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Abstract

With standard assumptions the routing and wavelength
assignment problem (RWA) can be viewed as a Markov De-
cision Process (MDP). The problem, however, defies an ex-
act solution because of the huge size of the state space. Only
heuristic algorithms have been presented up till now. In this
paper we propose an approach where, starting from a given
heuristic algorithm, one obtains a better algorithm by the
first policy iteration. In order to estimate the relative costs
of states, we make a simulation on the fly studying, at each
decision epoch, the consequences of all the alternatives ac-
tions. Being computationally intensive, this method can be
used in real time only for systems with slow dynamics. Off-
line it can be used to assess how close the heuristic algo-
rithms come to the optimal policy. Numerical examples are
given about the policy improvement.

1. Introduction

The wavelength division multiplexing (WDM) is a
promising technology for future all-optical networks. In
WDM several optical signals using different wavelengths
share same fibre. The capacity of such fibre links can
be huge, even terabits per second. The routing in net-
work nodes is based on wavelengths of incoming signals
[1][2][3]. Generally, the routing and wavelength assign-
ment (RWA) problem in WDM networks consists of choos-
ing a route and a wavelength for each connection so that no
two connection using the same wavelength share the same
fibre [4][5].

When the traffic is not static, lightpath requests arrive
randomly following some traffic pattern. Connection re-
quests between a given source destination pair constitute
a traffic class, which we index byk, k ∈ K, whereK is
the set of all source destination pairs. The RWA algorithm
configures the lightpaths in the network unless there is no
enough resources available and the request is blocked (see

e.g. [6][7][8]). Here we also assume that reconfiguration of
the lightpaths is not possible.

Several heuristic algorithms have been proposed and
studied (see e.g. [6][7][8]). In this paper we study this prob-
lem in the setting of Markov Decision Processes (MDP) and
propose a new approach, where we try to improve any given
heuristic algorithm by the first policy iteration [9][10]. The
policy iteration, indeed, is known to lead to a new policy
with better performance. In order to avoid dealing with
huge size of the state space in calculating the relative state
costs needed in the policy improvement step, we suggest to
estimate these costs on the fly by simulations for the limited
set of states that are relevant at any given decision epoch,
i.e. when the route and wavelength assignment for an arriv-
ing call has to be made.

The rest of the paper is organized as follows. In section
2 we briefly review Markov Decision Processes and policy
iteration in general, and the first policy iteration, in particu-
lar. In section 3, we consider the relative costs of states and
how they are used in the policy iteration, and in the follow-
ing section 4 we study how theses state costs can be esti-
mated by simulations. Different heuristic RWA algorithms
are presented in section 5. These are used as a starting point
for policy iteration, and, in section 6 some numerical re-
sults obtained by simulations are presented. Finally, section
7 contains conclusions.

2. Policy Iteration

Routing and wavelength allocation constitute a typical
decision making problem. When certain events occur, one
has to decide on some action. In the RWA problem, in par-
ticular, upon arrival of a request for a new connection one
has to decide whether or not to accept the request, and if ac-
cepted which resources to allocate for it, i.e. which of avail-
able routes and wavelengths are used for that connection. In
general, one is interested in the optimal policy which max-
imizes or minimizes the expectation (infinite time horizon)
of a given objective function. Here we assume that the ob-



jective is defined in terms of minimizing some cost func-
tion. The cost may represent e.g. the loss of revenue due to
blocked calls, where different revenue may be associated to
each type of call.

When the arrival process of typek calls is a Poisson pro-
cess with intensityλk, the holding times of those calls are
distributed exponentially with mean1/µk and the expected
revenue per carried call iswk, then the system constitutes
a Markov Process and the problem of determining the op-
timal policy belongs to the class of Markov Decision Pro-
cesses (MDP) described e.g. in [9] and [10]. Three main
approaches for solving the optimal policy in the MDP set-
ting are the policy iteration, value iteration and linear pro-
gramming approach. In this paper, we concentrate on the
iteration in the policy space, where, as the name says, one
tries to find the optimal policy by starting from some policy
and iteratively improving it. This policy iteration is known
to converge rather quickly to the optimal policy.

