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Abstract

The congestion control algorithm used in Transmission f@brotocol (TCP) is a so-called additive
increase multiplicative decrease (AIMD) algorithm. Thgaithm and its performance have been studied
extensively in the literature. Today, several versionhefTCP exist, which behave slightly differently when
congestion occurs. However, for the analytical work it isenfnecessary to consider idealized models. One
such model based on fluid flow approach is proposed in [1], oiclwdve will also focus in this paper. In
particular, we study this simplified fluid flow approximatiand its generalization by numerical simulations
in order to evaluate relationships between different patans of the model and the resulting performance
guantities. Moreover, we also compare the model againstcamlaimplementation of TCP congestion
control mechanism. Additionally, we give some complemgngmalytical results for the model.
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I. INTRODUCTION

The additive increase multiplicative decrease (AIMD) redatrol scheme employed by the transmission
control protocol (TCP), has turned out to be very importamn tb the enormous success of Internet. In its
simplicity, an AIMD controlled source increases the segdiate linearly in time until a negative feedback
is received. In response to this, the source reduces itsregrate by multiplying the current rate with some
constant less than one. In an ideal situation the AIMD schisnwapable of sharing the given bandwidth
fairly among the competing flows [2]. The AIMD scheme has bsenlied actively, see, e.g., [3] and [4].

One particularly important aspect of bandwidth allocatiwatocols is the fairness, i.e., how the available
bandwidth is allocated between the flows sharing the sanmuress. For example, in TCP/IP networks
flows with higher round trip times (RTT) tend to get smalleasds. The most famous results on TCP are
on throughput analysis, e.g., the famous square root farulFloyd and Fall [5], and the more accurate
expression by Padhye et al. [6]. These results give the geehaoughput per flow as a function of the packet
loss probability and RTT. The common assumption in TCP thhput analysis has been the independence
between congestion periods, i.e., it is assumed that thieepémsses occur in fixed time intervals ([5], [6],
[7], [8]), or originate from a (non-uniform) Poisson prosg®]. A more general approach can be found
from [10], where the losses are generated by an arbitrargen@us random process.

In contrast to the above work, in [1] we have considered ameitgary model for the TCP rate control
mechanism, where the loss process is explicitly defined bystnding rates of all TCP sources. The aim
was to characterize the behavior of the concurrent TCP fldwbkeamicroscopic level, e.g., in order to
study the interactions between TCP traffic and other traffiwdl(e.g., real time voice or video streams). To
this end, we have studied a single bottleneck link and maderaksimplifying assumptions about the rate
control mechanism. Firstly, we consider a continuous (fflod/) model where the sending rates are some
non-negative real numbers. Secondly, the decision to semedative feedback is based on the current arrival
rate of the packets into the bottleneck link, not directlytbe occupancy level of the buffer (unfinished
work). This can be interpreted as a bufferless model foreodthirdly, we assume a constant delay before
sources react on the negative feedback signals (i.e., dacri’TT).

This model can be analyzed in the framework of Markov proggsk particular, considering the time
instances when the total sending rate achieves the capiacityyields an embedded Markov chain (MC),
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for which we were able to derive steady state distributionttie special case of two TCP flows. For more
than two flows we proposed flow aggregation approach, wheeeflow is chosen as a targeted flow and
the rest are assumed to share the remaining capacity eqaaflyessions are given for several important
performance measures, e.g., the mean and the variance ¢fttiesending rate, the distribution of the
window size upon a negative feedback, and a full charaeioiz of intervals between congestion events.

In this paper we will provide new analytical and numericauiés for this model. In particular, we argue
that the state space of the MC is dense and that any two (matat®s communicate. For the numerical
results we use simulations and consider two scenarios.drfitst scenario we study the original model
with n > 2 flows, and also its modified version where we have allowed gandariations in the delay
of negative feedback. In the second scenario we compare dtelnto the results obtained by a J-Sim
simulator implementing dutifully all the small details dfet TCP congestion control mechanism.

The rest of the paper is organized as follows. In Section llbriefly describe the model and restate
the results obtained in [1]. In Section Il we give some newalgiical results for the model. Section IV
contains the numerical results and comparisons to a reaJ a@PSection V concludes the paper.

