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ABSTRACT
In this paper we present an adaptive algorithm to estimate
the transient blocking probability of a communication sys-
tem, described by a Markov process, during a finite time
interval starting from a given state. The method uses im-
portance sampling for variance reduction and adjusts the
parameters of the twisted distribution based on earlier sam-
ples. The method can be effectively applied to a decision
making problem where future revenues are estimated with
extensive simulations, in order to find an improved policy
by so called first policy iteration.
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1. Introduction

The theory of Markov decision processes (MDP) is an im-
portant tool which can be applied to many problems emerg-
ing in different areas of business and technology. For exam-
ple, in a modern all-optical network using WDM, a well-
known problem is to assign a route and wavelength to each
arriving connection so that there is no wavelength conflicts
and, at the same time, trying to minimize the long term
blocking probability. This is commonly referred to as the
routing and wavelength assignment problem (RWA) [1, 2].
In recent papers [3, 4] the authors have presented a robust
idea to improve any given RWA algorithm by so called first
policy iteration. The method relies on having good esti-
mates of the future costs during time(0, T ) given that the
system starts from statei. This paper is a continuation of
that work in a more general framework. In this paper we
present a method to effectively estimate by simulations the
incurred costs of a Markov process starting from certain
statei during a finite time interval.

Importance sampling is a well-known method to re-
duce the variance of the estimators [5]. Briefly the idea is
to take samples using another pdf instead of the original
one to make interesting events more probable (and unin-
teresting events less likely at the same time). In particu-
lar, events having no contribution to the estimated quantity
should be made to occur with zero probability. In this paper
we present how the importance sampling parameters can be
adjusted based on the earlier outcomes.

The rest of the paper is organized as follows. First, in

Section 2 we review the idea behind the importance sam-
pling. Then in Section 3 the variance of IS estimator is
studied and a relation between the original random variable
and variance of the IS estimator is presented. In Section
4 the IS is formulated for the case of process simulation
with Poisson arrival process. In Section 5 some simulation
results are shown for the Erlang loss system and, finally
Section 6 contains conclusions.

2. Importance Sampling

In importance sampling (IS) one tries to reduce the variance
of the estimator by taking samples of interesting quantity
using another pdf instead of the original. IS is especially
effective in the rare event simulation [6,7].

In this section a brief introduction to IS is given. For
further reference about IS see e.g. [5]. In Section 3 the
treatment of IS is extended to case where the statistics of
the studied system are unknown and the optimal IS param-
eters are estimated as the simulations proceed.

Later in this paper IS is formulated for a finite time
process simulation where customers arrive to the system
according to a Poisson process and incurred costs are to be
estimated.

Definition 1 (Twisted distribution)
Let X be a random variable with pdfp(x). Let p∗(x) be
another pdf for which it holds that,

p∗(x) = 0 ⇒ p(x) = 0. (1)

Thenp∗(x) defines a twisted distribution ofp(x), and cor-
responding random variableX∗ is a twisted random vari-
able ofX .

For the rest of the paper term twisted random variable is
used quite freely. Basically by a twisted random variable
we mean another random variableX∗ having a pdfp∗(x)
such that requirement (1) is satisfied. The requirement
guarantees that possible events forX are also possible for
X∗.

Proposition 1
Let X be an arbitrary random variable andh(x) a mapping
to R. Denote the expectation ofh(X) by θ = E [h(X)].
Then, for any twisted random variableX∗ it holds that,

θ = E [h(X)] = E [q(X∗)h(X∗)] , (2)



where the ratioq(x) = p(x)/p∗(x) is called the likelihood
ratio.

Proof:

E [h(X)] =
∫

R

p(x)h(x) dx

=
∫

R

p∗(x)
(

p(x)
p∗(x)

h(x)
)

dx

= E
[

p(X∗)
p∗(X∗)

h(X∗)
]

.

�

Definition 2 (Importance Sampling estimator)
Assume thatm independent samplesX∗

i , i = 1, . . . , m,
have been drawn, each from a separate twisted distribution
having the pdfp∗i (x). Then the obvious estimator for the
expectationθ is,

θ̂ =
1
m

m∑
i=1

p(X∗
i )

p∗i (X
∗
i )

· h(X∗
i ) (3)

=
1
m

m∑
i=1

qi(X∗
i ) · h(X∗

i ) def=
1
m

m∑
i=1

Y ∗
i ,

The random variableY ∗
i we refer to as the observed ran-

dom variable. For the estimatorθ̂ it holds that

E
[
θ̂
]

=
1
m

∑
i

E [Y ∗
i ] = θ,

V
[
θ̂
]

= V
[

1
m

(Y ∗
1 + . . . + Y ∗

m)
]

=
1

m2

∑
i

V [Y ∗
i ] .

