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Abstract

The congestion control algorithm used in Transmission Control Protocol (TCP) is a so-called additive
increase multiplicative decrease (AIMD) algorithm. The algorithm and its performance have been studied
extensively in the literature. Today, several versions of the TCP exist, which behave slightly differently when
congestion occurs. However, for the analytical work it is often necessary to consider idealized models. One
such model based on fluid flow approach is proposed in [1], on which we will also focus in this paper. In
particular, we study this simplified fluid flow approximationand its generalization by numerical simulations
in order to evaluate relationships between different parameters of the model and the resulting performance
quantities. Moreover, we also compare the model against an actual implementation of TCP congestion
control mechanism. Additionally, we give some complementary analytical results for the model.
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I. INTRODUCTION

The additive increase multiplicative decrease (AIMD) ratecontrol scheme employed by the transmission
control protocol (TCP), has turned out to be very important due to the enormous success of Internet. In its
simplicity, an AIMD controlled source increases the sending rate linearly in time until a negative feedback
is received. In response to this, the source reduces its sending rate by multiplying the current rate with some
constant less than one. In an ideal situation the AIMD schemeis capable of sharing the given bandwidth
fairly among the competing flows [2]. The AIMD scheme has beenstudied actively, see, e.g., [3] and [4].

One particularly important aspect of bandwidth allocationprotocols is the fairness, i.e., how the available
bandwidth is allocated between the flows sharing the same resources. For example, in TCP/IP networks
flows with higher round trip times (RTT) tend to get smaller shares. The most famous results on TCP are
on throughput analysis, e.g., the famous square root formula by Floyd and Fall [5], and the more accurate
expression by Padhye et al. [6]. These results give the average throughput per flow as a function of the packet
loss probability and RTT. The common assumption in TCP throughput analysis has been the independence
between congestion periods, i.e., it is assumed that the packet losses occur in fixed time intervals ([5], [6],
[7], [8]), or originate from a (non-uniform) Poisson process [9]. A more general approach can be found
from [10], where the losses are generated by an arbitrary exogenous random process.

In contrast to the above work, in [1] we have considered an elementary model for the TCP rate control
mechanism, where the loss process is explicitly defined by the sending rates of all TCP sources. The aim
was to characterize the behavior of the concurrent TCP flows at the microscopic level, e.g., in order to
study the interactions between TCP traffic and other traffic flows (e.g., real time voice or video streams). To
this end, we have studied a single bottleneck link and made several simplifying assumptions about the rate
control mechanism. Firstly, we consider a continuous (fluidflow) model where the sending rates are some
non-negative real numbers. Secondly, the decision to send anegative feedback is based on the current arrival
rate of the packets into the bottleneck link, not directly onthe occupancy level of the buffer (unfinished
work). This can be interpreted as a bufferless model for router. Thirdly, we assume a constant delay before
sources react on the negative feedback signals (i.e., a constant RTT).

This model can be analyzed in the framework of Markov processes. In particular, considering the time
instances when the total sending rate achieves the capacitylimit yields an embedded Markov chain (MC),
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for which we were able to derive steady state distribution for the special case of two TCP flows. For more
than two flows we proposed flow aggregation approach, where one flow is chosen as a targeted flow and
the rest are assumed to share the remaining capacity equally. Expressions are given for several important
performance measures, e.g., the mean and the variance of thetotal sending rate, the distribution of the
window size upon a negative feedback, and a full characterization of intervals between congestion events.

In this paper we will provide new analytical and numerical results for this model. In particular, we argue
that the state space of the MC is dense and that any two (macro)states communicate. For the numerical
results we use simulations and consider two scenarios. In the first scenario we study the original model
with n > 2 flows, and also its modified version where we have allowed random variations in the delay
of negative feedback. In the second scenario we compare the model to the results obtained by a J-Sim
simulator implementing dutifully all the small details of the TCP congestion control mechanism.