Il. MODEL

Next we present the notation and give a brief introductionihi® fluid flow model described in detalil
in [1]. Let n denote the number of TCP sources sharing the same bottldéin&clEach source increases
its sending rate linearly in time until the total rate woulkkteed the capacity of the bottleneck link. At
this point of time, a randomly chosen source receives a ivegatknowledgement (NAK) and reduces its
sending rate according to the multiplicative decrease.rk@}) denote the sourcésending rate at time,
and R(t) the total sending rate,

R(t) =) _ri(t).
(2

Let o denote the linear increase rate anthe multiplicative factor, i.e., normally the sources e&se their
sending rate according to
Ti(t + dt) = Ti(t) + « - dt,

but upon a negative feedback sent to flow will reduce its sending rate according to
ri(t +0) = v -7(t).

We assume a proportional marking, i.e., upon reaching tipaaity limit ¢ the flow to be downsized is
chosen randomly with the probabilities proportional to seading rates;,

(t)

P {flow i is choseh = T’?

Let A denote the drop in total sending rait). Thus,Ar = (1—v) - ;(¢t) with probability of r;(t)/c.
Consequently, the mean drop in total rate (conditional eodhrrent state) is given by

1—v
E[Ag|r] = Dol

c

Finally, let Ar denote the time between two consecutive NAK signals (cdrmgesvents, packet drops).

A. Normalized Model

Without loss of generality we can consider a so-caledmalized modetlefined as follows. First, we
assume that the total capacity of the bottleneck link isest&d onec = 1, so that we have

Rt)=>_r(t)<1, vt
7
and the probability of choosing flomupon reaching the capacity limit is simpty(¢). Moreover, we assume
such a time scale that the (total) linear increase rate islequ, i.e.,« = 1/n, and

R(t+dt) = R(t) + dt,
(excluding the discontinuities upon reaching the capditit). With this choice of the time scale we have
Arp=Ar=A.
In the rest of the paper we will discuss the normalized modddss otherwise stated.
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Fig. 1. Sample realization of two competing flows (left), &he corresponding steady state distributjffx) of the embedded
chain (right).

B. Analytical Results

Consider first the total sending raf&(t) at an arbitrary point in time. An arbitrary period startsnfro
a packet drop and the corresponding reduction in the totadisg rate is denoted byA. Note that the
number of flows and the multiplicative factor can be arbitrave only assume that as the total sending
rate reaches the capacity limit= 1 one or more flows reduce their rate by the amounf\ofThus, the
sending rate during this period is given by

Rt)=t+1—A, 0<t<A.

Hence, we immediately obtain for thiégh moment ofR(t),

E [foA(t +1- A)kdt] 1-E[(1-A)M1

B |(RO)] = E[A] STt D) BA
For example, withk = 1,2 the above reduces into
A2 i A2 _ A3
E[R({t)]=1- % . EE[[A]] and E[R(t)*] =1- ’ E[g'JE[A]?[ ], (1)
and, consequently, we have,
) 31 _ 3. 212
VIR = B[R0 - BR@P = L EAIEIA] 3 BIATT @)

12-E[A]?

C. Embedded Markov chain

One can associate an embedded Markov chain to the (normipfizading rate process described earlier
by considering the time instances when the total fate) attains the capacity of the bottleneck link. Let
vector X(*) denote the sending rates at thé point, k = 1,2,.... Then, with the probability oth.(k) the
next stateX *+1) of the embedded Markov chain is

(XPpax ux® At xR gAY,
where A* = (1 — V)Xi(k)/n. We note that the above Markov chain has a state spa@®' idimensional

hyperplaney"" | X; = 1 with X; € (0,1) Vi. With two flows andX; = « the state of the embedded
Markov chain is(z, 1 — z). The transitions to the next embedded point (with- 1/2) are then as follows.

l—z o (1+31¢ 3—31:)
4 04
(LL‘7]‘7':E) .\

PN e (B 1t

where, e.g., at statér, 1 — x) the reduction occurs for flow with probability of x and the embedded
Markov chain moves to statgxz/4,1 — 3z/4). Let f(z) denote the pdf for the state of the flowat
the embedded point®, {r < X; <z +dx} = f(x)dz. For this system one can write the global balance
equations (see [1] and Section IlI-A), which yield the steathte solution for the interval € (0,1/4],

a 3nn=3) g (2" log 4x
2y _*(z (n=1)/2 ; _ 108
f(z) 1 \/ D) 3 <3> x , with n Tog3/4°
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For the other values of we have the identities,
flx) =0, Vax<0andx > 1, 3)
flz) = f(1—ux), 4)

s = (3) [a-or (2570) e (5] ©)

The constant follows from the normalization condition. The resultingfpd illustrated in Fig. 1. The
distribution has a meaf.5 and variancer? ~ 0.0192.

