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1. Introduction
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Queues at supermarkets
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Queues at supermarkets: static case

?

Cashier

Cashier

Figure 1: Non-observable system, calls for a static policy

Static policy: routing independent of the state of the system

What is the optimal choice?

Choose a random cashier?

Express lines when at most k items?

ITC-26

September, 2014, Karlskrona, Sweden

E. Hyytiä

Bernoulli split (RND)

?

Trainee
p

1−p

RND: ”Assign a job to server i with probability of pi ”

Optimal when no information on

Jobs (size, type, class, . . . )

System’s state
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Size-interval-Task-Assignment (SITA)

?
Cashier

Cashier

Express line

Few items

Many ite
ms

SITA: ”Assign short jobs to server 1, and long to server 2”

More precisely:

Size x of the current job is known

Divide job sizes to k consecutive intervals I1, . . . , Ik

Server i receives the jobs belonging to size interval Ik
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Dynamic case

?

Cashier

Cashier

Figure 2: Number of customers can be observed

Dynamic policy: routing depends on the state of the system

What is the optimal choice given the number of customers?

Join the shortest queue?

Is that always a better policy than, e.g., the static SITA?

What if some cashier is slower than another?
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Join-the-shortest-queue (JSQ)

?

Cashier

Cashier

JSQ: ”Choose the queue with the least number of jobs”

Optimal for the mean delay when: (Winston, 1977)

Servers are identical

Service times are exponentially distributed

However: When job sizes vary a lot, SITA outperforms JSQ!

With JSQ short jobs get stuck behind the long jobs

SITA avoids this by explicitly segregating the short and long jobs!
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Slow server problem

?

Trainee

One fast server, one slow server

JSQ is no longer optimal . . .

Neither is greedy1 . . .

Difficult problem in general!
When to route a job to a slower server

1Individually optimal: the queue with the shortest expected delay
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Size-aware case

?

Cashier

Cashier

Figure 3: Actual (or expected) service times are available

Size-aware setting:
Exact information about the current state

Stochastic component: later arriving jobs

What is the optimal choice?

Choose the queue with the shortest delay?

Even if I have MANY items in my cart?
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Least-work-left (LWL)

?

Cashier

Cashier

LWL: ”Choose the queue with the shortest backlog”

Optimal for mean delay when
Identical servers

Constant service times

However, when job sizes vary a lot, SITA outperforms also LWL!
With JSQ & LWL, short jobs get stuck behind the long jobs

Lesson: Take into account also later arriving jobs!
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Summary of Scenarios

Setting Heuristic policies Type

i) State-unware RND, SITA Static

ii) Number-aware JSQ
Dynamic

iii) Size-aware LWL

Objective: minimize the mean delay

Each policy optimal ONLY in certain scenarios

Often homogeneous system required

Difficulty lies with the jobs arriving in the future:

1 Process the present jobs efficiently, but

2 Ensure later arriving jobs do not suffer too much

Individually optimal 6= socially optimal!

Individually optimal: greedy decisions by customers (“my delay”)
Socially optimal: take into account also other customers (“mean delay”)
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Other scenarios

“Parallel servers with dispatching”
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Other scenarios

1 Call centers / helpdesks
“servers with different skills” (cf. language skills)

2 Immigration lines

3 Manufacturing systems

Citizens
nationalities

Other
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Street tolls: Lane selection problem

See, e.g., Conolly (1984)

Special lanes:
Exact change only
Credit card only
Electronic pass only
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Packet routing problem

Arriving packets Routing

External packets

External packets

Link #1

Link #3

Link #2

Figure 4: Choosing a link for each packet

Two or more alternative links (paths)

Background traffic often present

Popular heuristics:
Random (Bernoulli) split
Round-robin: regulates the inter-arrival time
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Distributed Computing

Servers

DispatchingArriving tasks

Figure 5: Choosing a server for each job

A large number of scenarios:

Web-server farms (CDNs, Akamai, Google, Facebook)

Super-computing (CSC)

Cloud computing

Job sizes often available!
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Dispatching Problem

α

Task

Assignment

FCFS

FCFS

ν

ν

1

2

λ

Dispatching Problem

k parallel heterogeneous servers with

Service rate νi

FCFS scheduling

Jobs arrive according to a Poisson process with rate λ

Jobs are dispatched upon arrival

Objective is to minimize the mean delay

min E[T ]
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Classification of Dispatching Policies

Static policy:
Decision may depend only on
the job itself (size, value, class)
- not on past decisions
- not on current state of the queues

Static

Policy

λ
α

ν2

ν1

FCFS

FCFS

Dynamic policy:

Decision takes into account the

new job and the states of the

queues

FCFS

FCFS

ν

ν

1

2

Dynamic

Policy

λ
α

Index policy:

Each queue computes indepen-

dently “an offer” for the new job,

and the best offer wins

Policy

Index

$8!

$10!

λ

FCFS

FCFS

ν

ν

1

2

max

"Auctioneer"
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1.4 Optimality Results
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Random Bernoulli splitting (RND)

”Choose the queue independently in random using probabilities pi ”

p

1−p

λ
RND

Often easy to analyze (decomposition of Poisson process)

The load balancing pi are independent of the arrival rate

Robust basic policy if no information is available

Altman et al. (2011)

RND is an optimal static policy for Poisson arrivals and PS

servers (with server-specific holding costs)

Size information of the new job does not help with PS servers (cf. SITA)
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Size-Interval-Task-Assignment (SITA)

”Short jobs to one queue and the long to the other”

1

1
λ

α long
sh

or
t

SITA−E

FIFO−servers

To Server 1

To Server 2

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Job size x

fH
x
L

SITA-E for X~ExpH1L

Figure 6: SITA assigns jobs of given size interval to the same server

For n servers, thresholds (ξ1, . . . , ξn−1) define n intervals:

(0, ξ1),
︸ ︷︷ ︸

Server 1

(ξ1, ξ2),
︸ ︷︷ ︸

Server 1

. . . (ξn−1,∞)
︸ ︷︷ ︸

Server n
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SITA (cont.)

Thresholds ξi can be chosen w.r.t. given objective

Proposed in (Crovella et al., 1998; Harchol-Balter et al., 1999)

Idea: segregate the short and long jobs from each other

High variance in job sizes is a problem for FCFS queues

SITA-E uses such intervals that balance the load
SITA-E is a robust policy that depends only on the job size distribution
(not on the arrival rate or the arrival pattern)

Feng et al. (2005)

SITA is optimal static size-aware policy for Poisson arrivals and

identical FCFS servers

SITA gives a lower mean delay than RND for FCFS servers

SITA is static and thus scales to arbitrary number of dispatchers

See also (Harchol-Balter et al., 2009) and (Bachmat and Sarfati, 2010)
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Join-the-Shortest Queue (JSQ)

”Choose the queue with the least number of jobs”

Winston (1977)

JSQ is optimal for Poisson arrivals, identical servers, and

exponential service times when the number in queue is known.

Weber (1978)

JSQ is optimal also for IFR service times.

First analytical studies by Haight (1958)

See also Ephremides et al. (1980), Johri (1989), Hordijk and Koole (1990),
Towsley et al. (1990), Sparaggis and Towsley (1994), and Koole et al. (1999)

Optimal also for G/M/1 queues under general assumptions (Akgun et al., 2011)
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Round-robin (RR)

”Choose the queue sequentially 1, 2, . . . , n, 1, . . .”

Ephremides et al. (1980)

Round-robin is optimal for identical FCFS servers that were

initially in a same state when the dispatching history is

available.

See also, e.g.,

Hajek (1983), and Hajek (1985)

Liu and Towsley (1994), and Liu and Righter (1998)

Down and Wu (2006), and Wu and Down (2009)
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Least-Work-Left (LWL)

”Pick the queue with the shortest backlog”

Daley (1987) (based on (Foss, 1980))

G/G/k (i.e., LWL with general inter-arrival times) stochastically

minimizes both the maximum and total backlog with identical

servers at an arbitrary arrival time instance

The counterexample by Stoyan (1976) shows that pathwise RR can yield both a
lower waiting time and a lower total backlog (at arrival times)

Harchol-Balter et al. (1999)

The M/G/k system with a central queue is equivalent to LWL

Thus a server is never idle at the same time when a job is waiting in some queue
(cf. work-conserving scheduling in a queue)
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Least-Work-Left (LWL) (cont.)