The rest of the paper is organized as follows. In Section II webriefly describe the model and restate
the results obtained in [1]. In Section III we give some new analytical results for the model. Section IV
contains the numerical results and comparisons to a real TCP, and Section V concludes the paper.

II. M ODEL

Next we present the notation and give a brief introduction tothe fluid flow model described in detail
in [1]. Let n denote the number of TCP sources sharing the same bottlenecklink. Each source increases
its sending rate linearly in time until the total rate would exceed the capacity of the bottleneck link. At
this point of time, a randomly chosen source receives a negative acknowledgement (NAK) and reduces its
sending rate according to the multiplicative decrease. Letri(t) denote the sourcei sending rate at timet,
andR(t) the total sending rate,

R(t) =
∑

i

ri(t).

Let α denote the linear increase rate andν the multiplicative factor, i.e., normally the sources increase their
sending rate according to

ri(t + dt) = ri(t) + α · dt,

but upon a negative feedback sent to flowi it will reduce its sending rate according to

ri(t + 0) = ν · ri(t).

We assume a proportional marking, i.e., upon reaching the capacity limit c the flow to be downsized is
chosen randomly with the probabilities proportional to thesending ratesri,

P {flow i is chosen} =
ri(t)

c
.

Let ∆R denote the drop in total sending rateR(t). Thus,∆R = (1−ν) · ri(t) with probability of ri(t)/c.
Consequently, the mean drop in total rate (conditional to the current stater) is given by

E [∆R | r] =
1 − ν

c
·
∑

i

r2
i .

Finally, let ∆T denote the time between two consecutive NAK signals (congestion events, packet drops).

A. Normalized Model

Without loss of generality we can consider a so-callednormalized modeldefined as follows. First, we
assume that the total capacity of the bottleneck link is scaled to one,c = 1, so that we have

R(t) =
∑

i

ri(t) ≤ 1, ∀ t,

and the probability of choosing flowi upon reaching the capacity limit is simplyri(t). Moreover, we assume
such a time scale that the (total) linear increase rate is equal to 1, i.e., α = 1/n, and

R(t + dt) = R(t) + dt,

(excluding the discontinuities upon reaching the capacitylimit). With this choice of the time scale we have

∆R = ∆T = ∆.

In the rest of the paper we will discuss the normalized model unless otherwise stated.
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Fig. 1. Sample realization of two competing flows (left), andthe corresponding steady state distributionf(x) of the embedded
chain (right).

B. Analytical Results

Consider first the total sending rateR(t) at an arbitrary point in time. An arbitrary period starts from
a packet drop and the corresponding reduction in the total sending rate is denoted by∆. Note that the
number of flows and the multiplicative factor can be arbitrary, we only assume that as the total sending
rate reaches the capacity limitc = 1 one or more flows reduce their rate by the amount of∆. Thus, the
sending rate during this period is given by

R(t) = t + 1 − ∆, 0 ≤ t ≤ ∆.

Hence, we immediately obtain for thekth moment ofR(t),

E
[

(R(t)k
]

=
E

[

∫ ∆
0 (t + 1 − ∆)k dt

]

E [∆]
=

1 − E
[

(1 − ∆)k+1
]

(k + 1) · E [∆]
.

For example, withk = 1, 2 the above reduces into

E [R(t)] = 1 −
1

2
·
E

[

∆2
]

E [∆]
and E

[

R(t)2
]

= 1 −
3 · E

[

∆2
]

− E
[

∆3
]

3 · E [∆]
, (1)

and, consequently, we have,

V [R(t)] = E
[

R(t)2
]

− E [R(t)]2 =
4 · E [∆]E

[

∆3
]

− 3 · E
[

∆2
]2

12 · E [∆]2
. (2)

