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Abstract— The traffic matrix estimation based on the the end-to-end traffic demands between the different
measurements at the certain points of a fixed network locations or parts of the network. The possible applica-
poses an interesting problem, which has also been studiedtions for this problem include both civilian and military
extensively in the literature. In this paper, we consider a gnplications. For example, in military radio reconnais-
similar problem in the setting of dense multihop wireless oo one important task is to obtain the information on

network. In particular, we assume a large number of nodes how the enemv unit mmunicate. The n rv dat
with multihop routes using the shortest path routing, so 0 € enemy units co unicate. The necessary daa

that the routes can be modelled as straight line segments.for the analysis can be collected by a sensor network
Furthermore, we assume that we are able to measure the deployed, e.g., by an airplane flying over the enemy
number of transmissions occurring in the different parts territory. Similarly, in a multihop mesh network or in a
of the network during the measurement periods. In this sensor network, the knowledge of the end-to-end traffic
setting we study the problem of inferring the end-to-end demands may be useful, e.g., for the load balancing or
traffic demands (traffic matrix) based on the available npetwork design purposes.

mformatlor_]._ As this _mforr_natlon is not_ sufficient we make In this paper we will present a framework based on the
some additional Poissonian assumptions on the nature OfStOChaStiC geometry for inferring the end-to-end traffic

the traffic in order to have a well-defined problem with a d ds i I le MWN f the inf i
unique solution. Analysing the problem in the framework emands in a large scale rom the information

of stochastic geometry, we are able to give an exact solutionO" the transmission activities in the different parts of

for the formulated traffic matrix estimation problem. The  the network. The taken continuum approach is a valid
methodology is further illustrated by numerical examples. assumption for a dense MWN. For sparse MWNS, with

Index Terms—traffic matrix, dense wireless multihop net- a smaller number of nodes, the presented approach still
work, sensor networks, Poisson point process provides a viable approximation for studying end-to-end
traffic demands.
The rest of the paper is organized as follows. In
. INTRODUCTION Section Il we describe the assumptions made on the
The knowledge on the traffic matrix is valuable inwireless network and the means how the measurements
formation for the IP network operators as it is thare conducted. In Section Il the mathematical frame-
prime input parameter for making decisions both on tiveork is presented together with the necessary results.
network design and also on how the current netwoffection IV contains the formal problem formulation
should be operated. The topic has been studied extand the exact solution to it. The framework is further
sively since the publication [1] by Vardi where the ternilustrated by numerical examples in Section V, and
“network tomography” is used to describe the problei@ection VI concludes the paper.
of inferring the information on the end-to-end traffic

demands based on the partial information. For details on Il. MODEL
different approaches and problem formulations we referWe consider a dense multihop wireless network
to [2], [3], [4]- (MWN), where, the nodes can be assumed to exist “ev-

The same fundamental question can be presented aspvhere” and the transmission range is several orders of
for multihop wireless networks (MWN), i.e., based omagnitude smaller than a typical distance between two
the “link activity” measurements what can we infer ogiven nodes. At this limit the route taken by a packet can

. for Quantifiable Quality of S c be modelled as a continuous path from the source to the
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A. Measurements I1l. M ATHEMATICAL FRAMEWORK

In a fixed network one typically can measure the Next we will give some mathematical definitions and
link loads (or link packet counts), i.e., we know theesults which allow us the model and analyse the traffic
point-to-point traffic volumes between the neighbourinfows in MWN. In the limit of dense (wireless) network
nodes (considering the nodes as neighbours if theke traffic matrix and traffic load can be expressed using
is a link between them). However, the situation witBontinuous functions. Thus, it is natural the define the
traffic measurements in a wireless multihop network igaffic matrix as follows:
quite different from the traditional fixed networks. In a
wireless environment one uses broadcast transmissi@finition 1 (traffic matrix) The traffic matrix, de-
and it is not possible to identify the receiver (or evenoted by\(r;,r2) defines the rate at which packets are
the transmitter in our case). Consequently, the directigenerated from a small area dfA aroundr; to a small
of the traffic must be inferred by indirect means. area ofdA aroundrs.