Hyytiä et al. (2011a)

LWL is the optimal policy for Poisson arrivals and identical FCFS or

PS servers with a fixed service time

This system reduces to JSQ if the ties are resolved accordingly

Other remarks:

LWL is the individually optimal decision for identical FCFS servers

Can consider pre- and post-assignment backlogs if heterogeneous servers

LWL is an index policy: servers can compute their offers independently

See also:

Harchol-Balter et al. (2009) for a surprising comparison to SITA

and Sharifnia (1997) (who refers to LWL as JSQ)
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Our Approach

All previous results are for the mean delay in specific

homogeneous systems

We are interested in general energy-aware cost structures with

possibly heterogeneous servers

Our approach:

A systematic approach to compute

efficient and robust control policies!

parallel servers

Apply the results

to the system of

Single Queue
Analyze costs in a single queue

Model

Apply

ν

ν

ν

λ

ν
λ
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1.5 Admission costs
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Admission Cost to M/G/1

Suppose we are given an M/G/1-queue

The typical performance metrics are:

1 Stability, is the system stable? (Is ρ < 1?)

2 Mean delay E[T ] (e.g., Pollaczek-Khinchine)

Here we are interested in another quantity:

How much the overall delay increases if a given

job is added to the system?

This quantity, admission cost, depends on the state.

ITC-26

September, 2014, Karlskrona, Sweden

E. Hyytiä

Admission Cost to M/G/1-FCFS

Size-aware setup:
n 1∆ ∆ ν...

λ

Single server FCFS queue

Current state:

z = (∆1,∆2, . . . ,∆n),

where ∆i is the (remaining) service time of job i

Job 1 receives currently service, job n is the last in queue

How much the total delay will increase on average

if a size x job is admitted to the queue?

Components of the Admission cost:

1 What is the delay of the new job? x +
∑

i ∆i

2 Does accepting it hurt the existing n jobs? No

3 Does accepting it hurt jobs arriving in future? Yes!
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Admission costs to LCFS & PS

Same setup with LCFS queue:

1 What is the delay of the new job? Depends

2 Does accepting it hurt the existing n jobs? Yes!

3 Does accepting it hurt jobs arriving in future? No

Same setup with PS queue:

1 What is the delay of the new job? Depends

2 Does accepting it hurt the existing n jobs? Yes!

3 Does accepting it hurt jobs arriving in future? Yes!

We need to assume something about the arrival process!

We will determine the admission costs in the MDP framework
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2. Markov decision processes
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Markov Decision Processes (MDPs)

Basic setting:

Discrete time Markov-chain

State transition probabilities depend on policy α,

pij = pij(α)

Some cost structure ⇒ mean cost rate r(α)

E.g., mean number of jobs in M/M/1

Task: find the optimal policy α,

argmin
α

r(α)
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Example Cost Structures

1 Blocked calls in a loss system

2 Delay in a server system

Let N(t) denote the number of jobs in the system at time t

Delay costs incurred during time (0, t) are

C(t) =

∫ t

0

N(t) dt

Equivalently: Job i incurs a cost equal to its sojourn time Ti

3 Running costs:2

When server is busy it incurs costs at rate e1

When server is idle it incurs costs at rate e0

Generalizations, e.g., to different sleeping states

2See (Penttinen et al., 2011) and (Hyytiä et al., 2014a,b)
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Solving MDPs

Two standard approaches:

1 Value iteration

2 Policy iteration

Both are based on the so-called value functions v(z)

We will utilize the policy iteration approach

. . . but first few words about those value functions . . .
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Value Function

Let Cz(t) denote the cumulative costs incurred during (0, t)
from an initial state z

Let r denote the mean cost rate,

r = lim
t→∞

Cz(t)

t
, ∀ z

Value function vz gives the expected difference in the
infinite time-horizon cumulative costs between

a) system initially in state z, and

b) system initially in equilibrium,

vz , lim
t→∞

E[Cz(t)− r t ]

ITC-26

September, 2014, Karlskrona, Sweden

E. Hyytiä

Example: Delay in M/M/1

For delay in M/M/1 the cost rate Cz(t) is

Nz(t) , ”the number of jobs in the system”

The value function reads

vz = lim
t→∞

(

E
[
∫ t

0

Nz(s) ds
]
− E[N] t

)

.

n0

zv

time

E[ N ]

E[ N(t) ]

Figure 7: Value function for M/M/1 in state n0
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Example: Delay in size-aware M/G/1-FCFS

M/G/1-FCFS initially in state z = (1, 3):

Job with remaining size 3 currently receiving service

Another job with size 1 is waiting

Also later arriving jobs have to wait (FCFS)

Value function is the expected difference in the infinite

time-horizon costs:

3

2

1

1 2 3 4 Time t

Known jobs

#
 o

f 
J
o

b
s

E[ N
(t) 

] Relative value

r = E[ N ]

Figure 8: Value function for an size-aware M/G/1-FCFS in state z
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Comparison of States

The mean difference in costs incurred between states (z1, z2) is

d(z1, z2) , lim
t→∞

E[Vz2
(t)− Vz1

(t)],

which gives

d(z1, z2) = vz2
− vz1

.

Admission cost:

Suppose that

State z1 is the current state

State z2 includes also a new job x , i.e., z2 = z1 + x

Then vz2
− vz1

gives the admission cost for the new job!
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3. Number-aware Systems
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Delay in M/M/1

Standard M/M/1 Queue: λ µ

Performance metric: mean delay E[T ]

Number-aware system with exponential service times

All work-conserving scheduling disciplines are equivalent

This includes FCFS, LCFS, PS, . . .

Mean delay in M/M/1

The mean delay in an M/M/1 queue is

E[T ] =
1

µ− λ
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Value Function w.r.t. Delay for M/M/1

λ µ

Proposition 1

The value function for a work-conserving and a number-aware

M/M/1 queue is 3

vn =
1

2
·

n(n + 1)

µ− λ
−

λµ

(µ− λ)3
. (1)

3Krishnan 1987, Aalto and Virtamo (1996), Virtamo (Lecture slides, 2004)
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Proof:

Without loss of generality, we can assume LCFS

Current state, n jobs, has no effect on jobs arriving in future

Mean difference in costs between a system with initially n

jobs and an empty system is thus

“the expected sojourn time of the n jobs”

Expected sojourn time of the i th job in the queue is4

i

µ− λ

Therefore,

vn − v0 =
n∑

i=1

i

µ− λ
=

n(n + 1)

2(µ− λ)

4The mean remaining busy period in M/G/1 with backlog u is u/(1 − ρ)
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Proof: (cont.)

The constant term v0 follows from the identity
∑

n

πnvn = 0

which yields (Hyytiä et al., 2012d)

vn =
n(n + 1)

2(µ− λ)
−

µλ

(µ− λ)3
�

Remarks:

Result holds for all work-conserving scheduling disciplines

The constant term is immaterial and often omitted

For alternative proofs, see (Krishnan, 1987; Aalto and Virtamo,

1996; Virtamo, 2004; Hyytiä et al., 2012d)

See also Whittle (1996): Section 10.3 and Section 11.5
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Admission cost to M/M/1

By definition, the admission cost to M/M/1 is thus

cn = vn+1 − vn =
n + 1

µ− λ

With LCFS, this is the sum of

1 the expected sojourn time of the new job

2 the increase in the sojourn time of the present n jobs

all equal to 1/(µ− λ)

With PS, the same cost is shared among the all present

jobs and jobs arriving in the near future

With FCFS, the same cost is shared among the new job

and the jobs arriving in the near future
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M/M/1 with Holding Costs

Standard M/M/1:

Poisson arrival process, rate λ

Exponential (i.i.d.) service times with mean 1/µ

FCFS scheduling

ν
λ

Holding cost structure:

Jobs are associated with i.i.d. holding cost Bi ∼ B,
. . . which become known upon arrival

Job i incurs costs at rate Bi until it departs

State z = (b1, . . . , bn), where job 1 receives service first

Objective: min E[BT ]

Note:

Holding cost quantifies the importance of a job!