If the twisted distributions are identical, i.e.p∗i (x) = p∗(x),
thenY ∗

i ∼ Y ∗ and,

V
[
θ̂
]

=
V [Y ∗]

m
=

E
[
Y ∗2

]
m

− θ2

m
.

The basic requirement for an estimator is that it is unbi-
ased, i.e. the expectations of the estimator and the estimated
quantity are equal1. But also, as stated before, the variance
of the estimator should be as small as possible (variance
reduction). The smaller the variance, the less samples are
needed to obtain an estimate with a required confidence in-
terval. Hence, as a criterion for the goodness, the variance
of the estimator should be studied. Thus, we are led to the
problem,

minimizeV [Y ∗] ⇔ minimizeE
[
Y ∗2

]
.

3. Variance in Importance Sampling

In this section a formula to express the variance of the ob-
served random variable in terms of the original random

1However, sometimes even biased estimators are acceptable.

variable is presented. This relation between the two ran-
dom variables will be later used to estimate the variance of
the IS estimator based on samples drawn from the original
distribution. In particular, it is possible to use the previous
samples to find a twisting that minimizes the variance of
the estimator.

Proposition 2
Let X andX∗ be random variables, where the latter is ob-
tained by twisting the original random variableX in the
standard way. Then the variance of the observed random
variableY ∗ = q(X∗) ·h(X∗) can be expressed in terms of
the original random variableX , and is,

V [Y ∗] = E
[
q(X)h2(X)

] − E [h(X)]2 . (4)

Proof:

V [Y ∗] = E
[
(Y ∗)2

] − E [Y ∗]2

= E
[
q2(X∗)h2(X∗)

] − E [h(X)]2

= E
[
q(X)h2(X)

] − E [h(X)]2 .

�
The variance ofY ∗ is the quantity to be minimized.

The smaller the variance is, the less samples are needed to
obtain a good estimate.

It is straightforward to obtain an unbiased estimator
for the variance of the observed random variable. Here,
however, we do not need it since we can as well minimize
the “second moment” in Eq. (4) as the latter term does not
depend on the twisting. For the first term we have an obvi-
ous estimate,

r̂ =
1
m

∑
i

p(X∗
i )

p∗(X∗
i )

h2(X∗
i ). (5)

Above it is assumed that all the samplesX∗
i are drawn from

the same distribution. This, however, does not have to be
the case. To this end, Proposition 2 can be rewritten in a
more general form.

Proposition 3
Let Yi, i = 1, . . . , m, be m observed random variables,

Yi = p(X∗
i )

p∗
i (X∗

i )h(X∗
i ), where eachX∗

i is a twisted ran-

dom variable with a separate twisted pdfp∗i (x). Let X∗

be another twisted random variable with pdfp∗(x), and
Y ∗ = p(X∗)

p∗(X∗)h(X∗) respectively. Then,

V [Y ∗] = E
[

p2(X∗
i )

p∗i (X
∗
i ) · p∗(X∗

i )
· h2(X∗

i )
]
− E [h(X)]2 .

Proof:

V [Y ∗] = V
[

p(X∗)
p∗(X∗)

· h(X∗)
]

= V
[
p∗i (X

∗)
p∗(X∗)

·
(

p(X∗)
p∗i (X∗)

h(X∗)
)]

,



which, using Proposition 2, gives,

V [Y ∗] = E

[
p∗i (X

∗
i )

p∗(X∗
i )

·
(

p(X∗
i )

p∗i (X
∗
i )

h(X∗
i )

)2
]

− E
[

p(X∗
i )

p∗i (X
∗
i )

h(X∗
i )

]2

= E
[

p2(X∗
i )

p∗i (X
∗
i ) · p∗(X∗

i )
· h2(X∗

i )
]
− E [h(X)]2 .

�
Proposition 3 can be used to estimate the variance of

Y ∗ based on the previous samples in the same way as was
done in Eq. (5). Then our task reduces to finding the twisted
pdf p∗(x) such that the estimator,

r̂ =
1
m

∑
i

p2(X∗
i )

p∗i (X
∗
i ) · p∗(X∗

i )
· h2(X∗

i ) (6)

=
1
m

∑
i

q(X∗
i )qi(X∗

i )h2(X∗
i ),

is minimized.