C. Embedded Markov chain

One can associate an embedded Markov chain to the (normalized) sending rate process described earlier
by considering the time instances when the total rateR(t) attains the capacity of the bottleneck link. Let
vectorX(k) denote the sending rates at thekth point, k = 1, 2, . . .. Then, with the probability ofX(k)

i the
next stateX(k+1) of the embedded Markov chain is

(X
(k)
1 + ∆∗, . . . , νX

(k)
i + ∆∗, . . . , X(k)

n + ∆∗),

where∆∗ = (1 − ν)X
(k)
i /n. We note that the above Markov chain has a state space inR

n dimensional
hyperplane,

∑n
i=1 Xi = 1 with Xi ∈ (0, 1) ∀ i. With two flows andX1 = x the state of the embedded

Markov chain is(x, 1 − x). The transitions to the next embedded point (withν = 1/2) are then as follows.

(x, 1 − x)

(

1+3x

4
, 3−3x

4

)

(

3

4
x, 1 − 3

4
x
)

1 − x

x

where, e.g., at state(x, 1 − x) the reduction occurs for flow1 with probability of x and the embedded
Markov chain moves to state(3x/4, 1 − 3x/4). Let f(x) denote the pdf for the state of the flow1 at
the embedded points,P {x < X1 ≤ x + dx} = f(x) dx. For this system one can write the global balance
equations (see [1] and Section III-A), which yield the steady state solution for the intervalx ∈ (0, 1/4],

f(x) =
a

4
·

√

3n(n−3)

4n(n−1)
=

a

8

(

2

3

)n

x(n−1)/2, with n =
log 4x

log 3/4
.
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For the other values ofx we have the identities,

f(x) = 0, ∀ x < 0 andx > 1, (3)

f(x) = f(1 − x), (4)

f(x) =

(

4

3

)2 [

(1−x)f

(

4x − 1

3

)

+xf

(

4x

3

)]

. (5)

The constanta follows from the normalization condition. The resulting pdf is illustrated in Fig. 1. The
distribution has a mean0.5 and varianceσ2 ≈ 0.0192.

D. Flow aggregation approach

For more than two flows it was proposed in [1] to aggregate the flows. In the flow aggregation approach
we havem flows and choose one flow as the “targeted flow” while the rest ofthe m − 1 flows are
aggregated. Both the additive increase rate and the multiplicative decrease factor of the aggregate flow are
adjusted accordingly. Writing the global balance equations for the embedded MC yields a similar steady
state solution, giving the pdf explicitly for a certain interval while the value elsewhere can be computed
recursively using a set of recursive equations. For detailswe refer to [1].

III. A NALYTICAL RESULTS

Next we give some new complementary analytical results to those given in [1] and restated in Section II.
In particular, first we give some arguments about the state space of the embedded MC, which show that the
states are dense in interval[0, 1], and that any two macro states, i.e., subintervals of[0, 1], communicate.
These support the used approach of describing the steady state distribution of the MC by a continuous pdf.
Then we also derive explicit expressions for the joint pdf ofthe sending rates at an arbitrary point of time.

A. Remarks On the State Space

In the analysis it has been implicitly assumed that the statespace is dense, i.e., that feasible states exist
inside every open interval. Our aim here is to argue that thisindeed is the case. For simplicity, let us
consider the 2-flow case, for which the next state in embeddedMC is defined by,

Xk+1 =











3

4
Xk, with probability of Xk,

1 + 3Xk

4
, otherwise.

In general, the multiplicative factor can be different than1/2. Thus, consider recursive equations of form,

Xk+1 =

{

αXk, with probability of p(Xk),
1 − α(1 − Xk), otherwise,

wherep(x) denotes the probability of choosing the “targeted flow” for the rate reduction, andα depends
on the multiplicative factorν according to,

α =
1 + ν

2
.