For delay, each job is equally important, Bi = 1
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M/M/1-FCFS with Holding Costs

Mean cost per job is5

E[BT ] = E[B] · E[T ] =
E[B]

µ− λ

Recall that the value function w.r.t. delay (1)

vz − v0 =
n(n + 1)

2(µ− λ)

corresponds to the additional delay experienced by

1 the present n jobs, and

2 jobs arriving in future

if the queue is initially in state n instead of equilibrium

5Holds for all work-conserving scheduling disciplines independent of Bi .
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M/M/1-FCFS with Holding Costs

The expected delay of the present n jobs is

d1 =
1

µ

n∑

i=1

i =
n(n + 1)

2µ

Therefore, the additional delay the future jobs experience is

n(n + 1)

2(µ− λ)
−

n(n + 1)

2µ
=

λ n(n + 1)

2(µ− λ)µ

The value function w.r.t. holding costs is

present n jobs
︷ ︸︸ ︷

1

µ

n∑

i=1

i bi +

future jobs
︷ ︸︸ ︷

λ n(n + 1)

2(µ− λ)µ
E[B]
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Number-aware value functions for M/M/1 Queues

A similar analysis can be carried out also for LCFS and PS6:

Present jobs Future jobs Number-aware value functions vz − v0

Costs incurred Total delay Delay increase Holding costs Delay

F
C
F
S 1

µ

∑

i

i bi

n(n + 1)

2µ

λn(n + 1)

2(µ− λ)µ

1

µ

∑

i

i bi +
λn(n + 1)

2(µ− λ)µ
E[B]

n(n + 1)

2(µ− λ)

L
C
F
S 1

µ− λ

∑

i

i bi

n(n + 1)

2(µ− λ)
-

1

µ− λ

∑

i

i bi -”-

P
S

n + 1

2µ− λ

∑

i

bi

n(n + 1)

2µ− λ

λn(n + 1)

2(µ−λ)(2µ−λ)

n + 1

2µ−λ

∑

i

bi +
λn(n + 1)E[B]

2(µ−λ)(2µ−λ)
-”-

Remarks:

With bi=1 the value function w.r.t. holding costs reduces to the one w.r.t. delay

With FCFS and LCFS, job 1 is currently receiving service (head of the queue)

6See Doroudi et al. (2014) for PS
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M/M/s:

Proposition 2 (M/M/s)

For the value function of an M/M/s queue w.r.t. delay it holds that

vk+1 − vk =







W

Erl(k , a)
+

1

µ
, 0 ≤ k ≤ s,

W

Erl(s, a)
+

k − s

sµ(1− ρ)
+

1

µ
, k > s,

(2)

where Erl(k , a) denotes the Erlang’s blocking formula with k servers

and the offered load of a = λ/µ.

Proof.

See Krishnan (1987, 1990).
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Loss systems

In queueing systems one typically minimizes the mean delay

In loss systems the performance metric is the blocked customers

A prime example is the classical Erlang’s loss system, M/M/s/s:

Erlang’s loss system (M/M/s/s)

s system places

s servers (i.e., there are no waiting places)

Erlang’s blocking formula,

Erl(s, a) =
as/s!

1+ a + a2/2! + . . .+ as/s!

The mean number of customers is E[N] = a(1− Erl(s, a))
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M/M/s/s – Erlang’s Loss System

Proposition 3 (M/M/s/s)

For the value function of M/M/s/s w.r.t. blocked calls it holds that

ck = vk+1 − vk =
Erl(s, a)

Erl(k , a)
, (3)

where k = 0, 1, . . . , (s − 1) denotes the number of jobs (calls) upon

arrival, and Erl(k , a) is the Erlang’s blocking formula with a = λ/µ.

Proof.

See Krishnan and Ott (1986).
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Example: mobile network

λ

ν

λ

1

2

?

Overlapping region

Mobile users are associated with either of the two base stations7

Three types of users:

1 Those who can communicate only with base station 1

2 Those who can communicate only with base station 2

3 Those who can communicate with either (flexible users)

Task:
Choose a base station for the flexible users so as to

minimize the mean blocking probability

7Adapted from van Leeuwaarden et al. (2001).
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M/M/s/k

Proposition 4 (M/M/s/k)

For the value function of M/M/s/k w.r.t. blocked calls it holds that

cj = vj+1 − vj = λ · E[t∗j ] · B(s, k , ρ) (4)

where ρ = λ/µ/s,

E[t∗j ] = (λ · B(min{j , s}, j , ρ))
−1

and B(s, k , ρ) denotes the blocking probability of an M/M/s/k system,

B(s, k , ρ) =
ss

s!
ρk ·





s−1∑

j=0

(sρ)j

j!
+

(sρ)s

s!
·
1− ρk−s+1

1− ρ





−1

See (van Leeuwaarden et al., 2001) for a proof and numerical examples.
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4. Size-aware Systems
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Size-aware System

Size-aware means that

Service requirement (job size) become known upon arrival

Scheduling discipline can utilize the size information

Dispatcher is aware of the (remaining) service times

Common feature especially in ICT context, cf. file sizes.
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Size-aware Value Functions for M/G/1

ν
λ

A. Elementary scheduling disciplines:

M/G/1-FCFS

M/G/1-LCFS

B. Size-aware scheduling disciplines:

Size-aware scheduling

M/G/1-SPT (shortest-processing-time)

M/G/1-SRPT (shortert-remaining-processing-time)

M/G/1-SPTP (shortest-processing-time-product)

C. Processor sharing (PS)

M/D/1-PS (fixed job sizes)

M/M/1-PS
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M/G/1: Notation

Basic case:

Poisson arrival rate λ

Service times Xi i.i.d., Xi ∼ X

Offered load ρ = λE[X ]

Size-aware state z = (∆1; ..; ∆n) with n jobs:

∆i is the remaining service time of job i

Backlog uz =
∑

i ∆i

With arbitrary holding costs:

State z = ((∆1, b1); ..; (∆n, bn))

bi is the holding cost of job i , and Bi ∼ B

E[B] is the mean holding cost (arbitrary job)
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Slowdown Metric

Size-aware scenario

It is natural to consider also size-based metrics

Slowdown of a job is defined as8

γ ,
T

X
=

sojourn time

service requirement
(5)

Idea: large tasks can wait longer

Equivalently, the (job-specific) holding cost b is inversely

proportional to the (known) service requirement x

b =
1

x

8Yang and de Veciana (2002) refer to (5) as the bit-transmission delay.
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Holding Cost Structure

Summary

Holding cost:

Job i accrues costs at job-specific rate Bi ∼ B

Delay with bi = 1:

Total cost rate is the number of jobs in the system, Nt

Cost that job i incurs is equal to its latency

bi · Ti = Ti

Slowdown with bi = 1/xi:

Cost that job i incurs is equal to its slowdown

bi · Ti =
Ti

xi
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Size-aware M/G/1-FCFS ν
λ

Notation:

Poisson arrival process with rate λ

Offerent load ρ = λE[X ]

n 1∆ ∆ ν...
λ

State z = (∆1; ..; ∆n), where ∆i is the (remaining) service time of job i

Job 1 is served first, job n is at the end of the queue

uz =
∑

i ∆i is the backlog in the queue

Proposition 5 (Size-aware M/G/1-FCFS)

The value function of size-aware M/G/1-FCFS w.r.t. delay satisfies 9 10

v(∆1;..;∆n) − v0 =
λ u2

z

2(1− ρ)
+

n∑

i=1

(n+1−i)∆i (6)

9Hyytiä et al. (2012c,b)
10For M/M/1 see Aalto and Virtamo (1996) and Hyytiä et al. (2012d)
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Proof

Consider two systems under the same arrivals (coupling):

S1 initially in state z = (∆1; ..; ∆n)

S2 initially empty

Observations:

1 Both systems behave identically once S1 becomes empty

2 vz − v0 is equal to the additional time jobs spent in S1

vz − v0 = V1 + V2

V1 = the (remaining) delay of present jobs (only in S1)

V2 = the expected additional delay the later arrivals in S1

When job i is processed (n+1−i) of the present jobs are in the

system, and therefore V1 =
∑n

i=1(n + 1− i)∆i .
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Proof (cont.)

A later arriving task starts a busy period in S2, which

corresponds to a mini busy period in S1

u
z

The original busy

period resumes

Y

Initially empty system:

Initial state :z

(mini) busy period

During busy periods, arriving jobs increase the cumulative

delay by an amount equal to the post arrival workload

These jobs experience an additional delay Y in S1

Otherwise the delay contributions are equal!
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Proof (cont.)

