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Abstract

With wavelength division multiplexing (WDM) several optical signals can be trans-
ferred in a single optical fiber [6][7]. This technology allows more efficient use of the
huge capacity of an optical fiber but also poses new network design and management prob-
lems, especially when wavelength conversion is not possible in the nodes. In this paper
we consider the routing and wavelength assignment problem in such networks. In a single
fibre case the the wavelength assignment is essentially a graph coloring problem once the
routes are fixed. With multiple-fibres the problem changes a little and can no longer be
presented as graph node coloring. Chosen routing has great impact to the final solution and
an iterative algorithm for choosing the routes is briefly studied.

1 Introduction

The ever increasing demand of higher transmission bandwidth requires new solutions. One
promising concept for increasing the capacity is wavelength division multiplexing (WDM). In
WDM several optical signals using different wavelengths are transferred in a single optical fiber.
Thus the huge capacity of the optical fiber can be used more efficiently. The solution can also
be cost effective as the existing physical network can be used.

The main characteristics of WDM can concisely be summarized as follows:

• fully photonic network where fiber amplifiers are used

• several channels are transmitted simultaneously in each fiber

• the capacity of network is great (tens of Gb/s)

• the network forms a wide backbone-network

• routing in nodes is based on wavelengths

In this paper we concentrate on routing and wavelength assignment problem in WDM net-
works. When several signals share the same fiber they must use different wavelengths. The
available technology sets an upper limit to the number of wavelengths. Thus we are led to



consider the problem of creating a given set of connections in the network with the minimum
number of wavelengths. The formulation of the optimization problem depends on whether
wavelength conversion is possible in the nodes or not. If the wavelength conversion is possible
the optimal solution just minimizes the maximum number of used channels over the links. The
routing problem is the same as in normal circuit-switched networks where the only limiting
factor is the number of channels on each link.

On the other hand, if wavelength conversion cannot be done in the nodes, this sets new
constraints to the optimization problem. Each connection uses the same wavelength on all links
along its route. A feasible solution uses less or equal number of wavelengths on each link than
there are available and no two connections sharing a common link have the same wavelength.

There can be also networks with partial wavelength conversion. Later on this paper we
consider networks where some links have more than one fiber. This is roughly equivalent with
partial wavelength conversion when each wavelength can be converted to one or more other
wavelengths. In some cases this can result as reasonable savings in the number of wavelengths.

We assume that there is no need for dynamical reconfiguration of the network, i.e. the set of
connections is static.

The routing and wavelength assignment problems are tightly linked together. The prob-
lem has been discussed in several recently published papers [8][9][11][12]. In the approach
discussed here, we first determine the routes for each connection and then try to assign the
wavelengths with minimum number of used wavelengths. This is done iteratively so that the
routing is changed slightly after the coloring with the aim to find a configuration which can be
colored with an even smaller number of colors. In practice it is enough to find a solution which
does not use more wavelengths than the available technology allows.
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Figure 1: Example network and it is optimal configuration.

The process of routing and wavelength assignment is represented in figure 1 (single fibre
case). On the left is a physical network. In the middle the routing is fixed and wavelengths
are assigned. The graph on the right is the graph which we must color, i.e. nodes of the graph
represent connections, denoted by origin destination pairs, and nodes are neighbors (connected
by an edge) if and only if corresponding connections share some common link. In order to avoid
wavelength conflicts in the network the graph has to be colored in such a way that neighbor
nodes always have different colors.

The shortest path between two nodes can be obtained by using e.g. the Dijkstra algorithm
or the Floyd algorithm. Both algorithms have same complexityO(v3) if the paths between
each node pair are searched. In practice the Floyd algorithm is usually a bit better due smaller
constant coefficients [13]. The shortest path does not however always lead to an optimal config-
uration due the wavelength conflict requirement. The process of choosing the route candidates
is presented in chapter 2.

Once the routing is fixed the problem is to minimize the number of used wavelengths. In
chapther 3 we consider wavelength assignment in single fibre networks. The single fibre case
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can be mapped to a graph node coloring problem, which is a well-known NP-complete problem.
In the chapter 3 several graph coloring algorithms are briefly discussed and tested. In chapter 4
a more general case of arbitary number of fibres is considered along. Finally, in chapter 6, we
present some conclusions.