4. Application: Costs with Poisson Arrivals

In this section we define some random variables for a
stochastic systemS with Poissonian arrivals (see e.g. [8–
10]). Then some well-known results for Poisson processes
are presented and finally applied to formulate the IS forS.

Example 1 (Stochastic System with Poisson Arrivals)
Suppose a systemS with Poissonian arrivals, e.g. connec-
tions offered to a data communication network. At time0
the system is in some initial state and the aim is to estimate
the future costs during a certain time interval(0, T ). Let,


X = system path in(0, T ), defined by arrivals
and departures,

C = incurred costs,C = c(X),
N = number of arrivals,N = n(X).

p̃(k) = P{n(X) = k}
Note thatX is a random variable in the path space.

In a simulation, samples ofX are drawn and the ex-
pectationE [C] is estimated on the basis of them. The ob-
vious estimator for the mean costs is,

Ĉ =
1
m

∑
i

Ci. (7)

Next, we briefly review some well-known results of
Poisson processes which will be needed when formulating
IS for the stochastic systemS defined above.

Proposition 4
Given the number of arrivals,n, from a Poisson process in
a time interval(0, T ), thesen arrivals are uniformly dis-
tributed over this time interval.

The proof is simple and given in many textbooks. Proposi-
tion 4 is very useful when characterizing the IS with Pois-
sonian arrivals, namely we have the following corollary.

1 Corollary
When sampling a systemS with system pathsX∗ resulting
from a twisted Poisson arrival process with the arrival in-
tensityλ∗, instead of the original intensityλ, the likelihood
ratioq(x) needed in Eq.(2) depends only on the number of
arrivalsn = n(x), i.e.,

q(x) =
p̃(n)
p̃∗(n)

def= q̃(n),

wherep̃∗(k) = P{n(X∗) = k}.

Example 2 (IS with Poisson Arrivals)
We continue with Example 1. For mean costsE [C] it holds
that,

E [C] = E [E[C|N ]] = E [c̃(N)] ,

wherec̃(n) = E[C|N = n]. Let X∗ be the sample path
resulting from the twisted Poissonian arrival process with
arrival intensityλ∗, N∗ = n(X∗) be the number of arrivals
andC∗ = c(X∗) the incurred costs. The importance sam-
pling becomes,

E [C] =
∑

n

p̃(n) · c̃(n) =
∑

n

p̃∗(n)
[

p̃(n)
p̃∗(n)

· c̃(n)
]

= E
[

p̃(N∗)
p̃∗(N∗)

· c̃(N∗)
]

.

and when takingm twisted samples ofX we get the IS
estimator,

Ĉ =
1
m

∑
i

p̃(N∗
i )

p̃∗(N∗
i )

C∗
i =

1
m

∑
i

G∗
i , (8)

whereG∗
i = p̃(N∗

i )
p̃∗(N∗

i )C
∗
i is the real valued observed random

variable.

Note thatN∗
i andC∗

i are not independent but func-
tions of the random variableX∗

i in the path space, defining
the actual realisation, i.e. arrivals and departures from the
system.

There is no reason why the path samplesX∗
i should

be generated using the same twisted arrival rateλ∗. As-
sume that theith sample (or replication)X∗

i is obtained by
using a twisted Poisson arrival process with arrival intensity
λ∗

i . Then, the IS estimator for the mean costĈ generalizes
to,

Ĉ =
1
m

∑
i

p̃(N∗
i )

p̃∗i (N
∗
i )

C∗
i ,

which differs from (8) only in that now the denominator
p̃∗i (n) is also a function ofi. The question is what kind of
distribution should be used to obtain the next samplei+1?

In dynamic programming, the twisting can be ad-
justed based on the earlier samples, i.e. in this case after
each replication the next arrival rateλ∗

i can be chosen based
on earlier samples. This will be studied in the next section.



4.1 Variance of Observed Random Variable

In this section we try to minimize the variance of the ob-
served random variable. Propositions 2 and 3 presented in
Section 3 will be applied to the case where the twisting
concerns only the Poisson arrival process. The variance
of the IS estimator can be approximated based on the pre-
vious samples and the optimal arrival intensityλ∗ can be
estimated by minimizing the estimated variance .

Example 3 (Estimating the variance of an IS estimator)
Recall the stochastic system defined in Example 1. As be-
fore, letG∗ be the observed random variable. Using Propo-
sition (2) the variance ofG∗ can be expressed in terms of
the original random variableC,

V [G∗] = E
[

p̃(N)
p̃∗(N)

C2

]
− E [C]2 .