D. Flow aggregation approach

For more than two flows it was proposed in [1] to aggregate thesfl In the flow aggregation approach
we havem flows and choose one flow as the “targeted flow” while the resthefm — 1 flows are
aggregated. Both the additive increase rate and the mdittple decrease factor of the aggregate flow are
adjusted accordingly. Writing the global balance equatitor the embedded MC yields a similar steady
state solution, giving the pdf explicitly for a certain intal while the value elsewhere can be computed
recursively using a set of recursive equations. For detatlgefer to [1].

I11. ANALYTICAL RESULTS

Next we give some new complementary analytical resultsdsdtgiven in [1] and restated in Section Il.
In particular, first we give some arguments about the stadeespf the embedded MC, which show that the
states are dense in intenvdl, 1], and that any two macro states, i.e., subinterval@of], communicate.
These support the used approach of describing the steadydss&ribution of the MC by a continuous pdf.
Then we also derive explicit expressions for the joint pdftaf sending rates at an arbitrary point of time.

A. Remarks On the State Space

In the analysis it has been implicitly assumed that the stpéee is dense, i.e., that feasible states exist
inside every open interval. Our aim here is to argue that ithdeed is the case. For simplicity, let us
consider the 2-flow case, for which the next state in embeddi&ds defined by,

ZXk, with probability of X,
Xk—i—l = 14+ 3Xk:

, otherwise

In general, the multiplicative factor can be different thigi2. Thus, consider recursive equations of form,

X, aXy, with probability of p(X}%),
17 1—a(1l—X;), otherwise

wherep(z) denotes the probability of choosing the “targeted flow” foe rate reduction, and depends
on the multiplicative factor according to,

_1—|—1/
-

We can safely assume that in any state both transitions asilpe, i.e..Vz € (0,1), Je > 0 such that
e < p(z) < 1—e. Letxy denote the initial stateX, = x¢. Then for the next stat&’; we have

a

X1 =(1—-a)dy + ax,

whered; is a binary random variable equal @oif in the first step the targeted flow was chosen to reduce
its rate, and otherwisg. Similarly, after two steps the staf€, is given by

Xo=(l-a)dy+aX; =(1—-a)dy+a(l—-a)d +a’z.

Consequently, it turns out that aftérsteps the state of the general process is given by
k=1
X = (1 —Oz)ZOZZ -d; —I—Oékw().
i=0
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Note the change in numbering, i.e., hetedenotes the eventsteps ago. Fob < « < 1 the last term
clearly vanishes ak — oo, i.e., when stationarity is reached the system state isndiyean infinite series,

X(d)=(01-a)> o -d, (6)
=0

where thed; are binary variables having val@eor 1. In other words, using (6) we can associate a certain
stateX (d) to each infinite sequenck, di, . .. of binary numbers. Note that the random variaklgare not
independent. A9 < a < 1 the series clearly converges always (a strictly increaseres bounded by a
geometric series). With; = 0, V<, we obtain the minimumX (d) = 0, and for the maximuna; = 1, V1,
which yields X (d) = 1. The important question is if the state space is den$g i}, i.e., whether a feasible
state exists inside every open interyalb) C [0, 1]. The answer is yes as long &g2 < « < 1, which is

the case here as=1/2 + v/2.

Lemma 1 For any givenr € [0, 1] there exists a sequence of binary numbérsd; € {0,1}, for which
the serieq6) converges to- as long asl/2 < o < 1.

Proof: Casea = 1/2 is trivial (binary number representation). Also for= 1 a series withd; = 1,
Vi, clearly converges. Thus, we can assume that< o < 1 andr < 1. Define the partial sums,

k-1
Sy = Z d; - ai, whereq; = (1 — a)a’.
=0

Then, for eachk = 0, 1,2, ... define a series recursively as follows
& — 1, if Sp+ap<r,
¥~ 0, otherwise.