2 Choice of the routing candidates

All algorithms discussed here assume that they are given a set of possible routes for each re-
quired connection. Usually the best route is the shortest route, but sometimes for few connec-
tions it is better to use a little longer route to stay away from a heavily loaded link.

The routing algorithm searches the shortest routes between the given node pair. The algo-
rithm is similar to Dijkstra’s algorithm, i.e. at each step, it takes one step further from node A,
and will eventually find the shortest path to node B. The algorithm has two tunable parameters
shown on table 2. In other words, we can allow routes which are∆l hops longer than the short-

Parameter Explanation
rmin minimum number of route candidates per node pair
∆l maximum difference in the lengths of accepted routes. If

zero, only the shortest routes are accepted.

Table 1: Parameters controlling the choice of routing candidates.

est possible route and no more thanrmin route candidates are accepted. Routes with cycles are
excluded naturally. In practice it seems to make sense to allow at least one link longer routes.
In one example network the number of required wavelengths dropped by about 20%!

3 Wavelength assignment in single fibre networks

Assume, that we are given a fixed physical all-optical network where wavelength division mul-
tiplexing (WDM) is used to exploit the huge capacity of all-optical network. The network nodes
are assumed to be incapable of wavelength conversions and each link consists of a single fiber.
The problem is to configure the given connections into the network with minimum number of
wavelengths. The problem is called routing and wavelength assignment problem (RWA) and it
has been shown to be NP-complete.

When the routing is fixed, our task is to minimize the number of used wavelengths. The
problem can be represented as a graph node coloring problem. In coloring graph each node
represents one point-to-point connection (see figure 1). Those connections which share some
common link are neighbors in the coloring graph, i.e. are connected by an edge, and thus must
be colored with different colors. We assume here that links are alike, i.e. capacities of links are
same. So our only objective is to minimize the number of different wavelengths required.

As the graph node coloring problem is NP-complete heuristic methods must be used for
a practical solution. A number of different heuristic methods have been proposed. Some of
them are based on well-known generic methods such as simulated annealing (SA) and genetic
algorithms (GA). With a proper choice of energy function SA works well with random graphs.
A more recent heuristic algorithm called tabu search (TS) gives also good results with graph
coloring problem [3]. The lightweight end of coloring algorithms are representd by greedy
algorithms [4][5]. These algorithms will be discussed in more detail in the following.
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Most of the heuristic algorithms have numerous parameters which must be tuned to partic-
ular problem.

3.1 Reduction of the given graph

If we are only interested in finding a feasiblek-coloring for some graph, the graph can often be
reduced. The reduction is possible in the following cases:

• If some node has less thank neighbors, the node and edges connecting it to other nodes
can be removed as there will always be some color available for it.

• A nodeA can be removed if all its neighbor nodes are also neighbors of some nodeB,
when any color which works for nodeB is legal for nodeA as well.

In practice the reduction did not seem to lead to essentially better results.

3.2 Graph Node Coloring with Greedy algorithms

Greedy algorithms are a very quick way to find usually decent coloring for a graph [4]. Al-
gorithms work in some predefined order through all the nodes and assign some free color to
them. So the basic step in these algorithms is that they assign such a color to next node that
does not cause violation within the subgraph already given colors. There are many variants of
greedy algorithms. The one we used tries to color next node first with color 1, then with color
2 etc. The order in which nodes are given a color is determined by their degree, i.e. the number
of neighbors. The node which has most neighbors is colored first. Another variant of greedy
algorithms, called DSATUR [5], dynamically chooses the next node according to number of
possible colors per node.

Parameter Explanation
bt Use backtrack, 1 if yes, otherwise 0.
dsatur Next node colored is one with fewest possibilities left.

Table 2: Greedy algorithms

3.3 Simulated annealing

Simulated annealing (SA) is a widely used heuristic algorithm for hard combinatorial problems[1][2].
It models the nature where a cooling system tends to move toward lower state of energy. The
temperature defines the probability of accepting a move leading to a higher state of energy.
During annealing temperature is brought gradually down. The algorithm itself is very simple
and easy to adapt to different kinds of problems, which is one of main reasons for its success.