Summing up:

Mean number of (mini) busy periods before S1 empty: λ uz

Mean number of jobs served during a busy period: 1/(1− ρ)

Mean offset E[Y ] = uz/2

Therefore,

V2 = λ uz ·
1

1− ρ
·

uz

2

=
λ u2

z

2(1− ρ)
,

u
z

The original busy

period resumes

Y

Initially empty system:

Initial state :z

(mini) busy period

and V1 + V2 = vz − v0, which completes the proof. �
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M/G/1-FCFS ν
λ

Some remarks

The proof is by a coupling argument, which is utilized also later

The opposite numbering (job n at the head of the queue) gives

v(∆1;..;∆n) − v0 =
λ u2

z

2(1− ρ)
+

n∑

i=1

i ∆i

Note that v(∆1;..;∆n) is insensitive to service time distribution11

Admission cost to M/G/1-FCFS

cz(x) = v(∆1;..;∆n;x) − v(∆1;..;∆n) =
λ

2(1− ρ)
(2uzx + x2) + uz + x (7)

11Unlike the mean delay, which depends on the second moment E[X 2]
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M/G/1-FCFS with Holding Costs ν
λ

Proposition 6 (Size-aware M/G/1-FCFS)

The value function of size-aware M/G/1-FCFS w.r.t. arbitrary

job-specific holding costs bi satisfies 12

vz − v0 =

n∑

i=1



∆i

n∑

j=i

bj



+
λ u2

z

2 (1− ρ)
E[B]. (8)

Proof.

The result follows directly from identifying the terms in (6)

vz − v0 =

present jobs
︷ ︸︸ ︷

n∑

i=1

(n+1−i)∆i +

future jobs
︷ ︸︸ ︷

λ u2
z

2(1− ρ)

and adding the appropriate weights.

12Hyytiä et al. (2012a)
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Size-aware M/G/1-LCFS (preemptive) ν
λ

Notation:

Poisson arrival process with rate λ

Offerent load ρ = λE[X ]

State z = (∆1; ..; ∆n), where ∆i is the (remaining)
service time of job i

Job n is the most recent arrival currently being processed

n

1

∆

∆

ν

..
.

λ

Proposition 7 (Size-aware M/G/1-LCFS)

The value function of size-aware M/G/1-LCFS w.r.t. delay satisfies 13

v(∆1;..;∆n) − v0 =
1

1− ρ

n∑

i=1

i ·∆i . (9)

Note: Insensitivity to service time distribution.
13Hyytiä et al. (2012c)
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Proof

We prove also this result by a coupling argument:

Consider two systems under same arrivals:

1 S1 initially in state z = (∆1, ..,∆n),
2 S2 initially empty.

Let Di denote the (remaining) delay of job i in S1.

With LCFS, the current state has no effect on the future

arrivals’ sojourn times.

The difference between the relative value of S1 and S2 is

equal to the mean remaining delay of the n present jobs,

v(∆1;..;∆n) − v0 =

n∑

i=1

E[Di ].
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Proof (cont.)

Remaining delay Dn of job n is given by a random sum,

Dn = ∆n +
(
B1 + . . .+ BA(∆n)

)

where A(∆n) denotes the number of (mini) busy periods during
time ∆n, and Bi the corresponding durations,

E[Bi ] = E[X ]/(1− ρ)

Taking the expectation on both sides gives

E[Dn] = ∆n + E[A(∆n)] · E[B] =
∆n

1− ρ

Similarly,

E[Di ] =

∑n
j=i ∆j

1− ρ
⇒ vz − v0 =

n∑

i=1

E[Di ] =
1

1− ρ

n∑

i=1

i ·∆i �
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M/G/1-LCFS with Holding Costs ν
λ

Proposition 8 (Size-aware M/G/1-LCFS)

The value function of size-aware M/G/1-LCFS w.r.t. arbitrary

job-specific holding costs bi satisfies14

n

1

∆

∆

ν

..
.

λ

vz − v0 =
1

1− ρ

n∑

i=1



∆i

i∑

j=1

bj



 . (10)

Proof.

The expected sojourn time of job i is E[Di ] = (1− ρ)−1
∑n

j=i ∆j .

As the future arrivals are not affected by the current state,

vz − v0 =
n∑

i=1

bi E[Di ] =
1

1− ρ

n∑

i=1



bi

n∑

j=i

∆j





which is equivalent to (10).

14Hyytiä et al. (2012a)
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Size-aware Value Functions for M/G/1

ν
λ

A. Elementary scheduling disciplines:

M/G/1-FCFS

M/G/1-LCFS

B. Size-aware scheduling disciplines:

Size-aware scheduling

M/G/1-SPT (shortest-processing-time)

M/G/1-SRPT (shortert-remaining-processing-time)

M/G/1-SPTP (shortest-processing-time-product)

C. Processor sharing (PS)

M/D/1-PS (fixed job sizes)

M/M/1-PS
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Size-aware Scheduling

SPT: (shortest-processing-time)

“Assign the shortest job to server first”

Optimal non-preemptive scheduling for delay (Schrage, 1968)

SRPT: (shortest-remaining-processing-time)
“Serve job with the shortest remaining service time”

Optimal preemptive scheduling for delay

Holds for any arrival sequence (for each sample path)

SPTP: (shortest-processing-time-product)

”Serve job with the smallest product of initial and remaining service time”

Specifically tailored for the slowdown metric 15,16

15Proposed by Yang and de Veciana (2002)
16Wierman et al. (2005) refer to SPTP as the RS policy
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Size-aware Scheduling

Index based scheduling:

Job with the smallest index (“offer”) is served first

Notation:

∆i Remaining service time of job i

∆∗

i Initial service time of job i

Scheduling Index Optimality

SPT ∆∗

i optimal non-preemptive / delay & slowdown

SRPT ∆i optimal preemptive / delay

SPTP ∆i ·∆
∗

i optimal preemptive / slowdown17

17Hyytiä, Aalto, Penttinen, SIGMETRICS’12.
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SPTP

Optimality of SPTP (Hyytiä et al., 2012a)

SPTP is the optimal scheduling in M/G/1 w.r.t. slowdown

Remarks:

Unlike with SRPT, this does not hold for every arrival sequence

Proof is based on Gittins index
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Gittins index, M/G/1 multi-class queue

The Gittins index for a class-k job with attained service a:

Gk (a) = sup
δ>0

wk P{Xk−a ≤ δ | Xk > a}

E[min{Xk−a, δ} |Xk > a]
,

wk : class-k holding cost

Xk : class-k service requirement

The Gittins index policy serves the job i∗ such that

i∗ = argmax
i

Gki
(ai),

ki : class of job i

ai : attained service of job i

Proposition 9 (Gittins)

The Gittins index policy minimizes the mean holding costs,

∑

k

pk wkE[Tk ],
pk : fraction of class-k jobs

Tk : sojourn time of a class-k job

among the non-anticipating scheduling policies.
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Optimality of SPTP

Non-anticipating policies are not aware of the (remaining)

service times xk − ak

Idea: the initial service requirement = class

That is, a deterministic service time xk per class k

(Technical assumption in the proof: finite set of service times)
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Sketch of Proof

Single-server M/G/1-queue, load ρ < 1

Associate: class k ↔ service time xk

Gittins index is now

Gk (a) =
wk

xk − a
=

holding cost rate

remaining service time

with the optimal δ equal to xk − a.

Gittins theorem: optimal policy that serves job i∗ such that

i∗ = argmin
i

∆i

wk(i)

∆i : remaining service time of job i

k(i) : class of job i
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Sketch of Proof (cont.)

Gittins index policy:

i∗ = argmin
i

∆i

wk(i)

∆i : remaining service time of job i

k(i) : class of job i

If we choose wk = 1/xk , we see that the mean slowdown is

minimized by SPTP.

If we choose wk = 1, for all k , we obtain the well-known

optimality result of SRPT with respect to the mean sojourn time.
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Optimal Single-Server Scheduling

non-preemptive preemptive

class-aware size-aware non-anticipating anticipating

size-aware

d
e
la
y

SEPT SPT FB, FCFS,. . . SRPT

(cµ-rule) (depends on f (x))

s
lo
w
d
o
w
n

-”- -”- FB, FCFS, . . . SPTP

(depends on f (x)) (M/G/1)
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Multi-Server Scheduling

Multi-server scheduling is more difficult
Basic slow server problem:

One fast and one slow server, and a shared queue

What is the optimal scheduling w.r.t. the mean delay?