We assume that the measurement data is based on_the _ _ .
observations of the transmission events in different paEEe total packet generation rate in the network is simply,
of the network. The actual content of the packets and, in 2 2
particular, their source and destination are not known to A= //)\(rl’m)d re d'r, 3)
us. For example, the packets may have been encrypted. A A
And, as mentioned already, we are not able to identify théhere A corresponds to the area (in plane) where the
local direction of the packet, i.e., at each (measuremengtwork is located. As a part of our earlier work, in [7],
point we only know the number of packet transmissio§], we have formulated the spatial traffic load in this
that occurred during the measurement time interval §etting as follows:
the given neighbourhood. This information allows as to
estimate the local traffic load in the measurement poinfgéfinition 2 (traffic load in dense multihop network)

By traffic load we mean, roughly speaking, the ratéraffic load, denoted b}b(r), is the scalar packet flux.
of transmissions occurring in the neighbourhood of the

: de. We will ai ¢ | definition for th A computational formula for the (scalar) packet flux
given node. We will give a more formal detintion 1or i€, -, gonge MWN is given in [7] and [8], and here we

traffic load Ie_lter_ in Section Ill. Finally, we assume thal!')ri fly restate the definitions and the relevant results for
the retransmissions are so rare that they can be neglec(g &’purposes

or that we can identify them somehow and count eaChLeta(r, $) denote the distance fromto the boundary

packet only once (in the corresponding neighbourhoo%)f. A in direction ¢. The angular packet fluxdenoted

The actual measurement data is as follows. het .

. : o(r, @), corresponds to the the rate at which packets
denote the number of measurement points (or dewced%/?ive from a differential angle intervéb, ¢-+dg) across
deployed in the given area. Using thesedevices we 9 X

a perpendicular differential line segmentradlivided by

have conducteds” independent measurements, where g:fe differential anglel¢ and the length of the differential
|

each measurement point we have counted the numper T A
S . ) e segmentls. This is illustrated in Fig. 1. Thus, the
of transmissions that occured in the neighbourhood o .
. . s angular flux corresponds to the packet flux per unit angle,
the given measurement point (for simplicity we assume

that each packet is counted only once). Hence, oﬁ’fr unit dlstance_, ar_ld per unit time. As explained in [7]
the angular flux is given by

sample set consists df - n values each representing

the transmission activity in the neighbourhood of a given a2

node during a certain time intervalt. Let vectorsm®) o(r,¢) = A(ry, r) - (t1 4+ t2) dba dt1 (4)
denote the number of packets observedrirdifferent 00

measurement points during theh time interval,k = | 1are rio= £+t - (cosd, sing), r2 = r + ty -

1,... K. Then, the mean number of packets observed (igos(

+ ), sin(¢ + 7)), anda; = a(r,¢) anday =
different points is given by ¢+ m), sin(g + ) ! alr, ¢) 2

a(r,¢ + ) correspond to the distance to the boundary

. 1 & ) from r in the directionsp + 7 and ¢, respectively (see

m=1 Z m=, (1) Fig. 1). Consequently, thecalar packet fluxis obtained
k=1

_ _ o by taking an integral of (4) over all the possible angles,
and the corresponding covariance matrix is given by,

27 aj; as

I ) ) _ .
= = ;(m(’ﬂ) — 1) (m® —m)T. ) O(r) = ///)\(rl, ro) - (t1 + t2) dto dt; do. (5)



source area

Fig. 1: The angular flux is the rate at which packets Fig. 2: The rate of packets originating behind the
originating from the shaded area cross the differential disk at ro and travelling through the disk at r; can
perpendicular line segment at r divided by the be related to the concept of angular flux.
differential angle d¢ and the length of the differential
line segmentds.

is given by

For details we refer to [7], [8]. We note that the concept o e

of packet flux is similar to fluxes encountered in physics / Alry, r2) - (G +t2) dta diy.
(see, e.g., [9]). For example, we have 0 t