The goal of optimization is to minimize the number of colors which is thus a logical choice
as energy function. Denote this energy function asEnr. A straightforward way to solve the
node coloring problem is thus following:
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1. In the beginning assign each node a unique color.
2. Set the temperatureT = T0 (e.g.T0 = 1).
3. The energyE of the system is the number of used colors.
4. Choose a random node and a random new color for it. Make sure that the new color does not

lead to an illegal configuration.
5. Compute the change of energy∆E.
6. If ∆E < 0 or e−∆E/T > rnd(0, 1) accept the change.
7. If there has been at leastM changes orN trials, then setT = α ·T (α is a small constant, eg.

0.95).
8. If T > T1 go back 4.

Also other kinds of formulations have been suggested for energy function [1]. A drawback
with this formulation is that energy can only have discrete values and it makes hard for the
algorithm to find the right direction to advance. It’s clear that a coloring which has only few
nodes using some color is more likely to be closer a better solution than a coloring which has
colors used more equally. So it makes sense to favor moves leading toward a configuration with
some colors used relative frequently and some colors only few times. This can be done at least
in two different ways.

3.3.1 Choosing new colors from non uniform distribution

One way to achieve quicker convergence is to use non uniform distribution when choosing
new colors. LetF be a frequency vector of colors, i.e.fc tells us how many times colorc
is used currently. The sum over the elements ofF is clearly the number of nodesn. Define
F′ = [F 1]/(n+1). NowF′ can be used as probability distribution for the new color of random
node.

By usingF′ instead of uniform distribution we favor the most used colors and hope that
we end up with fewer colors quicker than ’randomly’ walking on constant energy plane. Both
uniform and non-uniform distributions allow the choice of totally new color for the node. This
might be needed to escape from local minimums.

3.3.2 Using alternative energy function

About the same functionality can be reached by using an alternative energy functionEsq defined
as

Esq := −
∑

c

f 2
c = −F · F.

SoEsq is square of the length of frequency vector. It’s clear that this energy function also favors
configurations where some colors are used more frequently than others.

But the optimal coloring in the sense ofEsq is not necessarily same as withEnr. The optimal
coloring in the sense ofEnr is however a local minimum forEsq and we are hoping that the
local minimum is visited during the annealing process. So it’s worth storing the best coloring
in the sense ofEnr during annealing proces and returning that instead of the coloring at the end
of annealing.

Third possibility for energy function is the sum of inverses:

Ein :=
∑
fc>0

1/fc =
∑
fc>0

f−1
c ,
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Parameter Explanation
T0 The starting temperature. If negative the system is first

heated till the probability of accepting a move leading to
higher state of energy is about half.

T1 The temperature when annealing is ended.
alpha The constantalpha determines the rate of cooling:

Tn+1 := α · Tn.
Ef Used energy function, eithercolor, inverseor square.
Nd New color distribution, defines how a new random color

is chosen. Either from uniform distribution (uniform) or
by favoring frequently used colors (freq).

Table 3: Parameters of simulated annealing.

which pays more weight on removing seldom used colors. It does not really matter if some
color is usedn or n+1 times, whenn is large, but moving from2 to 1 is likely to lead to a drop
of one color.

The implementation of this energy function does not need any divide-operations either, as
inverses of possible values of color usage can be calculated in advance. Sample runs suggest that
this energy function works very well with random graphs. Table 3 summaries the parameters of
SA algorithm.

3.4 Tabu-search

Tabu search (TS) is a relatively new heurictic method [1][2][3]. It is basically a random local
search, but some movements are forbidden, i.e. tabu. Usually a move leading back to previous
point is classified as a tabu move for certain number of rounds. This should make it possible
to get away from local minima. The search is ended when the cost function reaches a certain
predefined value or a certain number of rounds has elapsed.

For the graph node coloring problem the tabu search works very well. This algorithm differs
from all the previous ones in that it does not try to find the minimum coloring but a legalk-
coloring for the given graph, i.e. it tries to choose for each node one of thek colors in such a
way that no neighboring nodes get the same color.

Let s = (V1, . . . , Vk) be a partition of graphG, where subsetVi of nodes represents those
nodes having colori. Define a cost function as

f(s) =
∑

i

|E(Vi)|,

where|E(Vi)| is the number of edges in subgraphVi. If there is an edge in some subgraph it
means there are neighbors sharing the same color. So whenf(s) = 0 we have a legalk-coloring
for the graph.
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1. We are given: graphG, target number of colorsk, length of tabu list|T |, number of neighbors
rep, and maximum number of iterationsnbmax.