At each decision epoch, i.e. arrival of a new request,
there is a finite set of possible actions: either reject the call
or accept it and assign a feasible combination of route and
wavelength (RW) to it. Apolicy defines for each possi-
ble state of the system and for each classk of an arriving
call which of the possible actions is taken. Many heuris-
tic policies have been proposed in the literature such as
the first-fit wavelength and most-used wavelength policies
combined with shortest path routing or near shortest path
routing. Some of them work reasonably well. Common to
all heuristic policies is that they are simple. The choice of
the action to be taken at each decision epoch can usually be
described in simple terms and does not require much com-
putation. We take one of the heuristic policies as a starting
point and call it thestandard policy. The policy resulting
from the first policy iteration we refer to as theiteration
policy.

By doing the first policy iteration we have two goals in
mind, 1) finding a better RWA algorithm which, being com-
putationally intensive, may or may not be calculable in real
time, depending on the time scale of the dynamics of the
system, 2) even in the case the algorithm is not calculable
in real time, estimating how far the performance of a heuris-
tic algorithm is from the optimal one.

Briefly, as explained in more detail below, our idea in
the policy iteration is the following: at each decision epoch
we make a decision analysis of all the alternative actions.
For each of the possible actions, i.e. decision alternatives,
we estimate the future costs by simulation. Thus, assuming
that a given action is taken we let the system proceed from
the state where it is after that action and use the standard
policy to make all the subsequent decisions. The iteration
policy is the policy which is obtained when at each decision
epoch the action is chosen for which the estimated cost is
the minimum. It can be shown that the iteration policy is

always better or at least as good a policy as the standard
policy, it often comes rather close to the optimal policy.

3. Relative costs of states

In the MDP theory, the first policy iteration consists of
the following steps: With the standard policy one solves the
Howard equations (see, e.g. [9][10]) to give the so called
relative costs of the states,Ci, which for each possible state
i of the system describe the difference in the expected cu-
mulative cost from time0 to infinity, given that the system
starts from statei rather than from the equilibrium. Then,
given that the current state of the system isj and a class-k
call is offered, one calculates the costCj+wk for the action
that the call is rejected, and the costCi, i ∈ A(j, k), for the
case the call is accepted, whereA(j, k) is the set of states
reachable from statej by assigning classk call a feasible
RW pair. By choosing always the action which minimizes
the cost, one gets the iteration policy, i.e. the policy result-
ing from the first policy iteration.

Though the Howard equations are just a set of linear
equations for relative costsCi and the average cost ratec
of the standard policy (see below), their solution cannot be
obtained because of the prohibitive size of the state space
for any realistic system. However, at any decision epoch
the relative costsCi are needed only for the current state
j and a small set of statesA(j, k) reachable from the cur-
rent state. We propose to estimate these values on the fly by
means of simulations. To this end, it is useful to consider
the physical interpretation of the relative costsCi.

Given that the system starts from statei at time0 and
standard policy is applied for all decisions, the cumulative
costs are accrued at the expected ratect(i) at timet,

ct(i) =
∑

λkwkP{It ∈ Bk|I0 = i}, (1)

i.e. the expected rate of lost revenue, whereP{It ∈ Bk}
is the probability that at timet the state of the systemIt is
a blocking state for class-k calls. WhenIt ∈ Bk class-k
calls arriving at timet are blocked by the standard policy
because either no feasible RW pair exists or the policy oth-
erwise deems the blocking to be advantageous in the long
run. The expected cost ratect(i) depends on the initial state
i. However, no matter what the initial state is, ast tends to
infinity, the expected cost rate tends to a constantc, which is
specific to the standard policy, and corresponds to (1) with
steady state blocking probabilitiesP{It ∈ Bk}.

A typical behavior of the functionct(i) is depicted in
Figure 1 for two different initial valuesi1 andi2. The rela-
tive costsCi is defined as the integral

Ci =
∫ ∞

0

(ct(i)− c) dt,
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Figure 1. Expected costs with different initial choices
as a function of time.

i.e. the area between the curvect(i) and the line at levelc.
So we are interested in the transient behavior ofct(i); after
the transient no contribution comes to integral. The length
of the transient is of the order of1/µ, where1/µ is the
average holding time of a connection. After that the system
essentially forgets the information about the initial state. So
we can restrict ourselves to an appropriately chosen finite
interval(0, T ). The actual choice ofT is a tradeoff between
different considerations as will be discussed later.