We can safely assume that in any state both transitions are possible, i.e.,∀x ∈ (0, 1), ∃ ǫ > 0 such that
ǫ < p(x) < 1 − ǫ. Let x0 denote the initial state,X0 = x0. Then for the next stateX1 we have

X1 = (1 − α) d1 + α x0,

whered1 is a binary random variable equal to0 if in the first step the targeted flow was chosen to reduce
its rate, and otherwise1. Similarly, after two steps the stateX2 is given by

X2 = (1 − α) d2 + α X1 = (1 − α) d2 + α (1 − α) d1 + α2 x0.

Consequently, it turns out that afterk steps the state of the general process is given by

Xk = (1 − α)

k−1
∑

i=0

αi · di + αkx0.
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Note the change in numbering, i.e., heredi denotes the eventi steps ago. For0 < α < 1 the last term
clearly vanishes ask → ∞, i.e., when stationarity is reached the system state is given by an infinite series,

X(d) = (1 − α)

∞
∑

i=0

αi · di, (6)

where thedi are binary variables having value0 or 1. In other words, using (6) we can associate a certain
stateX(d) to each infinite sequenced0, d1, . . . of binary numbers. Note that the random variablesdi are not
independent. As0 < α < 1 the series clearly converges always (a strictly increasingseries bounded by a
geometric series). Withdi = 0, ∀ i, we obtain the minimum,X(d) = 0, and for the maximumdi = 1, ∀ i,
which yieldsX(d) = 1. The important question is if the state space is dense in[0, 1], i.e., whether a feasible
state exists inside every open interval(a, b) ⊂ [0, 1]. The answer is yes as long as1/2 ≤ α < 1, which is
the case here asα = 1/2 + ν/2.

Lemma 1 For any givenr ∈ [0, 1] there exists a sequence of binary numbersdi, di ∈ {0, 1}, for which
the series(6) converges tor as long as1/2 ≤ α < 1.

Proof: Caseα = 1/2 is trivial (binary number representation). Also forr = 1 a series withdi = 1,
∀ i, clearly converges. Thus, we can assume that1/2 < α < 1 andr < 1. Define the partial sums,

Sk =

k−1
∑

i=0

di · ai, whereai = (1 − α)αi.

Then, for eachk = 0, 1, 2, . . . define a series recursively as follows

dk =

{

1, if Sk + ak < r,
0, otherwise.

Thus,Sk < r, ∀ k. Let k0 = k denote the smallestk with dk = 0, which clearly exists as otherwiseSk > r
for k large enough. In other words,Sk0

< r < Sk0
+ak0

. As for all k = 0, 1, . . . the tail is heavier thanak,
∞
∑

i=k+1

ai = αk+1 > (1 − α)αk = ak, (when1/2 < α < 1)

there existsk1 > k0 with dk1
= 0. By induction, there exists a sequence of integers,ki, i = 0, 1, . . ., with

ki ≥ i anddki
= 0 for which it holds that

Ski
< r < Ski

+ aki
.

Furthermore, asaki
≤ ai = (1 − α)αi, it follows that for anyǫ > 0,

aki
< ǫ, when i >

log ǫ − log(1 − α)

log α
,

and henceSk → r ask → ∞.

Remark 1 For 0 < α < 1/2 there are intervals of positive length in[0, 1] that no series of form(6)
converges to. For example, it is easy to see that no series converges to any number in interval(α, 1 − α).

Remark 2 Similarly, it can be shown that any two macro states consisting of states within (non-empty)
intervalsI1 = (x1, x1 +dx1) ⊂ [0, 1] andI2 = (x2, x2 +dx2) ⊂ [0, 1] communicate, i.e., there is a positive
probability that the system initially in any state inI1 ends up to a some state inI2. This can be shown, e.g.,
by noticing that any macro stateI = (x, x + dx) communicates with macro state(0, ǫ/2) for any ǫ < dx.