®(r) = n(r) - v(r), (6) Multiplying the above by2d - 2d/t gives us the rate of
. . . packets observed first by the noderatand then later by
wheren(r) is the packet density (per unit area) an) the node at,. By considering the traffic flows from the

a constant (local) veloc_lty at poimt M(_)reover, for small both directionsg ande -+, (note that (4) is symmetric)
values ofd we can estimate the arrival rate of packetosne obtains that the rate of packets goina throuah both
into ar-centric disk with radiusi by P going 9

ai; asz

observation areas is given by
q(r,d) = 2d - (r), ()
4d

2
which justifies the use of the packet flux as the measure— //s(rl—tlu, rottou) - (t + t1 + to) dte ditq,
of the traffic load in a dense MWN. t 00

A. Common traffic wheres(ry,r2) is thebidirectional packet rate density,

Next we will derive an expression for determining the  s(ry,rs) = s(ra,r1) = A(r1,r2) + A(r2,r1),  (8)
rate of packets, which are seen by two different nodes _
with reception ranges equal th To this end, consider 21d IS a unit vector fromr; towards tors,
two small non-overlapping disks with radidsat points a2
r, andr, corresponding to the observation areas. The |ro —ry|

situation is illustrated in Fig. 2. With a slight abuse of notation, Idi(r;, ry) denote the

The common traffic, corresponding to the packets tra<Y(')mmon packet flux (per unit distance to power of two)

elling through both disks, can be obtained by ConSideri%velling through botfr; andr,, for which we have
the angular packet flux. Let denote the direction af ! 2

fromry, a; = a(ry, ¢+ ) andas = a(rz, ¢). Note that ~ ®(ry,r2) =

here the role ofi; has changed a bit, i.e1y corresponds a as ©)

to the distance to the boundary frora (not fromry). 1

Consider next the packets which travel first through the ¢ //S(rl_tlu’ rattau) - (f+ti+tp) dis dty,

disk atr,, and then later through the disk at. The 00

height of the perpendicular “target area” st is 24 This relation turns out to be especially useful in the
(cf. ds in Fig. 1). Similarly, the differential anglelp context of the traffic matrix estimation, as, together with
from which the packets behind the diskratmay arrive some additional assumptions, it allows us to differentiate
is equal to2d/t. Moreover, from (4) we can identify between the different traffic flows. For a constant packet
that the fraction of the angular flux originating from aate densitys(ry,r2) = s, (9) reduces into

distance further than,
ai +ag
O(ry,ry) = s+ aja <1+ 57 >

t= |I'1 — I'2|,



Additionally, note that withs(ry,rs) the expression for A(rq,rs2). In other words, letX (rq,ry;¢1,t2) denote the
the packet flux, (5), can be written as number of packets sent from the differential aréad
T ar as aroundr; to the differential arealA aroundr, during
_ ) a time interval of(¢q,t2). Then, we assume thaf; =

() ///S(rl’ r2) - (1 +82) diz dty dg. (10) X (r1,12;t1,t2) and Xy = X (v}, 1h; t),t,) obey Poisson
0 00 distributions with parameters(ry,rs) - dA% - (to — t1)

IV. PROBLEM FORMULATION and \(ry, 1) - dA® - (t; — t}), respectively. Moreover,

. ’ ) et
In [7] we have studied the resulting traffic load ifll F1 # 1y OF ry # 13 or the time intervald(ty, 2) and

/ / H
a dense MWN when the end-to-end traffic demands a<rtéi_t2) do not overlap, therk;, and X, are independent.
. ._The key property we will utilize is the independence.
known and the shortest paths are used. In [8] this workis . .
o . Let {X;} be a set of independent random variables,
taken further by considering the load balancing problem
, i . and A = > ., X;,and B = .., X;. Then the
by using curvilinear paths instead of the shortest paths.” . i€14 N i€l .
) . : covariance&Cov [A, B] is simply the sum of the variances
In this paper we address the inverse problem, i.e., We e common terms
try to determine the end-to-end traffic demands based ’
on the knowledge on the traffic load in different parts Cov[A, Bl= >  VI[X,.
of the network. In order to keep the problem tractable i€laNIp
we assume that the shortest paths, corresponding to I Poisson random variablé; ~ Poisson()\;) we have
segments, are used, and that the reception range of INeX;] =V [X;] =);, and consequently
nodes is constant (or known which allows the scaling Cov[A, B] = Z A

the measured packet rates to equivalent rates). We are =
1cla B

interested in finding\(r1, r2) in (5) for a given packet _ _

flux ®(r), for which we have the obvious estimate, Note that the assumptlon_s on the nature of the traffic are
R essentially the same as in [1] for the fixed networks.
O(r) =m(r)/(2d - At).