One easily sees that in the policy improvement step only
the differences of the valuesCi between different states are
important. Therefore, we can neglect thec in the integral,
as it is common to all states, and end up for thus redefined
Ci,

Ci ≈ Ci(T ) =
∫ T

0

ct(i) dt, (2)

which is simply the expected cumulative cost in interval
(0, T ) starting from initial statei.

4. Estimation of the state costs by simulation

In practice, it is not feasible to calculate the cost rate
function ct(i) analytically even for the simplest policies.
Therefore, we estimate the state costsCi by simulations.
In each simulation the system is initially set in statei and
then the evolution of the system is followed for the period
of lengthT , making all the RWA decisions according to the
standard policy.

4.1. Statistics collection: blocking time vs. blocking
events

In collecting the statistics one has two alternatives. Ei-
ther one records the time intervals when the system is in a
blocking state of class-k calls, for allk ∈ K. If the cumu-
lative time within interval(0, T ) when the system is in the
blocking state of class-k calls is denoted byτk(i), then the

integral is simply

Ĉi =
∑

λkwkτk(i). (3)

Alternatively, one records the numberνk(i) of blocked calls
of typek in interval(0, T ). Then we have

Ĉi =
∑

wkνk(i). (4)

In these equations we have written explicitlyτk(i) andνk(i)
in order to emphasize that the system starts from the statei.
Both (3) and (4) give an unbiased estimate forCi. In either
case, the simulation has to be repeated a number of times
in order to get an estimator with small enough confidence
interval.

Denote the estimates of future costs obtained in thejth
simulation run byĈ(j)

i , using (3) or (4) as the case may be.
Then our final estimator forCi is

Ĉi =
1
N

N∑
j=1

Ĉ
(j)
i , (5)

whereN is the number of simulation runs. In fact, for the
policy improvement the interesting quantity is the differ-
enceEi1,i2 = Ci2 − Ci1 , for which we have the obvious
estimate

Êi1,i2 = Ĉi2 − Ĉi1 . (6)

From the sampleŝC(j)
i1

and Ĉ(j)
i2

, j = 1, . . . , N , we can
also derive an estimate for the varianceσ̂2

i1,i2
of the estima-

tor Êi1,i2

σ̂2
i1,i2

=
Ŝ2
i1,i2
−(Êi1,i2)2

N−1 ,

whereŜ2
i1,i2 = 1

N

∑
j

(
Ĉ

(j)
i2
− Ĉ(j)

i1

)2

.

The choice between the alternative statistics collection
methods is based on technical considerations. Though es-
timator (3) (blocking time) has a lower variance per one
simulation run, it requires much more bookkeeping and the
variance obtained with a given amount of computational ef-
fort may be lower for estimator (4) (blocking events).

4.2. Policy iteration with uncertain state costs

In order to deal with uncertainty of the estimatorsĈi, we
do not blindly accept the action with the smallest estimated
cost, but give a special status for the decision which would
be chosen by the standard policy. Let us give this policy the
index0. Based on the simulations we form estimatesÊ0,i

for each possible actioni. Then, as the decision we choose
the action which minimizes the quantity

Ê0,i + k · σ̂0,i, (7)
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Figure 2. Hypothetical WDM-network in Finland.

wherek is an adjustable parameter. Note that fori = 0 this
quantity is equal to0. Thus, in order for another actioni
to replace the action0 of the standard policy, we must have
Ê0,i < −k · σ̂0,i, i.e. we require a certain minimum level
of confidence for the hypothesisCi < C0. An appropriate
value fork has to be determined experimentally.

The important parameters of the simulation now are the
length of the simulation periodT and the number of simu-
lation runsN used for the estimation of eachCi. In prac-
tice, we are interested in the smallest possible values ofT
andN in order to minimize the simulation time. However,
makingT andN too small increases the simulation noise,
i.e. the error in the estimates forCi, occasionally leading
to decisions that differ from that of the true iteration policy,
consequently degrading the performance of the resulting al-
gorithm.

5. Heuristic Algorithms

Several quick heuristic algorithms have been proposed
in the literature. Here we briefly present some of them and
study how iteration approach works with them. The first set
of algorithms assumes that a fixed set of possible routes for
each connection is given in advance. Some papers refer to
this as alternate routing. In practice this set usually consists
shortest or nearly shortest path of routes. Each algorithm
accepts the first feasible RW pair found (first-fit).