Thus, S, < r, Vk. Let kg = k denote the smalledt with d;, = 0, which clearly exists as otherwisg, > r
for k large enough. In other word$y, < r < Sk, +ax,. As for all k = 0,1, ... the tail is heavier than,

o0
Z a; = " > (1 - a)d® = a, (whenl/2 <a <1)
i=k+1
there existsk; > ko with di, = 0. By induction, there exists a sequence of integgéss; =0, 1, ..., with

k; > i andd, = 0 for which it holds that
Sk, <1 < Sk, + ag,.
Furthermore, as;, < a; = (1 — a)d?, it follows that for anye > 0,
log e — log(1 —
ag, <€, when 7> og € — log a),
log o
and henceS), — r ask — oo. [ |

Remark 1 For 0 < a < 1/2 there are intervals of positive length i, 1] that no series of forn(6)
converges to. For example, it is easy to see that no seriegecg®s to any number in intervéd, 1 — «).

Remark 2 Similarly, it can be shown that any two macro states comgjstf states within (non-empty)
intervalsI; = (x1, 21 +dx1) C [0,1] and I = (22,22 +dx2) C [0,1] communicate, i.e., there is a positive
probability that the system initially in any state In ends up to a some state Ip. This can be shown, e.g.,
by noticing that any macro state= (z, z + dz) communicates with macro stafe, ¢/2) for any e < dx.

B. Joint Distribution of Rates

Let us next pose the question what is the joint distributiérine sending rates; (t) and ro(¢) at an
arbitrary point of time. For simplicity we consider the twavl case. Note that the embedded points
correspond to the conditional (joint) distribution on trepacity limit, 7, (¢) + 2 (¢t) = c¢. The knowledge of
the joint distribution, however, is in some sense a more gd@d answers to the question what proportion
of time sourcel and source are sending at rate and ratev, respectively, where + v < ¢. In particular,
our aim is to determine expression for the cumulative joistribution function,

F(u,v) :=P{ri(t) <u, rat) < v}.
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Fig. 2. (Left): one period from the capacity limit back to thapacity limit. (Middle): the time interval inside the bdx, v)
when starting from poinfz/2, 1 — z) is the minimum of linear functions. (Right): Visited statesfore and after rate reducement
in a sample ofl0000 packet drops. Om- andy-axes are the rates andrs, respectively.

Conditioning on the period starting from stdte, 1 — x) yields two possible paths (see Fig. 2 left):
1) With probability ofz, (z,1-2) — (%,1-z) — (3£,1-3).

4
2) Otherwise (m1-2) = (o) (2.)

In above, the first state is the initial state before rate c&dn at timet¢, the second state is the state
immediately after that, and the third state is the state @fpthint of time when the total sending rate again
attains the capacity limit, at time+ A. The time averages are generally obtained by evaluatinmtbgral,

1
i [ ) )+ (-0 ) ga(a) = BB 2 X
whereg, (z) denotes the contribution when the first source is reduceidi(s, 1 —z), andgs(z), similarly,
the contribution when the second source is reduced at §tate— x). In the latter form we have utilised
the symmetry,f(xz) = f(1 — z), which holds for two flow case. It is easy to convince onesbtu the
correctness of the above, e.g., by considering a long tireevial consisting of\/ periods whenM/ tends
to infinity. As we are interested in the cumulative joint disiition F'(u,v), the functionsg; (z) andgz(x)
correspond to time intervals during whieh(¢) < u andry(t) < v in a given period. The situation is
illustrated in Fig. 2 (left). In order to have a positive cdtition to the integral the initial stater,1 — x)
must be suitable, i.e.,

l—z<v = z>1-vw and z/2<u = z<2u.
Moreover, we hav® < = < 1, which yields
1 —v <z < min{l, 2u}.