B. Traffic matrix estimation problem

As we have no means to differentiate between the _
packets travelling fronr; to ro and packets travelling or our model of MWN, (5) gives the mean packet rate
seen atr, and (9) the mean rate of the common traffic

the opposite direction, from, to r;, we have to settle us ) X
with estimating the rate of bidirectional traffie(r;,r,), SE€N at two different locations andr,. Consequently,

given by (8) instead of the actual traffic matbixr;, rz). E[m(r)] = 2d - (r) - At,

It is easy to conv_inge oneself_that, without making E [m(r1,12)] = 4d2 - ®(r1,12) - At.
any additional a priori assumptions, the problem of _
determining the (bidirectional) traffic matrix based of\ote that the above relations depend only on the (mean)
the knowledge of the spatial packet flux is strongl§nd-to-end traffic demands(r,, ry). Moreover, as we
underdetermined and the solution is not unique. Firstff€ Not able identify the packets, we cannot measure the
the measurements are essentially a function figito  common trafficm(ry, rs) directly. On the other hand,
R, while the quantity we are interested in is a functiolith the Poissonian assumption for the traffic we have
from R? x R? to R. Secondly, any path carrying a certain m(r) ~ Poisson(2d - ®(r) - At),
am'ount of information can be spllt'mtq several part_s m(r1,rs) ~ Poisson(4d? - ®(ry, rs) - At).
which together have the same contribution to the traffic _
load distribution. Thus, we have to make additiondfloreover, the covariance between the packet counts

assumptions in order to have a well-defined problem wifR€asured at two different locations, andr,, is equal
a unigue solution. to the expected mean number of common packets, i.e.,

Cov [m(ry), m(rz)] = 4d® - ®(ry,re) - At.  (11)

A. Poisson point process By performing enough measurements we can, in theory,
In particular, let us assume that during the observastimate bothb(r) and ®(r;,r2). Thus, we can formu-
tion period the number of packets (or bits) transmittdete the traffic matrix estimation problem as follows:
between two locations obeys Poisson distribution with
some parameter and that the different traffic flows aRefinition 3 (traffic matrix estimation problem)
independent. More precisely, we assume that the packétd such end-to-end traffic demandg¢r;,ro) for a
arrival process corresponds to a non-uniform Poisséiyen scalar packet flux@(r) and a common packet
point process inR2 x R2 with unknown intensities flux, ®(r1,r2), that satisfy bott(10) and (9).



C. Solution 7 8 9

Consider an arbitrary line segmefit = /(rq,r2)
cutting the aread from boundary to boundary on which
pointsr; € A andry € A reside. LetL denote the O O O
length of the line segmert andr; andr, denote the
distance from the arbitrarily chosen end poin¥db the 1(/
pointsr; andry, respectively. Without loss of generality
we can assume that< r; < ry < L, and (9) becomes

2 3

O O

Fig. 3: Example: 3 x 3-measurement grid andd=0.1.

T1 L
z(r1,r2) = //S(tl,tz) (ty —t1) dta dt1,  (12)
0 7o

the linear interpolation weights;(r). Then (14) can be

where written in matrix form,
z(r1, o) = (ro —r1) - ®(r1,7r2). ) 1 .
Taking the partial derivate of (12) in respect to beth (ry,r2) = 4d? At ar:) Xa(ry) (19)
andr, yields Combining (13) with (14) (or (15)) allows us to deter-
1 52 mine the end-to-end traffic demand densitieg;;, r2),
s(ri,ro) = — 2(r1,72), (13) between any two given locations andr;. Note that

r2 =11 9rior even though (13) is an exact result, there are two sources

which is an explicit formula for computing the endin the proposed approximation contributing to the overall

to-end traffic demand densities(r;,r2), for a given error: 1) the finite number of: measurement points