The latter term is constant and a change in the arrival pro-
cess only affects the first term. Hence, minimizing the vari-
ance is equivalent to minimizing the first term, for which
we have the obvious unbiased estimate (c.f. 5),

r̂ =
1
m

∑
i

p̃(Ni)
p̃∗(Ni)

C2
i . (9)

The next step is to choosep∗ such that (9) is minimized.

Example 4 (Constant increase in Arrival Rates)
We continue with the previous example. Letp∗ = p∗(α),
whereα > 0 is a constant multiplier for the arrival in-
tensity, i.e.λ∗ = αλ. Then the number arrivalsN∗ ∼
Poisson(αλT ), and (9) becomes,

r̂(α) =
e(α−1)λT

m

∑
i

1
αNi

C2
i .

After enough samples have been obtained the above equa-
tion can be minimized with respect to the parameterα.
Thus, omitting the constant divisorm, the functionf to
be minimized is,

f(α) = e(α−1)λT
∑

i

C2
i /αNi ,

where clearly the factore(α−1)λT is a strictly increasing
function of α and the sum strictly decreasing function of
α. Also both parts are always positive. Taking the first two
derivatives one gets,

f ′(α) = e(α−1)λT
∑

i

C2
i α−Ni−1(λTα − Ni),

f ′′(α) = e(α−1)λT
∑

i

C2
i α−Ni−2

[
(αλT − Ni)2 + Ni

]
.

The second derivative is always positive and hence the
function is convex and the minimum is reached exactly at

one point. At the minimum the first derivate is equal to
zero, which happens iff,

g(α) def=
∑

i

C2
i (λTα−Ni − Niα

−Ni−1) = 0,

The root can be found, e.g., by using the Newton-Raphson
method,

αk+1 = αk − g(αk)
g′(αk)

,

where

g′(α) def=
∑

i

C2
i (−λTNiα

−Ni−1 + Ni(Ni + 1)α−Ni−2).

The Newton-Raphson method is known to converge at least
quadratically for a simple root ify′′ is continuous [11, p.
366]. LetMi = M − Ni whereM = max

i
Ni. Then the

method gets the form,

αk+1 = αk − αk

∑
i C2

i αMi

k (λTαk − Ni)∑
i C2

i αMi

k (−λTNiαk + Ni(Ni + 1))
.

In the previous example the optimal twisting parameterα
was estimated based on the samples obtained by using the
original arrival intensityλ. However, it is also possible to
adjust the arrival rate after each replication of the system
path.

Example 5 (Adaptive IS with Poissonian Arrivals)
Return again to example where a stochastic system with
Poissonian Arrivals is simulated for a finite time period and
the twisting concerns the arrival intensity. Using (6) the es-
timate for the quantityr to be minimized (which also min-
imizes the variance of the next sampleG∗ = q̃(N∗) · C∗)
becomes,

r̂(α) =
1
m

∑
i

q̃(N∗
i ) · q̃i(N∗

i ) · C∗
i

2.

Thus, by storing the triple

{ni, si, gi} def= {N∗
i , p̃i(N∗

i ) · (G∗
i )

2, G∗
i },

for each sample gives,

θ̂ =
1
m

∑
i

gi,

r̂ =
1
m

∑
i

si

p∗(ni)
.

However, the adaptive approach can make it difficult
to estimate the variance of the estimator as the samples are
no longer independent (the distribution of each sample de-
pends on the previous samples). An easy solution to this
is to freeze the adaptive twisting for a certain number of
samples and estimate the variance based on them.



5. Simulation Results: Erlang’s Loss System

The Erlang loss system is a simple stochastic system often
used to model a link to which calls are offered. The user
population is assumed to be infinite, i.e. the arrival process
is modelled as a Poisson process with some parameterλ
(calls / time unit). Furthermore, the call holding times are
assumed to obey exponential distribution with mean1/µ.
The capacity of the link is finite,C, and calls arriving when
there is no free capacity are blocked and lost.

As an example we consider a system whereλ = 10,
µ = 1 andC = 16 and initially the system starts from state
10, i.e. there are10 customers in service at timet = 0.
Our problem is to estimate the average number of blocked
customers during the interval(0, 1)? For the reference,
in steady state this system has a blocking probability of
2.23%, and on average10 customers arrive during the given
time interval.

In Fig. 1 the variance estimate, with an added com-
mon constant̂C2, is depicted as a function ofα based on
4000 simulation replications using the original arrival dis-
tribution. The minimum is obtained withα ≈ 1.4 and the
variance reduction in this case is around1 : 3.