The optimal scheduling is a threshold policy:

Activate the slower server only when the number in

the system is greater than n∗

References:

1 (Larsen, 1981): first studies and conjecture of the optimality of threshold policy

2 (Agrawala et al., 1984): optimality for exp-jobs without arrivals

3 (Lin and Kumar, 1984), (Walrand, 1984), (Koole, 1995): with Poisson arrivals

4 (Viniotis and Ephremides, 1988), (Righter and Xu, 1991): non-exponential
service times

5 (Véricourt and Zhou, 2006): more than two servers (hard!)

6 (Akgun et al., 2014): with energy consumption
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Size-aware M/G/1: Additional notation

1 Jobs in state z are numbered so that (without new arrivals)

job 1 is served first and job n last

2 f (x) denotes the pdf of the service time

3 ρ(x) denotes the load due to jobs shorter than x

ρ(x) , λ

∫ x

0

t f (t) dt

4 Define

h(x) ,
f (x) b(x)

(1− ρ(x))2

where b(x) is the mean holding cost of a job with size x

b(x) = E[B |X = x ]
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M/G/1-SPT (Non-preemptive) ν
λ

Proposition 10 (Hyytiä et al. (2012c))

The size-aware relative value of state z with respect to arbitrary

holding costs in an M/G/1-SPT queue is

vz − v0 =
n∑

i=1

bi



∆i +
1

1− ρ(∆i)

( i−1∑

j=1

∆j

)


 +

λ

2

n∑

i=1









n∑

j=i+1

∆2
j +

( i∑

j=1

∆j

)2




∫ ∆̃i+1

∆̃i

h(x) dx





(11)

Job 1 is receiving service, and ∆2 < . . . < ∆n (SPT order)

∆̃i =







0, i = 1

∆i , i = 2, . . . , n
∞ i = n + 1
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M/G/1-SRPT with Holding Costs ν
λ

Proposition 11 (Hyytiä et al. (2012c))

The size-aware value function of an M/G/1-SRPT queue w.r.t.

arbitrary holding costs satisfies

vz − v0 =

n∑

i=1

bi




1

1−ρ(∆i)

( i−1∑

j=1

∆j

)

+

∫ ∆i

0

1

1−ρ(x)
dx





+
λ

2

n∑

i=0





( i∑

j=1

∆j

)2
∆i+1∫

∆i

h(x) dx + (n−i)

∆i+1∫

∆i

x2 h(x) dx





(12)

Job 1 receives currently service and ∆1 < . . . < ∆n,

∆0 = 0 and ∆n+1 =∞
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M/G/1-SRPT - Alternative Form ν
λ

Proposition 12 (Hyytiä et al. (2012a))

The size-aware value function of an M/G/1-SRPT queue w.r.t.

arbitrary holding costs satisfies

vz − v0=

n∑

i=1

bi

(

uz(∆i)

1−ρ(∆i)
+

∫ ∆i

0

1

1−ρ(t)
dt

)

+
λ

2

∫ ∞

0

h(x)
(
uz(x)

2 + nz(x) x2
)

dx

(13)

The service order of the jobs is implicitly in the following:

uz(x) = backlog due to jobs shorter than x in state z

nz(x) = number of jobs longer than x in state z
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M/G/1-SPTP ν
λ

Proposition 13 (Hyytiä et al. (2012a))

The size-aware value function of an M/G/1-SPTP queue w.r.t.

arbitrary holding costs satisfies

vz − v0 =

n∑

i=1

bi

(
1

1−ρ(∆̃i)

( i−1∑

j=1

∆j

)

+
2

∆∗i

∫ ∆̃i

0

x dx

1−ρ(x)

)

+
λ

2

n∑

i=0






( i∑

j=1

∆j

)2
∆̃i+1∫

∆̃i

h(x) dx +

( n∑

j=i+1

(∆∗j )
−2

) ∆̃i+1∫

∆̃i

x4 h(x) dx






Job 1 receives service and
√

∆1∆
∗

1
< . . . <

√
∆n∆∗

n (SPTP order)

∆̃i =







0, i = 0
√

∆i∆
∗

i
, i = 1, . . . , n

∞, i = n + 1
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M/G/1-SPTP - Alternative Form ν
λ

Proposition 14 (Hyytiä et al. (2012a))

The size-aware value function of M/G/1-SPTP w.r.t. arbitrary holding

costs satisfies

vz − v0 =

n∑

i=1

bi

(
ũz(∆̃i)

1−ρ(∆̃i)
+

2

∆∗i

∫ ∆̃i

0

x dx

1−ρ(x)

)

+
λ

2

∫ ∞

0

h(x)
(
ũz(x)

2 + gz(x) x4
)

dx

∆̃i =







0, i = 0
√

∆i∆
∗

i
, i = 1, . . . , n

∞, i = n + 1

ũz(x) =
∑

j ∆j · 1(∆̃j < x)

gz(x) =
∑

j

1(∆̃j>x)

(∆∗

j
)2
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Computational Remarks

Size-aware value functions for SPT, SRPT and SPTP

appear first to be computationally difficult18

However, all integrands are independent of the state

Therefore it is possible to evaluate them in advance, and,

e.g., tabulate the results and interpolate

For example, for SPT in (11) we need determine offline

H(x) ,

∫ x

0

h(t) dt

ρ(x) , λ

∫ x

0

t f (t) dt

18You do not want to evaluate integrals in on-line decision making
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Value Function for M/G/1 Queues

ν
λ

A. Elementary scheduling disciplines:

M/G/1-FCFS

M/G/1-LCFS

B. Size-aware scheduling disciplines:

Size-aware scheduling

M/G/1-SPT (shortest-processing-time)

M/G/1-SRPT (shortert-remaining-processing-time)

M/G/1-SPTP (shortest-processing-time-product)

C. Processor sharing (PS)

M/D/1-PS (fixed job sizes)

M/M/1-PS
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M/G/1-PS: (Processor sharing) λ
PS

λ
PS

Figure 9: M/G/1 with Processor Sharing (PS)

Basics:

PS serves the existing n jobs at equal rates 1/n

Mean delay in M/G/1-PS is insensitive to job size distribution

E[T ] =
E[X ]

1− ρ

State z = (∆1; ..; ∆n) defines the remaining service times

Ordering: ∆1 ≥ . . . ≥ ∆n (job n will depart first)
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M/G/1-PS: Total delay λ
PS

Lemma 1 (Total delay without new arrivals under PS)

Let ∆1 ≥ . . . ≥ ∆n denote the remaining service times. Then, the

total delay in a PS queue assuming no new jobs arrive is

Vz =

n∑

i=1

(2i − 1)∆i (14)

Proof.

Job n leaves the system first and job 1 last, and

Vz= ∆nn2 + (∆n−1 −∆n)(n − 1)2 + . . .+ (∆1 −∆2)

=
n∑

i=1

(2i − 1)∆i
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M/D/1-PS λ
PS

Proposition 15 (Hyytiä et al. (2011a))

The value function of a size-aware M/D/1-PS queue in state z

w.r.t. delay satisfies

v(∆1;..;∆n) − v0 =
λ

1− ρ
u2
z − uz + 2

n∑

i=1

i ∆i (15)

Note:

Compact form as a new job will always depart last

Converges to (14) when λ→ 0

Generalization to arbitrary holding costs straightforward

Admission cost cz = v(d ;∆1;..;∆n) − v(∆1;..;∆n) is

cz =
2uz + d

1− ρ

ITC-26

September, 2014, Karlskrona, Sweden

E. Hyytiä

M/M/1-PS λ
PS

Proposition 16 (Hyytiä et al. (2011b))

The value function of a size-aware M/M/1-PS queue in state

(m; ∆1, . . . ,∆n) satisfies

v(m;∆1,...,∆n) = vm +
1

(1− ρ)2

n∑

k=1

(2k − 1)∆k +

2− ρ

µ(1−ρ)2

n∑

k=1

(

m−

kρ

1−ρ

)( k∑

i=1

e−µ(1−ρ)(∆i−∆k )

)
(

1−e−µ(1−ρ)(∆k−∆k+1)
)

∆i are n known remaining service times, ∆1 > . . . > ∆n

∆n+1 , 0

m jobs have unknown Exp(µ) distributed service time
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M/G/1-PS: Insensitivity λ
PS

Remark:

Mean delay was insensitive to job size distribution

depends only on the mean E[X ] and λ

Value functions for M/D/1-PS and M/M/1-PS are different . . .