B. Joint Distribution of Rates

Let us next pose the question what is the joint distribution of the sending ratesr1(t) and r2(t) at an
arbitrary point of time. For simplicity we consider the two flow case. Note that the embedded points
correspond to the conditional (joint) distribution on the capacity limit, r1(t)+ r2(t) = c. The knowledge of
the joint distribution, however, is in some sense a more general and answers to the question what proportion
of time source1 and source2 are sending at rateu and ratev, respectively, whereu+ v ≤ c. In particular,
our aim is to determine expression for the cumulative joint distribution function,

F (u, v) := P {r1(t) < u, r2(t) < v} .
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Fig. 2. (Left): one period from the capacity limit back to thecapacity limit. (Middle): the time interval inside the box(u, v)
when starting from point(x/2, 1− x) is the minimum of linear functions. (Right): Visited statesbefore and after rate reducement
in a sample of10000 packet drops. Onx- andy-axes are the ratesr1 andr2, respectively.

Conditioning on the period starting from state(x, 1 − x) yields two possible paths (see Fig. 2 left):

1) With probability ofx,
(

x, 1 − x
)

→
(

x
2 , 1 − x

)

→
(

3x
4 , 1 − 3x

4

)

.

2) Otherwise,
(

x, 1 − x
)

→
(

x, 1−x
2

)

→
(

1+3x
4 , 3−3x

4

)

.

In above, the first state is the initial state before rate reduction at time t, the second state is the state
immediately after that, and the third state is the state at the point of time when the total sending rate again
attains the capacity limit, at timet+∆. The time averages are generally obtained by evaluating theintegral,

1

E [∆]

∫ 1

0
x · f(x) · g1(x) + (1 − x) · f(x) · g2(x) dx =

E [X · g1(X)] + E [X · g2(1 − X)]

E [X2]
,

whereg1(x) denotes the contribution when the first source is reduced at state(x, 1−x), andg2(x), similarly,
the contribution when the second source is reduced at state(x, 1 − x). In the latter form we have utilised
the symmetry,f(x) = f(1 − x), which holds for two flow case. It is easy to convince oneself about the
correctness of the above, e.g., by considering a long time interval consisting ofM periods whenM tends
to infinity. As we are interested in the cumulative joint distribution F (u, v), the functionsg1(x) andg2(x)
correspond to time intervals during whichr1(t) < u and r2(t) < v in a given period. The situation is
illustrated in Fig. 2 (left). In order to have a positive contribution to the integral the initial state(x, 1− x)
must be suitable, i.e.,

1 − x < v ⇒ x > 1 − v and x/2 < u ⇒ x < 2u.

Moreover, we have0 < x < 1, which yields

1 − v < x < min{1, 2u}.

Similarly, the time interval inside the box(0, 0) − (u, v) when starting from point(x/2, 1 − x) is the time
to the first linear constraint as illustrated in Fig. 2 (middle). Thus, we have,

g∗1(x) = x + (v − 1),

g∗2(x) = x/4,

g∗3(x) = −x/2 + u,

x0 = 1 − v,

x1 = (4/3)(1 − v),

x2 = (2/3)(u − v + 1),

x3 = (4/3)u,

x4 = min{1, 2u},

whereg∗1(x) and g∗3(x) correspond to the time-intervals untilr2(t) = v and r1(t) = u, respectively, and
g∗2(x) corresponds to the time-interval untilr1(t) + r2(t) = 1 in caseu + v > 1 (cf. dotted box in Fig. 2
(left)). Hence, denotingf∗

i = x · f(x) · g∗i (x), the first integralI1 = I1(x, u, v) can be written as

I1 =























































∫ x4

x0

f∗
1 , whenx4 = min{x1, x2, x4},

∫ x2

x0

f∗
1 +

∫ x4

x2

f∗
3 , whenx2 = min{x1, x2, x4},

∫ x1

x0

f∗
1 +

∫ x4

x1

f∗
2 , whenx1 = min{x1, x2, x3, x4},

∫ x1

x0

f∗
1 +

∫ x3

x1

f∗
2 +

∫ x4

x3

f∗
3 , otherwise.
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Fig. 3. Joint distribution of sending ratesr1(t) andr2(t) at an arbitrary point of time. Figures on left and middle correspond to
the cumulative distributionP {r1(t) < u, r2(t) < v}, and the figure on right to the pdf.