®(ry,72) (the measurement data). causing inaccuracy in the areas between the measure
points, and 2) the finite number df measurements

D. Finite number of measurements causing inaccuracy in the estimate for the covariance (2).

Assume next that instead of having unrealistically V. NUMERICAL EXAMPLES

distributed the measurement devices everywhere, Werhe numerical examples assume a regutarm-grid
have only deployed a finite set afdevices, as illustrated depicted in Fig. 3 with a measurement node located

in Fig. 3. The assumption of a dense MWN implies théﬁ’i the middle of each cell. Thus, there are in total
the distance between any two measurement devices is_ 2 aasurement points and, consequentiy’

large when compared to the Igngth of a typical hop. cross-covariances between the measurement points. For
Let ther; denote the locations of the measuremegfy,yjicity. and due to the lack of space, we will only

devices in4, and random variables,; the corresponding briefly describe two simple examples with3a< 3 grid.

measured packet counts during a time interval\ef A

straightforward approach is to use the linear interpoﬂaticA_ Uniform traffic demands

to estimate the packet counis(r) outside the measure-

ment points{r; }. Then, for eachr € A we have The first example is with the uniform end-to-end traffic

demands. The nodes are enumerated as illustrated in
_ (T - s Fig. 3 and the area is alsdx 3. The reception range

m(r) _ZQZ(F) i, is assumed to bel = 0.1. The traffic rate density

is a constant\(r;,r2) = 1, the measurement time

where the sum of the interpolation constant$r) is interval At = 1 and the number of samples § =

equal tol. The covariance is linear and we obtain 100000. With these, the (normalized) theoretical cross-

covariances corresponding to the amount of common
Cov [m(ry), m(re)] = Zai(rl) aj(ra) Cov [m;, m;], traffic between the number of observed packets in node

i

i 1 and nodei, ¢ =,2,...,9 are
and consequently, (1.50, 0.31, 1.50, 3.00, 0.39, 0.31, 0.39, 0.63),
R 1 while the numerical simulation gives,
<I>(r1,r2) = m Zai(rl)aj(rg) Cov [mi, mj] . (14) g
i (157, 0.38, 1.44, 247, 0.54, 0.44, 059, 0.60).

Let X denote the covariance matrix withov [m;, m;]  The resemblance is obvious even though the scenario is
as its elements, and(r) the row vector consisting of rather far from the assumptions of the model.



B. Mesh network with gateway nodes different locations of the network. For this we were able

Mesh networks are a special case of the genef@|give an explicit resuit. -
problem. The mesh network consists of one (or few) 1Ne exact result relies on the capability to measure
gateway nodes which are connected to the backbcf%@ scalar packet flux in all pointse A, which is a
network (e.g., Internet). All the traffic in the network@ther unrealistic assumption. Instead, in a more realisti
can be assumed to be between the nodes and the g8gnario a finite number of measurement devices have
way(s), i.e., at each point of the network (except at t¢€n deployed in the area of interest. By using linear
gateways) the packets are traversing either to or from tHerpolation between the measurement points we were

nearest gateway. This is in strike contrast to the previoggle t0 give an explicit expression for the end-to-end
example, where no node has a special role. traffic demands also in this case. The finite number of

In this case, it should be rather easy to identify tH@€asurement points and samples implies inaccuracy to
locations of the gateways as they correspond to tH¥ estimate, which is a topic of future research.
local maximums of the traffic load (i.e., the packet flux). The approach taken in this paper shares the similar
Moreover, when moving radially away from the g<,jlte\,va§oissonian assumptions on the _ngture of traffic as.the
and considering the rate at which traffic load decread®§thodology developed by Vardi in [1] for the traffic

one can determine the rate of packets between the curf@@{rix estimation in fixed networks. Since then several
position and the gateway. other approaches have been proposed in the context of

In the example we have located the gateway nodefixed networks. The future research includes studying

the middle with the measurement poinfThe theoretical the applicability of such approaches for the traffic matrix
(normalized) covariances between nadand node are estimation problem in wireless multihop networks.
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