Corollary 2 (Insensitivity of M/G/1-PS)

The size-aware value function for M/G/1-PS is not insensitive to job

size distribution
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5. Size-aware Dispatching
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Task Assignment Problem

ν3

ν1

x3 x2 x1

ν2

λ
α

Servers

ν3

Arrivals

Dispatching Scheduling

Task assignment (dispatching):

Route job to one of the m servers upon arrival
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Size-Aware Dispatching Problem

1

1

1

λ
α

Standard:
Poisson arrival process, rate λ

m parallel heterogeneous servers

Scheduling discipline known (FCFS, LCFS, . . . )

Dispatching policy α chooses the queue upon arrival

Objective: minimize the mean delay

Size-aware setting:

General job size distribution

Job sizes become known upon arrival

Queue states (job sizes and their service order) are known

Generalization: server-specific service times (per job)
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Size-Aware Dispatching Problem (cont.)

Holding costs:

Arriving jobs have also a holding cost,

(X (1),B(1)), (X (2),B(2)), . . .

X (i) =Size of Job i [bit]

B(i) =Holding cost rate of Job i [1/s]

Job i incurs costs at rate B(i) until it departs

Objective: min E[T · B]

Examples:
Latency (delay): B(i) = 1

Slowdown: B(i) = 1/X (i)

Priorities: B(i) = priority of Job i
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SITA with Switch

Consider the mean delay with SITA-E and identical servers

Roles of the servers can be exchanged anytime

1

FCFS−servers

α

SITA−E

long

1

sh
or

t

OR
1

FCFS−servers

α

SITA−E 1

short

lo
ng

With value functions: v1(z1)+v2(z2) < v1(z2)+v2(z1)?

Considering states after an arrival gives new policy:

SITA-E with Switch (SITA-Es):

”Short jobs to a shorter queue”

shorter

backlog

longer

backlog

α

SITA−E

long

1

sh
or

t 1

FCFS−servers

Generalizes to n > 2 queues
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Decomposition to M/G/1 Queues

Deriving a value function for the whole system is difficult

(e.g., for JSQ)

Any static policy feeds servers according to a Poisson process

Decomposition
by any static
policy

1

1

1
λ/3

λ/3

λ/3

λ
1

1

1

RND

Static policy thus defines for each server i

Poisson arrival rate λi

Job size distribution Xi

Holding cost distribution Bi

which enables the analysis of the whole system
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First policy iteration (FPI)

FPI

Assume a static basic policy α0:

Defines arrival process (λi ,Xi ,Bi) for each queue

Derive value functions vzi
for the “isolated queues”, and

vz =
∑

i

vzi

Carry out the FPI step

α(z, x , b) , argmin
i

(

vz′
i
− vzi

)

where z′i is the new state of queue i with job (x , b) added

Note: FPI on static α0 yields an index policy
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First policy iteration (FPI)

For M/G/1-FCFS the costs can defined in two ways:

1 Costs are incurred at rate b during the sojourn time t

2 Job pays an immediate cost d upon arrival, d = b · t

With Immediate Costs:
Backlog u is sufficient state information and (8) reduces to

vu − v0 =
λ u2

2(1− ρ)
E[B] (16)

Action “Assign job (x , b) to queue i”

Immediate cost di = (ui + x/νi)b

New state u∗i = ui + x/νi

FPI policy: α(z, x , b) = argmin
i

di + (v
(i)
u∗

i
− v

(i)
ui
)
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FPI-SITA-E, “Dynamic SITA-E”

SITA-E is static⇒ value function available⇒ FPI-SITA-E

α(z, x) = argmin
i

λi

2(1− ρ)
(2uix + x2) + ui + x

λi is the arrival rate to queue i (according to SITA-E)

ui is the current backlog in queue i

Threshold with FPI-SITA-E depends on the backlogs

1

FCFS−servers

α

SITA−E

long

1

sh
or

t
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Numerical Examples

For Delay:

1 Two identical FCFS servers

2 Two identical SRPT servers

3 Heterogeneous PS servers

For Slowdown:

4 Three heterogeneous servers
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Example 1: FCFS

Example 1:

Two identical queues with FCFS

Job size distribution:

1 Exponential Exp(1)
2 Pareto(β) with β = 3: P{X > t} = (1+ t)−β

Performance metric: Relative delay to SITA-E

1

1Dispatcher

λ
α

Servers
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Example 1: FCFS (cont.)

 0.5
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u
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im

e
 E
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]/
E

[T
S
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A

-E
]

Offered load ρ

RND

SITA-E

SITA-Es JSQ

FPI-RND

FPI-SITA-E
FPI-SITA-Es

Two identical FCFS servers

X ∼ Exp(1)
1

1Dispatcher

λ
α

Servers
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Example 1: FCFS (cont.)

 0.5
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Offered load ρ

R
N
D

SITA-E

SITA-Es

JSQ

FPI-SITA-E
FPI-SITA-Es

FPI-R
ND

Two identical FCFS servers

X ∼ Pareto(1)
1

1Dispatcher

λ
α

Servers
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Example 2: SRPT

Example 2:

Two identical queues with SRPT

Exponential job size distribution, Exp(1)

Relative delay when compared to a single shared

SRPT queue processed by two identical servers

1

1Dispatcher

λ
α

Servers
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Example 2: SRPT (cont.)

1

1

α
λ

λ

1

1

(b)  Multi−server system

(a)  Dispatching system

 0.9
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[ 

T
 ]

/E
[ 

T
s
h

a
re

d
 ]

Offered load ρ (ME)

Two SRPT servers with Exp(1) jobs

RND

RR

Shared

JSQ LWL

FPI-RND

Dispatching system vs. a shared queue with SRPT

(M/M/2-SRPT).

Disadvantage due to the dispatching

can be insignificant (here order of 5% with FPI-RND).
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Example 3: PS Servers

Example 3:

Poisson arrival process

Heterogeneous PS servers

Fixed server-specific service

time di = d/νi

α

Dispatcher

PS−queues

λ

Dispatching policies:

Random Bernoulli split RND-ρ and RND-opt

Least-work-left (pre-assignment) LWL−: argmin
i

ui

Least-work-left (post-assignment) LWL+: argmin
i

ui + di

FPI for RND-ρ FPI: argmin
i

ui + (1/2)di

⇒ Policy family P(β) with ci = ui + βdi
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Example 3: PS Servers (cont.)

LW
L

-
FP

I-
Ρ LW

L
+

Choose

Queue 2

Choose

Queue 1

0 1 2 3 4
0

1

2

3

4

u1H t L

u
2
H
tL

State-dependent policies: d1=1 and d2=2
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E
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Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ

RND-o
pt

LWL
-

LWL
+

optimal in P(β)
single

RND-ρ
RND-opt

LWL
+

LWL
-

FPI-ρ
single server

LWL−, LWL+ and FPI-RND
illustrated for d1 = 1 and d2 = 2

Mean delay relative to FPI-RND: d1 = 1 and d2 = 4.

(ν1=1 and ν2=0.25, and single PS server has ν=1.25)
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Example 4: Slowdown

Three heterogeneous servers:

1 Service rate ν1 = 1

2 Service rate ν2 = 1/2
3 Service rate ν3 = 1/2

Bounded Pareto distributed service times

Slowdown metric γ = T
X

Scheduling disciplines: FCFS, LCFS and SPTP

Comparison of JSQ to FPI (based on RND-opt)

Servers

Dispatcher

λ
α

1

1/2

1/2
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Example 4: Slowdown (cont.)