Due to the symmetry, we finally have

F (u, v) =
I1(u, v) + I1(v, u)

E [X2]
,

and the corresponding pdf,

f(u, v) =
∂2

∂u ∂v
F (u, v).

The resulting cdf and pdf are illustrated in Fig. 3. Especially the pdf looks interesting, we have obtained
the “fingerprint” of the TCP rate control mechanism in the case of two flows.

IV. N UMERICAL SIMULATIONS

A. Idealized Model

Let us first consider the idealized model withn > 2 flows, and also a modified version with random
delays before a source receives a NAK. In summary, we consider the ideal model

1) without delays,
2) with random delays upon negative feedback,
3) with flow aggregation and no delays,
4) with flow aggregation and random delays.

Note that 1, 2 and 4 we deal with numerical simulations, whilethe case 3 we can obtain from the analytical
results. In particular, the idea is to evaluate how much aggregation approach and/or random delays deviate
from the idealized situation. The random delays are set so that the maximum delay is10% higher than the
minimum while the mean rateE [R(t)] is kept the same. The important statistics we consider are:

1) decrease in total rate∆, i.e., the time between two packet drops: a) the mean,E [∆], b) the variance,
V [∆], and c) the covariance between the consecutive times between packet drops,Cov [∆t, ∆t+1].

2) total sending rate at random point of time: a) the mean rate, E [R(t)], and b) the variance,V [R(t)]

The numerical results are presented in Table I. The analytical results for mean rateE [R(t)] and its
standard deviation are obtained using (1) and (2), respectively. From the numerical results we can make
several observations. Firstly, the random delay does not affect E [∆], which is rather obvious. However, the
random delay does increaseE

[

∆2
]

andσ(∆), which again is expected. In particular, adding the random
delay in the model does not have much effect onE [R(t)], which mean that the mean transmission rate can
be approximated by

1 −
1

2
·
E

[

∆2
]

E [∆]
,

even in the cases when there is a random delay before a source receives a NAK. As adding random delays
increasesE

[

∆2
]

it can be expected that also the variance of random variableR(t) becomes higher. And
this indeed is the case as can be seen from Table I.

Finally, comparing the results of the ideal model and the flowaggregation forn > 2 flows (for n = 2
flows the flow aggregation is accurate) suggests that the assumption made in the aggregation (i.e., flows
inside the aggregate share the bandwidth equally) is ratheroptimistic. The difference in the mean values of
∆ andR(t) is not large, but for their respective standard deviations the difference becomes noticeable.
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TABLE I : SIMULATION RESULTS COMPARED WITH THE ANALYTICAL (AGGREGATION WITHOUT DELAYS).

analytical simulated
Model # of flows E [∆] σ(∆) E [R(t)] σ(R(t)) E [∆] σ(∆) E [R(t)] σ(R(t))

ideal without delays 2 0.269 0.0666 0.857 0.09030.269 0.0667 0.857 0.0903
ideal with random delays 2 0.269 0.0763 0.858 0.0940

ideal without delays 3 0.184 0.0539 0.900 0.0654
ideal with random delays 3 0.184 0.0657 0.901 0.0707
aggregation without delays 3 0.175 0.0360 0.909 0.05660.175 0.0363 0.909 0.0567
aggregation with random delays 3 0.175 0.0523 0.910 0.0627

ideal without delays 4 0.140 0.0441 0.923 0.0512
ideal with random delays 4 0.140 0.0579 0.924 0.0582
aggregation without delays 4 0.129 0.0219 0.933 0.03980.130 0.0238 0.933 0.0412
aggregation with random delays 4 0.130 0.0450 0.934 0.0496

ideal without delays 5 0.113 0.0370 0.938 0.0421
ideal with random delays 5 0.113 0.0518 0.940 0.0506
aggregation without delays 5 0.103 0.0195 0.947 0.03470.103 0.0172 0.947 0.0324
aggregation with random delays 5 0.103 0.0420 0.948 0.0427