Similarly, the time interval inside the baX, 0) — (u,v) when starting from pointz/2,1 — x) is the time
to the first linear constraint as illustrated in Fig. 2 (m&dIThus, we have,

g(z)=z+ (w-1), xo=1-—v, x3 = (4/3)u,
g5(z) = x /4, 1 = (4/3)(1 —v), x4 = min{l, 2u},
g3(x) = —x/2 + u, o = (2/3)(u —v +1),

where g7 (z) and g;(z) correspond to the time-intervals unti}(t) = v andr;(t) = u, respectively, and
g5 (x) corresponds to the time-interval until(¢) + r2(t) = 1 in caseu + v > 1 (cf. dotted box in Fig. 2
(left)). Hence, denoting* = x - f(z) - g7 (z), the first integrall; = I;(x, u,v) can be written as

Za
11, whenz, = min{xzy, 9, 24},
X
OZBQ g
/ i+ 13, whenzy = min{xzy, 9, 24},
I _ Xo o
1= X1 g
/ i+ 15, whenz; = min{xzy, 9, 3, 24},
Xo 1
Z1 T3 Ty
/ ff+/ f2*+/ f5, otherwise
Zo Z1 xs3
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Fig. 3. Joint distribution of sending rates(¢) andr2(t) at an arbitrary point of time. Figures on left and middle espond to
the cumulative distributio® {r1(t) < u, r2(t) < v}, and the figure on right to the pdf.

Due to the symmetry, we finally have
Il(u7 ’U) + [1 (1)7 U)

F(u,v) = BXZ ,

and the corresponding pdf, ,

f(u,v):mF(

The resulting cdf and pdf are illustrated in Fig. 3. Espégitie pdf looks interesting, we have obtained
the “fingerprint” of the TCP rate control mechanism in theeca$ two flows.

U, V).

IV. NUMERICAL SIMULATIONS
A. ldealized Model

Let us first consider the idealized model with> 2 flows, and also a modified version with random
delays before a source receives a NAK. In summary, we contiéeideal model

1) without delays,

2) with random delays upon negative feedback,

3) with flow aggregation and no delays,

4) with flow aggregation and random delays.

Note that 1, 2 and 4 we deal with numerical simulations, wtiikecase 3 we can obtain from the analytical
results. In particular, the idea is to evaluate how much eggion approach and/or random delays deviate
from the idealized situation. The random delays are set abtlle maximum delay i$0% higher than the
minimum while the mean rat& [R(¢)] is kept the same. The important statistics we consider are:

1) decrease in total ratd, i.e., the time between two packet drops: a) the mé&dny|, b) the variance,

V [A], and c) the covariance between the consecutive times betpaeket dropsCov [As, Ast1].

2) total sending rate at random point of time: a) the mean E&{&(t)], and b) the variancéy [R(t)]

The numerical results are presented in Table I. The analytesults for mean rat& [R(t)] and its
standard deviation are obtained using (1) and (2), resgdgtiFrom the numerical results we can make
several observations. Firstly, the random delay does fettdf [A], which is rather obvious. However, the
random delay does increaﬁb[AQ] ando(A), which again is expected. In particular, adding the random
delay in the model does not have much effecttfz(¢)], which mean that the mean transmission rate can
be approximated by

1 E[A?]
T2 E@A]
even in the cases when there is a random delay before a saoeigas a NAK. As adding random delays
increasest [A?] it can be expected that also the variance of random varigbi¢ becomes higher. And
this indeed is the case as can be seen from Table I.

Finally, comparing the results of the ideal model and the fémygregation fom > 2 flows (for n = 2
flows the flow aggregation is accurate) suggests that thargggn made in the aggregation (i.e., flows
inside the aggregate share the bandwidth equally) is raghiémistic. The difference in the mean values of
A and R(t) is not large, but for their respective standard deviatitresdifference becomes noticeable.
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TABLE I:

SIMULATION RESULTS COMPARED WITH THE ANALYTICAL (AGGREGATION WITHOUT DELAYS).