Servers

Dispatcher

λ
α

1

1/2

1/2

Slowdown:

γ =
T

X
 0
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 0.4
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 0.8

 1
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 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

E
[ 

γ
 ]

 /
 E

[ 
γ
 L

C
F

S
/J

S
Q

 ]

Offered load ρ

Dispatching System: JSQ and FPI

- Three het. servers

- X~Bounded Pareto

- FPI based on RND-opt

FC
FS/J

SQ

F
C

F
S

/F
P

I

LCFS/JSQ

LCFS/FPI
SPTP/JSQ

SPTP/FPI

Bounded Pareto distributed service time

Scheduling discipline: FCFS, LCFS and SPTP
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Versatile Approach

1 Each server can have dedicated input
λ1

λ2

α

PS−queues

Dispatcher

λ

2 Basic policy can be class-specific

Low and high priority customers with own queues

When to route a low priority job to a high priority queue?

3 Service times can be server-specific

General purpose vs. specialized servers
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Summary

Size- and state-aware dispatching problem can be

approached in the MDP framework

Value functions vz are required for the FPI step

M/G/1 results sufficient for static basic policies:

FCFS and LCFS: vz is insensitive to job size distribution

SPT, SRPT and SPTP: vz is an integral expression

PS: harder to analyze (M/D/1-PS and M/M/1-PS)

Efficient dispatching policies that take into account

Cost structure

Existing and later arriving tasks
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6. Lookahead approach
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FPI in practice

Value function for dynamic α0 not available
19

For static α0, system decomposes

vz =
k∑

j=1

v
(j)
z

where v
(j)
z is the value function of queue j .

For example, for an M/G/1-FCFS queue j

v
(j)
z − v0 =

λj E[Bj ]

2(1− ρj)
(uj)

2

Bj = the mean holding cost of jobs α0 assigns to queue j

ρj = the offered load at queue j with α0

uj = the current backlog in queue j
19The value function exists, but it is very difficult to compute.
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Decision tree of FPI

Queue 2 c2(x , b)

Queue 1 c1(x , b)

Decision tree corresponding to FPI:

New job (x , b) has arrived

Deviate from α0 for one action

Later actions by α0

Terminal cost ci(x , b) according to α0 (from value function)

ci(x , b) =

(

u′i +
x

νi

)

b +
λi E[Bi ]

2(1− ρi)

(

2u′i +
x

νi

)
x

νi

where u′i is the backlog in queue i before the arrival.
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Observations of FPI

FPI reverts back to (simple) static α0 immediately

“Queues are separated”

The queues evaluate the admission cost independently;

⇒ FPI gives us an index policy!

What if assigning job j to queue 1 means that the next job

should really go to queue 2?

Anything better than FPI?

Idea: What if we (tentatively) fix also the next action(s)?

“Queue 1 earns a short break in arrivals”

⇒ Lookahead approach!
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Lookahead: Static second action

Queue 2
Queue 2 c2,2(x , b)

Queue 1 c2,1(x , b)

Queue 1
Queue 2 c1,2(x , b)

Queue 1 c1,1(x , b)

Decision tree for a static lookahead:

New job (x , b) has arrived

Deviate from α0 for two actions, (i , j)

Size, holding cost and arrival time of the next job unknown

Terminal costs ci,j(x , b) by conditioning

Note:

Lookahead gives us a dynamic policy

Evaluation involves the state of the whole system

⇒ Not an index policy!
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Lookahead Value L(z, λ∗,X ∗)

Terminal costs ci,j can be computed from lookahead values:

Let vz denote the value function of a queue with the usual

Poisson arrival process (λ,X )

However, suppose that the next job arrives differently:

Arrival time τ ∼ Exp(λ∗)
Job size X ∗

After that jobs arrive as usual according to (λ,X )

Exp( λ*) Exp( λ ) Exp( λ )

X* X XInitial

state

The lookahead value, L(z, λ∗,X ∗), is the expected cumulative

difference in costs between the above system and the mean cost rate.
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Lookahead Value L(z, λ∗,X ∗)

Definition 3 (Lookahead Value for M/G/1)

The lookahead value for state z, denoted by L(z, λ∗,X ∗) is the
expected cost the queue incurs in comparison to mean cost rate

when the next job with size X ∗ will arrive after time τ ∼ Exp(λ∗), after
which jobs arrive according to (λ,X )

L(z, λ∗,X ∗) , E[Vz(τ)− r · τ + vZ∗⊕X∗ ]− v0,

where Vz(τ) denotes the costs incurred during time τ and Z∗ ⊕ X ∗ is

the state with the next job X ∗ assigned

Convention: X ∗ = 0 means that the next job is assigned elsewhere

Remarks:

By definition, L(z, λ,X ) = vz

As with value functions, the constant offset is immaterial
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Lookahead Value (cont.)

Terminal costs:

Let Lj(·) denote the lookahead value of queue j with (λj ,Xj)
according to a static basic policy α

Let (λ,X ) denote the global arrival rate and job size, i.e.,

λ = λ1 + . . .+ λn

For assigning both the new and the next job to queue i

ci,i = Li(zi ⊕ x , λ,X ) +
∑

k 6=i

Lk (zk , λ, 0)

where zi ⊕ x denotes the state of queue i with a new job x

For assigning the new job to queue i and next to queue j (i 6=j)

ci,j = Li(zi ⊕ x , λ, 0) + Lj(zj , λ,X ) +
∑

k /∈{i,j}

Lk (zk , λ, 0)
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Static Lookahead Action: FCFS

For M/G/1-FCFS w.r.t. delay:

Here it is convenient to use immediate costs upon arrival, for which the value function is

vu − v0 =
λu2

2(1− ρ)

For the lookahead value we get

L(z, λ∗,X∗) =

until the next arrival
︷ ︸︸ ︷

(0− r)E[τ ] +

immediate cost
︷ ︸︸ ︷

E[Uτ + X∗] +

future costs after time τ
︷ ︸︸ ︷

E[vUτ+X∗ ]− v0

which reduces to

L(z, λ∗,X∗) = −

λ

λ∗

(

λE[X2]

2(1− ρ)
+ E[X ]

)

+ E[Uτ ] + E[X∗] +
λE[(Uτ + X∗)2]

2(1− ρ)

Both E[Uτ ] and E[(Uτ )2] can be computed easily, and after some manipulation . . .
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Static Lookahead Action: FCFS

Theorem 4 (Lookahead for FCFS w.r.t. delay)

Lookahead admission cost to M/G/1-FCFS w.r.t. delay is

ci,j (x) = ui + gi
x

νi

(

2ui −
x

νi

)

+
2

λ2

∑

k

gk (1− λuk − e−λuk )− E[T ]

+

(

1+
2gjE[X ]

νj

)(

uj−
1−e−λuj

λ

)

+ gj
E[X2]

ν2
j

+
E[X ]

νj

where uk are the backlogs with the new job included in queue i,
and gk are the queue-specific constants

gk =
λk

2(1− ρk )

Proof.

See Hyytiä (2013)
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Static Lookahead Action: FCFS

Theorem 5 (Lookahead for FCFS w.r.t. holding costs)

Lookahead admission cost to M/G/1-FCFS with holding costs is

ci,j (x , b) = ui b + gi
x

νi

(

2ui −
x

νi

)

+
2

λ2

∑

k

gk (1− λuk − e−λuk )− E[TB]

+

(

E[B] +
2gjE[X ]

νj

)(

uj−
1−e−λuj

λ

)

+ gj
E[X2]

ν2
j

+
E[XB]

νj

where uk are the backlogs with the new job included in queue i,
and gk is a queue-specific constant

gk =
λk E[Bk ]

2(1− ρk )

Proof.

See Hyytiä (2013)
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Static Lookahead Action: LCFS

Size-aware M/G/1-LCFS:

State z = (∆1; ..; ∆n) n

1

∆

∆

ν

..
.

λ

Theorem 6

The lookahead value for M/G/1-LCFS w.r.t. delay is

L(z, λ∗,X ∗) =

n∑

i=1

yi

1− ρ
+

(
n + 1−

∑n
i=1 e−λ∗yi

)
(ρ∗ − ρ)

λ∗(1− ρ)

where yi = ∆i + . . .+∆n and ρ∗ = λ∗ E[X ∗]

Proof.