2. Set some initial configurations = (V1, . . . , Vk).
3. Setnbiter = 0.
4. Initialize tabu listT .
5. As long asf(s) > 0 andnbiter < nbmax

(a) Findnrep neighborssi for which s → si 6∈ T or f(si) ≤ A · f(s).

(b) Choose the best among them (or the first for whichf(si) < f(s)).

(c) Update tabu listT .

(d) Sets = s′ andnbiter = nbiter + 1.

6. If f(s) = 0 we have found a legalk-coloring for given graph. Otherwise we can increasek
and try again.

As a neighborhood for given partition we define partitions where one node is moved to
another subset. Only nodes which have a neighbor colored with same color are included. Aspi-
ration levelA is used to accept even tabu moves if the result leads considerably better result.

In order to find the minimumk for which the algorithm finds a legal coloring, we must
run the algorithm several times with decreasing values ofk and iterate until the algorithm fails.
On the other hand, if we are only interested in finding a feasiblek-coloring the iteration is not
required. This can be the case with WDM.

The tabu search algorithm is quite robust and works well with graph node coloring problems.
Table 4 lists possible parameters with their default values.

Parameter Explanation
len length of the tabu list.
nrep number of neighbors searched on each round.
nbmax number of rounds the algorithm is run.

Table 4: Tabu search parameters.

On each round the algorithm triesnrep possible moves and picks the best of them unless
it’s considered tabu. The reverse move of chosen move is stored in the tabu list and oldest
entry is removed from it. Even if a move is classified as tabu it’s chosen if it leads to the best
configuration found so far (admiration).

3.5 Other possible approaches

The algorithm which always finds the optimum coloring of given graph is represented in figure
2. The algorithm divides the possible colorings to two different cases in each step until the
graph is perfect, i.e. each node is a neighbor of all the other nodes. In each step a pair of nodes
which are not neighbors are searched. Now these nodes can be colored with the same color or
with different colors. If the nodes are given the same color, we can clearly merge them into one
node inheriting all the neighbors of the merged nodes. Otherwise, if different colors are given
to the nodes we can draw an edge between them (right subtree in figure 2). At the end, among
all the perfect graphs obtained the one with the smallest number of nodes is chosen. As the
number of nodes increases, the size of the search tree clearly becomes too large. One way to get
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Figure 2: Coloring the graph with exhaustive search.

Parameter Explanation
save The number of elements saved on each level.
alg Algorithm used to evaluate the subtree.
llimit Whatever to utilize or not lower limits.

Table 5: Pruned search.

a little bit further is to prune the search tree. If at each stage we drop those candidates which do
not look promising the algorithm can handle considerably larger graphs. The greedy algorithm
can be used to assess whether a graph is promising. Furthermore it holds for any graphG that

χ(G) ≥ ν2

ν2 − 2ε
,

whereχ(G) is the graph’s chromatic number, i.e. the smallest number of colors needed to color
the graph,ν is the number of nodes andε is the number of edges. The inequality can be used
here to avoid searching of such subtrees which cannot contain better solutions than the best one
found so far.

Genetic algorithm (GA) is another widely used standard method for hard combinatorial
problems. In GA the idea is to simulate evolution. Here vectors represent genotypes and the aim
is to find as good an individual as possible. Also the node coloring problem can be solved with
GA [1]. In this case the vectors define the order in which the nodes are colored. So basically
we try to find the best ordering to color the nodes with the greedy algorithm. The choice of
crossover operation for permutations is not straightforward and several different schemes have
been proposed.

Parameter Explanation
rounds The number of generations run.
size The size of the population.
mutation The probability of mutation operation.

Table 6: Parameters of Genetic Algorithm routine.
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Figure 3: Running times of graph coloring algorithms.
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Figure 4: Number of used colors with different algorithms.