• basicalgorithm goes through all the routes in a fixed
order and for each route tries all the wavelengths in a
fixed order.
• porder algorithm is similar tobasic-algorithm but it

goes through all the wavelengths in a fixed order and
for each wavelength tries all the routes in a fixed order.

• pcolor algorithm works likeporder but wavelengths
are gone through in order of the usage instead of a fixed
order, so that the most used wavelength is tried first.
• lpcolor algorithm also tries to pack colors, but the pri-

mary target is to minimize the number of used links.
So the algorithm first tries the most used wavelength
with all the shortest routes, then the next often used
wavelength and so on. If no wavelength works, the
set of routes is expanded to include routes having one
link more and wavelengths are tried again in the same
order.
• ll or least loaded algorithm (see [6] is similar topcolor

but here the chosen RW pair is the one which leaves
most capacity free after the assignment, i.e. the mini-
mal number of free wavelengths over the links used is
maximized.

The adaptive unconstrained routing (AUR) algorithms (see
eg. [7]) search for a free route dynamically based on the
current state of the network.

• aurpackis similar topcolor, but without the limitations
of a fixed set of routes.
• aurexhaustivefinds a route with each wavelength (if

possible) and chooses the shortest among them, i.e. it
is identical tolpcolor except that the set of possible
routes is not limited.

Also other heuristics are given in [7] likerandom (tries
wavelengths in random order) orspread(tries least used
wavelength first), but they were reported to work worse than
the ones described above, and are not further discussed here.

6. Simulation results

Next we will present some numerical results from sim-
ulations. All tests were run for the small network shown
in figure 2. The network was assumed to have 8 wave-
lengths available on each link. All the links contained one
fibre. The offered load was uniform among all traffic classes
(node pairs) and each rejected call represents an equal cost,
wk = 1 for all k ∈ K. These assumptions simplify formu-
las (3) and (4). Note that the assumptionwk = 1 for all
k means that the the objective is to minimize the long term
blocking rate, i.e. the blocking probability.

It should also be noted that the results for the iteration
policy were obtained by two levels of nested simulations. In
order to assess the performance of the policy, an outer sim-
ulation is run, where connections arrive and leave the net-
work and blocking times or events are recorded. Upon each
arrival, a number of inner simulations are launched from the
current state in order to make a comparison between differ-
ent decision alternatives. Based on this comparison one al-
ternative is chosen and used in the outer simulation, which
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Figure 3. The effect of extending simulation period in
the state cost estimation on the blocking probability
of the iteration algorithm. The routing parameters are
∆l= 0 and rmax= 4, and basic is used as the stan-
dard policy. Load is a = 0:4 for each traffic class.

then continues until upon the next arrival the decision anal-
ysis by the inner simulations is again started.

6.1. Routing algorithm parameters

All non-aur algorithms assume that a predefined set of
possible routes per traffic class is given. This raises the
question, which set of routes is optimal? Clearly too small
a set of routes limits how well any algorithm can perform.
But also it is not advantageous to use very long routes ei-
ther. Here, the set of routes is specified with two param-
eters∆l andrmax. Parameter∆l defines how many links
longer routes than the shortest one are included in set of
routes. The second parameterrmax limits the total num-
ber of routes, i.e. only thermaxfirst routes are included in
set. For example, with∆l=0 andrmax=10 only the shortest
routes are included, and if there are more than10 shortest
routes for some node pair only the first 10 found are in-
cluded.

6.2. Effect of simulation noise

After the transient period the cost ratect(i) is very near
to the long time averagec of the standard policy. Simulat-
ing past it thus gives no new information, but actually only
increases the noise resulting from the stochastic nature of
the simulation. This can be seen from figure 3 where results
clearly get worse as the simulation period grows (diagrams
from left to right) while the number of simulation runs is
kept the same.

The figure presents blocking probability obtained with
the first policy iteration in the network with a moderate load
of a = 0.4 for each traffic class. On thex-axis of each di-
agram is the number of simulation runsN , i.e. samples of
future costs of a given initial decision. The results in the
figure were obtained using estimator (3) in the estimation
of the state costs. The conclusion is that the longer the sim-
ulation period is, the smaller is the ‘signal to noise ratio’ and
the more simulation runs are needed to ‘recover the signal’.
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Figure 4. Results with quick heuristic algorithms and
the first policy iteration. The routing parameters are:
∆l = 1 and rmax = 4. Each of the three groups
of bars, basic, pcolor, lpcolor, contain results ob-
tained with standard policy and iteration policy with
N = 50; 100 and 200. The last group of bars gives
the results for spread, porder, ll and aurpack.