0.8 1.2 1.4 1.6 1.8 2
a

0.2

0.4

0.6

r

Figure 1. Estimated estimator variance as a function of
� after 4000 samples using the original arrival distribution
(� = 10).

Fig. 2 shows how the optimalα, estimated on the ba-
sis of the generated samples, evolves as the number of sam-
ples grows. It can be noted that after around400 samples
the behaviour seems to be quite stable, actually all dots past
that point lie close to1.4. This suggests that a reasonably
goodα can be obtained after a few thousand replications,
or even less.

Fig. 1 suggests that the variance of the IS estimator is
about3 times smaller than the original estimator. Hence,
the IS estimator should also converge3 times quicker. In
Fig. 3 the convergence of both the original and IS estima-
tors are depicted as a function of the number of replications
in one series of simulations. The IS estimator converges af-
ter around500 samples to the neighbourhoodof0.12, while
from the original estimator it takes about2000 samples to
converge to that level.

In the previous example the system started from a

1000 2000 3000 4000
samples

1.325
1.35
1.375
1.4

1.425
1.45
1.475
1.5

optimal a

Figure 2. Development of the estimated optimal � as a
function of the number of the samples. For N > 400 the
suggested� stays close to 1:4, which is the optimal twisting
in the light of these simulations.

1000 2000 3000 4000
samples

0.09

0.11

0.12

0.13

0.14
B

Figure 3. Convergence of the normal and IS(� = 1:4)
estimators as a function of the number of replications. The
system is initially in stateX(0) = 10.

state with a high occupancy. It can be expected that the
performance improvement is even greater when the inter-
esting event is rare, e.g. if the system occupation is initially
smaller or the arrival intensityλ is lower. To demonstrate
this another experiment was made where the initial occu-
pancy was chosen to be5. Based on4000 sample paths the
optimalα was estimated to beα ≈ 1.6. Among those4000
samples only about20 caused blocking events. In Fig. 4 the
convergence of the original and IS estimator is again de-
picted. The IS estimator gives a reasonably good estimate
after a few hundred samples, while the original estimator
seems to be far from reliable region. The expected number
of blocking events is10 times less than in the previous case
(0.12 → 0.011).

5.1 Application: Call Admission Control

In this Section we present an example of a possible appli-
cation of the adaptive IS technique presented earlier. As-
sume that calls arriving to an Erlang loss system originate
from two independent processes with arrival intensitiesλ1

andλ2, respectively. The higher priority class1 yields ex-
pected revenuer1 and the lower priority class2 yields ex-
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Figure 4. Convergence of the normal and IS(� = 1:6)
estimators as a function of the number of replications. The
system is initially in the stateX(0) = 5.

pected revenuer2 per call. It is clear that the optimal call
admission control (CAC) policy rejects a class2 call if the
expected future costs, with the call admitted, exceed the ex-
pected future costs, with the call rejected, by the amountr2

or more.
In the MDP theory the difference in the infinite time

horizon costs between a system starting from a given state
instead of equilibrium is called the relative value of the
state [12, 13]. If the difference in relative values is greater
thanr2 the class2 call should be rejected. Instead of trying
to solve the relative values exactly, which usually is not fea-
sible due to the prohibitive size of the state space, they can
be approximated with process simulations on the fly [3,4].
The adaptive IS approach, presented earlier, can be applied
to reduce the time needed to run these simulations.

One possible implementation is as follows. For each
decision,n, the state costs are estimated by a number of
simulation replications using a fixed twisting parameterαn.
After the simulations and the CAC decision based on these
have been made, we estimate what would have been the op-
timal twisting parameterα∗

n. This estimate is used as the
twisting parameter for the next decision, i.e.,αn+1 = α∗

n.
This kind of adaptive updating of the twisting parameter
can be expected to work well when the system changes rel-
atively little between the decision epochs.

6. Conclusions

In this paper we presented a method to evaluate the optimal
twisting for IS, based on samples taken from the original
pdf. This can be easily applied to process simulation where
the system is studied for a finite time interval. The adaptive
IS method is especially interesting when applied to the first
policy iteration where the expected future costs are esti-
mated by making repeated simulations of the system. Often
the interesting quantity, e.g. expected blocking probability,
is a rare event and IS can improve the performance of the
algorithm considerably. In the light of preliminary simu-
lation study of the Erlang loss system the approach looks
promising. The real testbed, however, will be an applica-

tion to more complex systems such as the RWA problem in
a WDM network.
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