3.6 Some results of graph coloring algorithms

All the presented algorithms were coded in C language and tested with random graphs where the
nodes were neighbors with probability of0.5. Figure 3 shows the average running time of each
algorithm. It should be noted that the used parameters have a great effect on the running times
and the final results of certain algorithms. We tried to choose the parameters so that running
times would be somewhat similar with each other. So these figures should be considered as
examples only. It is not clear either how well random graphs match with actual graphs arising
from real networks.

The algorithms can be grouped into two classes according to their running times (see figure
3). Greedy algorithms are clearly very fast and heuristic algorithms SA, GA and TS take more
time to run. The exhaustive search (and pruned version) are not shown at all as their running
times would have been enormous. With regard to the optimization result (see figure 4) the tabu
search was the best, but also the simulated annealing gave very good results. The use ofinverse-
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energy function with SA seems to be a better choice thansquare-energy function when coloring
random graphs.

4 Routing and wavelength assignment in multifibre networks

This chapter describes the implementation of simple algorithm, which solves both routing and
wavelength assignment (RWA) for arbitary network. Network may have several fibres between
certain nodes. We assume that the network is required to be fully-connected. Similar heuristics
as in simple case can be used here but the problem no longer maps easily onto a graph node
coloring problem if there is at least in one link more than one fibre.

4.1 Definitions

Assume that route candidates are given (ch. 2). Thus we are given anr × nl binary matrix
R defining links each route candidate uses, wherenr is the number of routes (in total) andnl
is the number of links in physical network. So each column of matrixR represents a link and
each row a possible route for some connection. Elementrij is one if routei goes through link
j, otherwise zero.

We are also given anc × 2 matrixQ, wherenc is the number of connections to be config-
ured into the network. The matrixQ has the information about which routes belong to which
connection. The elementqi1 is the location of the first route for connectioni in matrixR, and
the elementqi2 is the number of route candidates for connectioni.

From those candidates we are supposed to choose a subset (rows from matrixR) containing
one route for each required connection.

A

D C

B

3

4 2

1

Figure 5: A sample network.

In figure 4.1 there is a simple symmetric network of four nodes. It’s supposed to be fully-
connected, i.e. each node is connected to each other, making total of 6 connections. Now only
connections between opposite corners can be routed in more than one way if we take account
only the shortest paths. Hence, for this network we get the following matrices:

R =




R1

R2

R3

R4

R5

R6

R7

R8




=




1 0 0 0
0 0 1 1
1 1 0 0
0 0 0 1
0 1 0 0
0 1 1 0
1 0 0 1
0 0 1 0




and Q =




0 1
1 2
3 1
4 1
5 2
7 1




.
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So for example the first connection between the nodesA andB uses only link 1 (R1) as nodes
are neighbors in the network, but for the second connection between the nodesA andC there
are two possible routes: through links 3 and 4 or through links 1 and 2. In matrixR this isR2

andR1.

4.2 Multiplicity

It is possible that some links have more than one fibre. So we assume that a vectorM (multi-
plicity) defines the number of fibres per link. It’s length is clearlynl. If there is only one fibre
on each link the vectorM is simply a vector where each element is one. For the sample network
we would have

M =
(
1 1 1 1

)
.

4.3 Routing and wavelength assignment

Now we know the given physical network and the connections which are suppose to be config-
ured into it. Letpj denote the index of route chosen for the connectionj. Our job is to find a
feasible configuration (a route and a wavelength for each connection) with as few wavelengths
as possible.

Suppose that we have chosen some set of routes for connections (rows from matrixR), and
denote those connections with{Rpi

}, i = 1, . . . , nc. We have also fixed wavelengthci ≥ 1 for
each connectioni. The greatest wavelength usedcmax = maxi ci is the function to be optimized.

The link usage for some colorc is

Uc =
∑

{i|ci=c}
Rpi

,

and we get anc × nl usage matrixU

U =




U1

U2
...

Ucmax


 ,

which tells us how many connections are using certain wavelength on certain link. That isucj

is the number of connections using wavelengthc on link j.
In order to avoid wavelength conflicts we must have

ucj ≤ mj ∀ j = 1 . . . nl, c = 1 . . . cmax. (1)

This means, that the elements of each row of the matrixU must be smaller than or equal to the
elements of the multiplicity vectorM, i.e. no link may have more thanmj connections using
the same wavelength. Another way to say the requirement is that for eachc the vector(M−Uc)
may have no negative elements.