We cannot, however, make the simulation periodT arbitrar-
ily small, since if the whole transient period is not covered
the signal becomes biased.

6.3. Iteration algorithm

The simulations were run for the same test network as
was used before, i.e. the small network of figure 2. The net-
work was assumed to have 8 wavelengths on each link and
the offered load was uniform among all node pairs. Good
running parameters for the inner simulations for this sys-
tem were estimated from figure 3. Based on this we chose
the simulation periodT = 0.25 · 1/µ andN = 50 . . .200
simulation runs for each alternative action.

Simulations were run with the quick heuristic algorithms
as well as with the iteration algorithm with different param-
eters. The resulting blocking probabilities are shown in fig-
ure 4. The upper part of the bars (light gray) represent two
times the standard deviation and the mean value is in the
middle of upper part. The routing parameters here were
∆l=1 andrmax=4 which clearly limit the set of routes. The
first group of bars represents the blocking probability with
basicalgorithm and iteration policy withN = 50, 100, 200
usingbasicas the standard policy. The second group is the
same but usingpcolor instead ofbasic, and similarly in the
third figure thelpcolor is used. The fourth group is obtained
with quick heuristicsspread, porder, ll andaurpack.

The improvement obtained by the first policy iteration
starting with thebasic algorithm was quite large, about
30%, while withpcolorthe improvement is much less. Gen-
erally the results from iteration approach are always better
than any of the heuristics which used same set of possible
routes. Theaurpackuses dynamic routing with routes of
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Figure 5. Blocking probability with loads ranging from
a = 0:3 to a = 0:6. The set of routes were defined
with ∆l=1 and rmax=4. Algorithms are, from left to
right, basic, basic+iteration, pcolor, pcolor+iteration,
lpcolor, lpcolor+iteration, spread, porder, ll, aurpack
and aurexhaustive.

any length in the search space and is here only for compar-
ison.

In another set of simulations the iteration approach was
applied with different standard policies to get some idea
about how important the underlying algorithm is. In the four
diagrams of figure 5 the results can be seen with four dif-
ferent offered loads, with the blocking probability varying
from quite a low to a high value. The algorithms used were
(in order)basic, basic+iteration, pcolor, pcolor+iteration,
lpcolor, lpcolor+iteration, spread, porder, ll , aurpackand
aurexhaustive. In these simulations the routing parameters
were also the same∆l=1 andrmax=4. The number of sim-
ulations runs for each alternative actionN was chosen to be
200. Soaurpackandaurexhaustivehave again much larger
set of possible routes to choose from. It can be seen from
the figure that in each case the iteration algorithm indeed
gives slightly better results.

7. Conclusions

In this paper we have introduced the idea of applying the
first iteration in the policy space to the RWA problem. With
this method one can derive from any given heuristic policy
an iteration policy, which theoretically always is a better
policy, i.e. has lower average cost rate (e.g. blocking prob-
ability). The relative costs of states needed in the decision
analysis are estimated on the fly by launching simulations
from the current state of the system and trying different de-

cision alternatives. The simulations introduce some noise
in the cost estimates and careful control of the simulation
parameters is required in order not to deteriorate the perfor-
mance of the resulting iteration policy.

The performance improvement obtained by the policy
iteration depends on the standard policy one starts with.
The reduction of blocking probability in the numerical tests
ranged from a few tens of percents to almost nothing. This
suggests that algorithms likelpcolor, for which the im-
provement was small, is not far from optimal (with this par-
ticular network and setup). Also we can generally conclude
that the order in which RW pairs are tried in a first-fit al-
gorithm can be a very important factor for the performance.
As the method of first policy iteration obviously is computa-
tionally intensive, it can be used in real time only if the dy-
namics of the system is slow. The inter-arrival times of the
connection requests must be of the order of few seconds or
more (depending on the number of possible decisions), but
this may well be the case in WDM networks. However, the
method can always be used off-line e.g. to evaluate heuristic
algorithms to see how far they are from the optimum.
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