analytical simulated

Model # of flows|| E[A] o(A) E[R()] o(R()) || E[A] o(A) E[R(X)] o(R(t))

ideal without delays 2 0.269 0.0666 0.857  0.090B0.269 0.0667 0.857  0.0908
ideal with random delays 2 0.269 0.0763 0.858  0.094p
ideal without delays 3 0.184 0.0539 0.900 0.0654%
ideal with random delays 3 0.184 0.0657 0.901 0.07Qy
aggregation without delays 3 0.175 0.0360 0.909 0.05660.175 0.0363 0.909 0.054Y
aggregation with random delays 3 0.175 0.0523 0.910 0.062y
ideal without delays 4 0.140 0.0441 0.923 0.051p
ideal with random delays 4 0.140 0.0579 0.924 0.0582
aggregation without delays 4 0.129 0.0219 0.933 0.03980.130 0.0238 0.933 0.041p
aggregation with random delays 4 0.130 0.0450 0.934 0.049b
ideal without delays 5 0.113 0.0370 0.938 0.0421L
ideal with random delays 5 0.113 0.0518 0.940 0.050p
aggregation without delays 5 0.103 0.0195 0.947 0.034y0.103 0.0172 0.947 0.0324
aggregation with random delays 5 0.103 0.0420 0.948  0.042y

B. Comparison Against “real TCP”

Finally, we will present the numerical results obtained by-&im simulator. J-Sim is an open source,
component-based compositional simulation environmewntldeed in Java [11], which, among other things,
provides a detailed implementation of the different flawairthe TCP protocol. In this work we have chosen
to use TCP Reno. The simulation setup is illustrated beldve fEedback channel is lightly loaded and is
not thus depicted in figure. Otherwise, the parameters afellaws:

« two TCP flows

« TCP MSS of512 B

« single bottleneck link] Mb/s

« router buffer sizeB, is a variable parameter

« buffer management scheme: RED with minTresh

0.25 - B, maxTresh0.75 - B, maxProb0.02.

sources

@ buffer, B
: - i}

@ / dropped
packets

1) Packet inter-loss timestErom the simulations we have recorded the time instances ahgacket is
dropped and the aim is to compare the statisticaA dhfter normalization). The covariance and correlation
coefficient between two consecutive inter-loss times avergin Table Il. The model predicts negative
correlation, i.e., after a short inter-loss time the nextyjically longer, and vice versa. This is sensible,
as a short inter-loss time means that a flow with a rather straalbmission rate was chosen to reduce its
rate, and consequently, the other flow has rather high trssgn rate and is likely to be chosen to reduce
its rate the next. However, in the simulations we have okthinoth negatively and positively correlated
structure of inter-loss times. The inconsistency is dué&RED algorithm, which tries to “smoothen” the
loss process, and to the fact that buffer size is stricthitiyes(as it is in reality).

The empirical inter-loss distribution is depicted in Figfof three different buffer sizes000, 8000 and
15000 bytes. In the first two cases the distribution seems to havepeaks, where the first one corresponds
to the burst of losses, and the second peak to the next lesgladt rate reduction. As soon as the buffer size
is large enough, about 12000 bytes in our case, the first pepkactice disappears. The mean inter-loss
time increases as the buffer size is increased. Howevennauiel is “bufferless” and thus is not capable
to grasp this. Instead, let us define a so-called normaliztd-ioss time,

A

E[A]

Then we can compare the second and third momeat,diased on the simulations and the model. According
to the model, the first three moments of the (hon-normalizetgy-loss time are

link, 1Mbit/s

)

A, =

(0.269, 0.0769, 0.0231) .

The respective normalized moments for the simulation tesamd the model are given in Table Il. As
can be seen from the table, the results with buffer $ze- 15000 bytes matches best the shape of the
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TABLE Il.  STATISTICS OF PACKET INTERLOSS TIMES

case E[A.] | E[AT] | E[AZ] | Cov[Ak_1, Ag] p
B=3000 1.0 1.492 3.017 —0.00148 | —0.239
B=8000 1.0 1.613 2.944 —0.00462 | —0.244
B=15000 1.0 1.062 1.195 0.00096 0.108
model 1.0 1.061 1.182 —0.00134 | —0.303
175
800 200 150
600 150 125
100
400 100 75
50
200 50
25
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5 0.6 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 4. Histogram of inter-loss times for buffer sizes3600, 8000 and 15000 bytes.

inter-loss distribution predicted by the model. For thersdrobuffer sizes the burst losses, obviously, lead
to mismatch. A fact that could have been seen already fronfigiuees. But more importantly, it is clear
that the inter-loss process (and the behaviour of the systegeneral) depends strongly on the buffer size
and developing an elementary and general model for it is &emely difficult task.

