setup
delay) is the higher variance in the sojourn time for M/M/1
queues. Whether this is still the case with a setup delay is an
interesting question.

Corollary 14: For an M/M/1-queue with a constant setup
time s it holds that

E[T 2](LCFS)

E[T 2](FCFS)
=

1

1− ρ
∀ s ≥ 0.

Proof: This follows from (10) and (37), and the fact that
E[X2] = 2/µ2 and E[X3] = 6/µ3.

For general service times, with E[X], E[X2], E[X3] finite,

lim
ρ→1

E[T 2](LCFS)

E[T 2](FCFS)
=∞,

i.e., in the heavy traffic limit, LCFS is worse than FCFS with
respect to the mean squared sojourn time with or without a
setup delay. We note that this is not the case with the mean
sojourn time metric, for which LCFS is superior when the
coefficient of variation is sufficiently high.

Moreover, as E[T 2] depends on E[X3] with FCFS, but only
on E[X2] with LCFS, it follows that for any ρ < 1, and a
sequence of service times {Xi} such that limi→∞ E[Xk

i ] =∞
for k = 2 or k = 3, while E[Xi] = 1, it holds that

E[T 2](LCFS)

E[T 2](FCFS)
→ 0,

i.e., LCFS is asymptotically better than FCFS when the offered
load is finite and the service times become heavy-tailed. Also
this holds for queues with and without a setup delay.

Our observations are illustrated in Fig. 4, where the service
times obey Weibull distribution with parameters such that
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Fig. 5. Simulation results for E[T 2] with FCFS (left) and LCFS (right).

E[X] = 1 and the coefficient of variation, cv = σ/E[X], is
cv ∈ {0, 1, 5}, corresponding to service times being constant,
exponentially distributed and “heavy-tailed”, respectively. We
consider a queue without a setup delay (solid lines), and with
a setup delay of s = 4 (dashed lines). The left figure illustrates
the mean sojourn time ratio of LCFS to FCFS, and the right
shows the corresponding ratio for the mean squared sojourn
time. We can see that with the setup time the difference in
performance (either way) becomes smaller.

VI. NUMERICAL EXAMPLES

In this section, we will give some numerical examples that
illustrate the use of the analytical results derived earlier. We
consider a system of 2 parallel servers that process the arriving
jobs according to FCFS or LCFS scheduling. The reference
dispatching policies are: [10]
• RND is a random Bernoulli split that balances the load.
• SITA, size-interval-task-assignment, sends jobs shorter

than ξ to server 1, and the rest to server two. Here we
have chosen such ξ that balances the load (SITA-e).

• RR (round-robin) uses a sequential order 1, . . . ,m, 1, . . .
• JSQ, join-the-shortest-queue, chooses the server with less

jobs. Ties are resolved in favor of server 1.
• LWL (least-work-left) chooses the queue with a shorter

backlog. Ties are resolved in favor of server 1.
• FPI is the first policy iteration applied to SITA or RND.
• LH is the lookahead policy based on SITA or RND. We

include also LH-ST based on minimizing the sojourn time.

A. FCFS

Consider a small system of two identical servers with
service rates ν1 = ν2 = 1 so that the total capacity is ctot = 2.
The jobs arrive according to a Poisson process with rate λ
and have exponentially distributed sizes X ∼ Exp(1). The
objective is to minimize the squared sojourn time T 2.

Fig. 5 (left) depicts the numerical results with different
dispatching policies. FPI and LH are based on SITA, which is
a significantly better basic dispatch rule than RND for FCFS
scheduling. On the x-axis is the offered load, ρ = λE[X]/ctot,
and the y-axis corresponds to the performance relative to JSQ.
We observe that at small loads LWL, FPI and LH do a pretty
good job. At higher loads, the performance of LWL degrades,
and in general, LH achieves the best performance.
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Fig. 6. Comparison of FCFS and LCFS with different job size distributions with respect to E[T 2].

B. LCFS

Next we consider the same two server system with LCFS
scheduling, i.e., the example system comprises two identical
servers, service times are exponentially distributed, and the
objective is to minimize the squared sojourn time. Fig. 5
(right) depicts the numerical results. The basic policy (starting
point) for FPI and LH is RND. The mean (squared) sojourn
time is the same with RND and SITA. Under low load, FPI
and LH achieve the best performance. However, as the load
increases, the lookahead policies become superior. This is
not surprising as the lookahead approach in general has a
better “understanding” about the complete state of the system,
whereas FPI assumes that the queues are isolated (via the static
basic policy). Under a very high load, when ρ → 1, LH-ST,
focusing on the sojourn time instead of its square, seems to
outperform LH. This applies to both FCFS and LCFS.

C. Comparison of FCFS and LCFS

In Section V, we compared FCFS to LCFS for E[T 2] in a
single server queue with and without setup delays. Here we
carry out a similar comparison for two parallel servers. Specif-
ically, we assume that job sizes obey Weibull distribution with
cv = 0, 1, 5, so that cv = 0 corresponds to fixed size, and with
cv = 1 one obtains the exponential distribution. For each case,
we have chosen a good reference policy, LWL for FCFS and
JSQ for LCFS, and the corresponding LH policy (based on
SITA for FCFS, and RND for LCFS). Our expectation, based
on the single server results of Section V, is that LCFS is better
than FCFS with heavy-tailed job sizes, and vice versa.

Figure 6 depicts the numerical results. We use E[T 2] with
FCFS and LWL as the reference and show the relative perfor-
mance with each set of parameters, E[T 2](x)/E[T 2](LWL,FCFS).
We see that a smart dispatching policy, LH based on SITA, with
FCFS, achieves the lowest E[T 2] in overall. This applies also
to the case with “heavy-tailed” job sizes, i.e., the dispatching
policy manages to mitigate the deficiency in the scheduling.

Finally, we note that the results with a setup delay are
similar; it does not change characteristics of FCFS or LCFS.

VII. CONCLUSIONS

We have considered general linearly increasing cost rates in
the context of parallel FCFS and LCFS servers. Dispatching
jobs under such cost structure turns out to be non-trivial, which

is not surprising as the problem is generally intractable even
for the mean sojourn time. Hence, we resort to FPI and LH
approaches. To this end, we first derived the value functions
for M/G/1-FCFS and -LCFS queues with respect to the general
cost structure, which includes both the mean sojourn time E[T ]
and the mean squared sojourn time E[T 2] as special cases. The
value functions enable the efficient cost-aware FPI and LH
dispatching policies, which we evaluated under different job
size distributions. We made several interesting observations.
First, under a very high load and LCFS, a better performance
was obtained if LH policy seeked to minimize the mean
sojourn time instead of its square. Second, parallel servers with
LCFS seem to suffer more from unfairness than in a single
server system, and FCFS combined with LH dispatching policy
achieves constantly very high performance in terms of T 2 even
when the job sizes varied a lot (a regime considered favorable
for LCFS). In contrast, for the mean sojourn time, LCFS is
manageable and can be significantly better than FCFS system
[5]. This suggests that FCFS enables fairness and the task of
the dispatching policy is to deal with the varying job sizes.
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