B. Comparison Against “real TCP”

Finally, we will present the numerical results obtained by aJ-Sim simulator. J-Sim is an open source,
component-based compositional simulation environment developed in Java [11], which, among other things,
provides a detailed implementation of the different flavorsof the TCP protocol. In this work we have chosen
to use TCP Reno. The simulation setup is illustrated below. The feedback channel is lightly loaded and is
not thus depicted in figure. Otherwise, the parameters are asfollows:

• two TCP flows
• TCP MSS of512 B
• single bottleneck link,1 Mb/s
• router buffer size,B, is a variable parameter
• buffer management scheme: RED with minTresh

0.25 · B, maxTresh0.75 · B, maxProb0.02.
dropped
packets

n

buffer, B link, 1Mbit/s

sources

1

2 sink

1) Packet inter-loss times:From the simulations we have recorded the time instances when a packet is
dropped and the aim is to compare the statistics of∆ (after normalization). The covariance and correlation
coefficient between two consecutive inter-loss times are given in Table II. The model predicts negative
correlation, i.e., after a short inter-loss time the next istypically longer, and vice versa. This is sensible,
as a short inter-loss time means that a flow with a rather smalltransmission rate was chosen to reduce its
rate, and consequently, the other flow has rather high transmission rate and is likely to be chosen to reduce
its rate the next. However, in the simulations we have obtained both negatively and positively correlated
structure of inter-loss times. The inconsistency is due to the RED algorithm, which tries to “smoothen” the
loss process, and to the fact that buffer size is strictly positive (as it is in reality).

The empirical inter-loss distribution is depicted in Fig. 4for three different buffer sizes:3000, 8000 and
15000 bytes. In the first two cases the distribution seems to have two peaks, where the first one corresponds
to the burst of losses, and the second peak to the next loss after the rate reduction. As soon as the buffer size
is large enough, about 12000 bytes in our case, the first peak in practice disappears. The mean inter-loss
time increases as the buffer size is increased. However, ourmodel is “bufferless” and thus is not capable
to grasp this. Instead, let us define a so-called normalized inter-loss time,

∆∗ =
∆

E [∆]
.

Then we can compare the second and third moment of∆∗ based on the simulations and the model. According
to the model, the first three moments of the (non-normalized)inter-loss time are

(0.269, 0.0769, 0.0231) .

The respective normalized moments for the simulation results and the model are given in Table II. As
can be seen from the table, the results with buffer sizeB = 15000 bytes matches best the shape of the
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TABLE II : STATISTICS OF PACKET INTER-LOSS TIMES.

case E [∆∗] E
ˆ

∆2

∗

˜

E
ˆ

∆3

∗

˜

Cov [∆k−1, ∆k] ρ
B=3000 1.0 1.492 3.017 −0.00148 −0.239
B=8000 1.0 1.613 2.944 −0.00462 −0.244
B=15000 1.0 1.062 1.195 0.00096 0.108
model 1.0 1.061 1.182 −0.00134 −0.303
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Fig. 4. Histogram of inter-loss times for buffer sizes of3000, 8000 and15000 bytes.

inter-loss distribution predicted by the model. For the shorter buffer sizes the burst losses, obviously, lead
to mismatch. A fact that could have been seen already from thefigures. But more importantly, it is clear
that the inter-loss process (and the behaviour of the systemin general) depends strongly on the buffer size
and developing an elementary and general model for it is an extremely difficult task.