2) Times betweenwnd adjustemts:With a small buffer size (as assumed implicitly in the modgb
packet losses can be bursty, i.e., a TCP source may experianttiple losses during a single period.
In order to take this into account we have also studied thediletween congestion windowwnd
adjustments. The simulation results for the key statisties shown in Table 1ll, and the corresponding
empirical distribution is depicted in Fig. 5. From the figutecan be seen that when the buffer siBe
is large enough®® = 15000), the situation is rather good and the resulting distrioutis smooth. Also
the correlation between two consequent intervals is nagatid thus matches the model better than when
considering the times between packet losses (cf. Tablddl).a smaller buffer size = 8000) there are
two peaks in the distrubution. This corresponds to the evetiere during a congestion period both flows
experience packet losses and consequently reduce theliingerate. We note that this kind of behaviour
does not exist in the model, where it is explicitly assumeat tHAK is sent to exactly one of the sources.
When buffer size is very small{ = 3000) the system is more or less synchronized.

Finally, in Fig. 6 we have depicted the estimatestofA2] and E [A?] as function of buffer sizeB
according to the times between packet losses (diamond dynaimal the times betweetwnd adjustments
(star symbol). From the figure we can make some observatinssly, the process “settles” once the buffer
size B is 12kB or larger, and secondly, both time-intervals exhibitisimbehaviour while thewndbased
statistics are generally lower corresponding, e.g., tollemeariance.

TABLE Ill;  STATISTICS OF TIME INTERVALS BETWEENCWNJADJUSTMENTS.
case E[A.] | E[AZ] | E[AY] | Cov[Ar_1, Ay P
B=3000 1.0 1.220 1.997 0.00017 0.035
B=8000 1.0 1.517 2.627 —0.00645 | —0.317
B=15000 1.0 1.063 1.205 —0.00117 | —0.127
model 1.0 1.061 1.182 —0.00134 | —0.303
1200 200 150
1000 125
800 150 100
600 100 75
400 50
200 50 25
0.1 02 03 04 0.2 0.4 06 0.2 0.4 0.6 008 1 1.2 L4

Fig. 5. Histogram of time intervals betweewnd adjustments for buffer sizes 8000, 8000 and 15000 bytes.
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Fig. 6. Estimates oA2 and A2 as a function of buffer sizé3.

V. CONCLUSIONS

In this paper we have studied an idealized fluid flow model f@PTrate control. First we have given
some new analytical results concerning the state space attibbedded Markov chain, and derived the joint
distribution of the sending rates. In particular, for thatstspace it was shown that the states are dense
in interval [0, 1], and that any two macro states, i.e., subinterval®of], communicate. These arguments
support the approach used in [1], where the steady statébdistin was described by a continuous pdf.

Then, by means of numerical simulations, we compared thaexieary model to a generalized version by
introducing random fluctuations in the one-way delay. It wlaswn that the performance quantities obtained
from the model are not sensitive to small variations of RTTjol is a desirable property and justifies the
original assumption of a constant delay in negative feekihdespecially the mean values remained almost
the same, while, e.g., the variance of inter-loss timesrafyuincreases. The model was also compared with
simulation results obtained from an actual TCP implemé@nafThis, however, turned out to be extremely
difficult task due to the TCP itself. There exist several i@rs of TCP (e.g., Tahoe, Reno, Vegas) which
all exhibit slightly different characteristics. Also, e.the parameters of a (single) bottleneck link may have
a great impact on the behaviour of the TCP sources, whileenmntbdel the bottleneck router is assumed
to be ideal. Thus, it comes as no surprise that the model tamuver this extremely broad spectrum of
different variations. A somewhat better match is obtairfetthé model is compared to the times between
congestion window adjustments (instead of simply to theesirbetween packet losses).

However, we can still say that the considered model of TCReseas a good candidate for analytical
work when there is a need to model TCP-like traffic in simplente It catches the capacity probing nature
of the TCP and its sawtooth behaviour while, at the same toaa, be described in simple terms (three
parameters: number of sources, linear increase rate antiplicative decrease factor). The future work
includes extending the model to accomodate the possilaifityeveral TCP sources experiencing a packet
loss during a single congestion period.
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