Objective function was the number of wavelengthcmax, so essentially we try to minimize
the size of the usage matrixU without violating the feasibility requirement (1).

The sum over all the elements of the matrixU is equal to the number of the links the
configuration uses. If we have limited the route candidates to include only the shortest routes
the sum is constant. So the problem is to ’pack’ matrixU .

The problem can be attacked with well-known heuristics like simulated annealing, genetic
algorithms and tabu search. In this paper a simple greedy approach is used to get some results
when comparing single fibre case to multi fibre case.
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4.4 Lower limits

If we limit the search space only to shortest possible paths, no matter what route is chosen to
each connection, it will use same capacity from global network (number of links the shortest
route contains). Let̄L be average length of routes, so the average number of connections per
fibre is

ncL̄∑
j mj

from what its clear that [14]

cmax ≥
⌈

ncL̄∑
j mj

⌉

Once the routing is fixed (routepi for connectioni) the number of connections per link is known
and we get

cmax ≥ max
j

⌈∑
i rpii

mj

⌉
,

that iscmax must be greater or equal than the number of connections on any link divided by
links multiplicity. Neither of these limits take account the wavelength conflicts and might be
poor estimates in worst cases.

5 Examples

In figure 6 there are two hypothetical physical networks residing in Finland. Several configura-
tions are briefly studied with these networks. The used routing algorithm tries different sets of
routes iteratively. Each set of routes is colored with greedy algorithm and the result is used as an
estimate for the goodness of the choice. The change in routing (one point-to-point connection
is routed in a different path) is made randomly and only the good changes, which lead to less or
equal number of colors, are accepted. Thus, the route selection algorithm is essentially a local
random search. A more sophisticated method is probably worth trying.

The first network is easy and our algorithm finds the optimal solution of 10 wavelength in
single fibre case. So including more route candidates or doubling the the numbder of fibres can
not lead any better result.

The larger network represents a harder problem. In single fibre case algorithm finds a con-
figuration of 64 wavelengths, which can not be considered as a good result. By including the one
hop longer routes the number of required wavelengths dropped by 14. When including routes
with one hop more than shortest possible When instead of including one hop longer routes we
doubled the fibres in each link the algorithm found a solution of 31 wavelengths.

network nodes single single, +1 multi
network I 11 10 10 5
network II 31 64 50 31

Table 7: Results with example networks.

Overall one could assume that a better heuristic algorithm in selecting the routes could prob-
ably lead to both quicker and better solutions. Including a little longer routes than the shortest
routes can lead to dramatically better results like what happened with the second network. In-
stalling another fibre into each link does not seem to be worth it in example cases. Maybe if

12



8  Lappeenranta

7  Jyväskylä

11  Oulu

1  Helsinki

3  Vantaa

2  Espoo

9  Joensuu

4  Turku

6  Tampere

5  Vaasa 10  Kuopio

Kouvola

Mikkeli

Varkaus

Kuopio

Vaasa

Pori

Rauma Lahti

Tampere

Jämsä

Lapua

Oulu

Tornio

Kemi

Rovaniemi

Kittilä

Ivalo

Riihimäki

Hämeenlinna
Lappeenranta

Jyväskylä

Turku

Espoo

Vantaa

Helsinki

Kaskinen

Pietarsaari

Kokkola

Raahe

Nurmes

Joensuu

Kajaani

Iisalmi

Imatra

Figure 6: Hypothetical WDM-network in Finland.

the network were dynamically configured by adding a new lightpath without changing current
ones, the effect of several fibres per link would be greater. These are only two examples and
one must be careful when making conclusions.

6 Conclusions

The routing and wavelength assignment in WDM networks is not a straightforward task. The
problem is NP-complete and heuristic algorithms must be used to find a practical solution. The
problem can be divided to two phases: first one determines the used routes and then assigns
wavelengths to the connections. This can be even done iteratively so that different routings can
be compared. The wavelength assignment algorithm should be rather quick in that case.

The effect of including one hop longer routes was demonstrated. In sample network it gave
about 20% save in the number of wavelengths which is considerable high. On the other hand,
the doubling the number of fibres on each link does not seem to have great affect in the results
if the multiplication of the number of wavelengths and the number of fibres per link is used as
the measure.
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