2) Times betweencwnd adjustemts:With a small buffer size (as assumed implicitly in the model)the
packet losses can be bursty, i.e., a TCP source may experience multiple losses during a single period.
In order to take this into account we have also studied the times between congestion window (cwnd)
adjustments. The simulation results for the key statisticsare shown in Table III, and the corresponding
empirical distribution is depicted in Fig. 5. From the figureit can be seen that when the buffer sizeB
is large enough (B = 15000), the situation is rather good and the resulting distribution is smooth. Also
the correlation between two consequent intervals is negative and thus matches the model better than when
considering the times between packet losses (cf. Table II).For a smaller buffer size (B = 8000) there are
two peaks in the distrubution. This corresponds to the events where during a congestion period both flows
experience packet losses and consequently reduce their sending rate. We note that this kind of behaviour
does not exist in the model, where it is explicitly assumed that NAK is sent to exactly one of the sources.
When buffer size is very small (B = 3000) the system is more or less synchronized.

Finally, in Fig. 6 we have depicted the estimates ofE
[

∆2
∗

]

and E
[

∆3
∗

]

as function of buffer sizeB
according to the times between packet losses (diamond symbol), and the times betweencwndadjustments
(star symbol). From the figure we can make some observations.Firstly, the process “settles” once the buffer
sizeB is 12kB or larger, and secondly, both time-intervals exhibit similar behaviour while thecwndbased
statistics are generally lower corresponding, e.g., to smaller variance.

TABLE III : STATISTICS OF TIME INTERVALS BETWEENcwndADJUSTMENTS.

case E [∆∗] E
ˆ

∆2

∗

˜

E
ˆ

∆3

∗

˜

Cov [∆k−1, ∆k] ρ
B=3000 1.0 1.220 1.997 0.00017 0.035
B=8000 1.0 1.517 2.627 −0.00645 −0.317
B=15000 1.0 1.063 1.205 −0.00117 −0.127
model 1.0 1.061 1.182 −0.00134 −0.303
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Fig. 5. Histogram of time intervals betweencwndadjustments for buffer sizes of3000, 8000 and15000 bytes.
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Fig. 6. Estimates of∆2

∗ and∆3

∗ as a function of buffer sizeB.

V. CONCLUSIONS

In this paper we have studied an idealized fluid flow model for TCP rate control. First we have given
some new analytical results concerning the state space of the embedded Markov chain, and derived the joint
distribution of the sending rates. In particular, for the state space it was shown that the states are dense
in interval [0, 1], and that any two macro states, i.e., subintervals of[0, 1], communicate. These arguments
support the approach used in [1], where the steady state distribution was described by a continuous pdf.

Then, by means of numerical simulations, we compared the elementary model to a generalized version by
introducing random fluctuations in the one-way delay. It wasshown that the performance quantities obtained
from the model are not sensitive to small variations of RTT, which is a desirable property and justifies the
original assumption of a constant delay in negative feedbacks. Especially the mean values remained almost
the same, while, e.g., the variance of inter-loss times naturally increases. The model was also compared with
simulation results obtained from an actual TCP implementation. This, however, turned out to be extremely
difficult task due to the TCP itself. There exist several versions of TCP (e.g., Tahoe, Reno, Vegas) which
all exhibit slightly different characteristics. Also, e.g., the parameters of a (single) bottleneck link may have
a great impact on the behaviour of the TCP sources, while in the model the bottleneck router is assumed
to be ideal. Thus, it comes as no surprise that the model cannot cover this extremely broad spectrum of
different variations. A somewhat better match is obtained if the model is compared to the times between
congestion window adjustments (instead of simply to the times between packet losses).

However, we can still say that the considered model of TCP serves as a good candidate for analytical
work when there is a need to model TCP-like traffic in simple terms. It catches the capacity probing nature
of the TCP and its sawtooth behaviour while, at the same time,can be described in simple terms (three
parameters: number of sources, linear increase rate and multiplicative decrease factor). The future work
includes extending the model to accomodate the possibilityof several TCP sources experiencing a packet
loss during a single congestion period.
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