See Hyytiä et al. (2014a).
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Dynamic Lookahead Action

Queue 2 Myopic c2,M(x , b)

Queue 1 Myopic c1,M(x , b)

Decision tree with dynamic second action:

Consider all possible first actions i

Second action according to a dynamic policy (e.g., Myopic)

Depends on the job and its arrival time

Lookahead costs ci,M(x , b) by conditioning

Long expressions, numerical evaluation straightforward
Proposition 4 in Hyytiä (2013)
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Summary of the Lookahead

Upon an arrival, consider both

1 the current job

2 the later arriving jobs (tentatively)

Terminal costs

Condition on different sample paths

“Tail” using a value function with a static policy

Deeper inspection

Better evaluation of the System’s state
More accurate admission costs

Second action by a dynamic α0

Myopic

LWL, . . .

gives an estimate for the corresponding value function
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6.3 Numerical examples



ITC-26

September, 2014, Karlskrona, Sweden

E. Hyytiä

Dispatching policies

α

Task

Assignment

FCFS

FCFS

ν

ν

1

2

λ

RND Random split

RR Round-robin

SITA-e Size-Interval-Task-Assignment, equal loads

JSQ Join-the-Shortest-Queue; the least number of jobs

LWL Least-Work-Left, i.e., the shortest backlog

Myopic Minimize the cost (delay) of the new job

FPI FPI based on SITA-e

Deep Lookahead strategy with α0=SITA-e
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Example #1: Exp-jobs with FCFS Servers

α

Task

Assignment

FCFS

FCFS
λ

1

1

Two identical servers

FCFS

X ∼ Exp(1)

Minimize latency

Offered load ρ varied

(Deep = Lookahead)  0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4
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E
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 ]

Delay with identical servers and X~Exp(1)

SITA-e

RRR
N

D

LWL

JSQ
FPI

Static Deep

Offered load ρ
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Example #2: Pareto Jobs with FCFS Servers

α

Task

Assignment

FCFS

FCFS
λ

1

1

Two identical servers

FCFS

X ∼ Pareto(k , 105, α)

Minimize latency

Set ρ = 0.8, vary
cV = σ/µ

(Deep = Lookahead)

 0.7
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E
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 E
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Coefficient of Variation cv = σ / µ

R
R

JSQ

SITA-e

LWL

FPIStatic Deep

ρ = 0.8
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Example #3: Fixed-size Jobs with FCFS

Two heterogeneus FCFS servers with fixed size jobs:

Fast server with fixed service time 1/4

Slower server with fixed service time of 1

u1

u2

ξ

To Queue 1

To Queue 2

ξ

y 
= 

x 
− 

 1

 1.05

 1.1

 1.15

 1.2

 0  0.2  0.4  0.6  0.8  1

R
e

la
ti
v
e

 d
e

la
y
  

E
[ 

T
 ]

 /
 E

[ 
T

o
p
t 
]

Offered load ρ

L
W

L

M
yo

pi
c

FPI

TRILookahead

Left: Switching curve defines the optimal policy (Hyytiä, 2014)

Right: Gap to the optimal policy as a function of ρ

Lookahead is practically optimal in this case!
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Example #4: Two Identical LCFS Servers
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Coefficient of variation, cv = σ / µ

LCFS, X~Weibull, no setup delay, ρ=0.9

RND / SITA

(insensitive)

RR

LW
L

JSQ / FPI

LH

Figure 10: Left: Exponentially distributed jobs, ρ varied
Right: Weibull distributed jobs with a fixed load ρ = 0.9

Remark: FPI for RND yields JSQ, which ignores the service times
Lookahead does clearly a better job also here and is nearly insensitive
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Summary

FPI offers robust & adaptive cost-aware policies

Lookahead approach builds on that:

Consider also the next arriving job(s)!

Explicit expressions derived for admission costs
Estimate for value function with dynamic policy

Numerically, clear improvement from FPI and others

Near-optimal? (Sometimes at least! See Example #3)
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7. Energy-aware Systems
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Energy-aware System Model

Until now focus solely on performance (i.e. delay)

Recently energy consumption has become an important

design factor

In computing, two approaches to save on energy

1 Speed scaling: speed (and energy consumption) of
processors can be adjusted

2 Switching off currently unnecessary devices

We focus on the latter, i.e., switching off servers

Penalty for switching off comes in the form of setup delay:

Jobs have to wait time s before the service can begin
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Related work

Related models (M/G/1):

Removable servers, N-policy

(Yadin and Naor, 1963; Heyman, 1968)

Service starts when nth customer arrives

Vacation models, T -policy

(Levy and Yechiali, 1975; Heyman, 1977)

Server returns periodically to check the queue

D-policy, service starts when backlog exceeds d

Results for setup delay:

M/G/1 with setup times (Welch, 1964)

M/M/k approximations (Gandhi et al., 2010)

M/M/k exact results (Gandhi et al., 2013)

No delay- and energy-savvy dispatching policies!
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Setup Delays and Energy

Model for Server Farm

k parallel servers

Size-aware setting

Dispatcher Servers

Customers

Distinctive features here

Energy- and Delay-aware cost structure

Running costs (per unit time)
Holding costs (per job)

e.g., delay (sojourn time)

Idle servers can be switched OFF to save energy

Setup delay postpones the start of the service
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Basic Cost Structure

Basic energy-aware cost structure: 20

(i) Running costs e

Costs are incurred at rate e when the server is on

(ii) Holding cost bi for job i

Job i incurs costs at rate bi until it departs

The first is the system’s cost to provide the service, and the

second is the quality of service (QoS) as seen by the customers

20See Penttinen et al. (2011) and (Hyytiä et al., 2014a,b)
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Sample Busy Period

λ1

ServersTasks

3λ

2λ

Arrivals

V
ir
tu

a
l 
b
a
c
k
lo

g
 u

u

switched
delay overon

switched
off

running cost e

s

s

setup

X

The basic cost structure:

(i) Running cost e when the server is ON

(ii) Holding cost bi per job i until departure
(not shown, depends on scheduling)
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7.2 Setup Delays in M/G/1
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Mean Delay with Setup Delay

Theorem 7 (M/G/1-FCFS)

The mean delay in an M/G/1 with FCFS is

E[T ] =
λE[X 2]

2(1− ρ)
+ E[X ] +

E[S] + (λ/2)E[S2]

1+ λE[S]
(17)

Theorem 8 (M/G/1-LCFS)

The mean delay in an M/G/1 with preemptive LCFS is

E[T ] =
E[X ]

1− ρ
+
E[S] + (λ/2)E[S2]

1+ λE[S]
(18)

Mean results decompose
The extra delay term due to setup is the same for FCFS and LCFS!
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Mean Delay with Setup Delay (cont.)

Theorem 9 (M/D/1-PS)

The mean delay in an M/D/1 with PS is

E[T ] =
d

1− ρ
+ (1+ ρ)

E[S] + (λ/2)E[S2]

1+ λE[S]
(19)

Proof.

See Hyytiä et al. (2014a).

Hence, the delay penalty for M/D/1-PS is (1+ ρ)pS, whereas

with FCFS and LCFS we had only pS, see (17) and (18).
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Mean Delay with Setup Delay (cont.)

Corollary 10 (M/M/1)

The mean delay in M/M/1 with an arbitrary work-conserving

scheduling discipline (e.g., FCFS, LCFS, PS) is

E[T ] =
1

µ− λ
+
E[S] + (λ/2)E[S2]

1+ λE[S]
(20)

Proof.

Substitute X ∼ Exp(µ) into (17) or (18).

Corollary 11 (Sensitivity (Hyytiä et al., 2014a))

M/G/1-PS with setup delay is not insensitive to job size

distribution.
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Separability

Theorem 12 (Separability (Hyytiä et al., 2014a))

If the mean delay in a work-conserving service system with a Poisson

arrival process is additively separable, E[T ] = gX (λ) + pS(λ), then

pS(λ) =
E[S] + λE[S2]/2

1+ λE[S]

Proof.

If E[T ] separates, then it holds also for the trivial case X = 0. In such

systems, the mean delay is the remaining setup delay, gX (λ) = 0, and

pS(λ) =
1

λ
·
E[S + λS2/2]

1/λ+ E[S]
=

E[S] + λE[S2]/2

1+ λE[S]

In contrast, the mean response time for PS is not separable.
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Mean running costs in M/G/1

Theorem 13 (Mean running cost in M/G/1)

rR =
λ(E[X ] + E[S])

1+ λE[S]
e (21)

Proof.

The mean (remaining busy period) in M/G/1 is b(u) = u
1−ρ

The mean busy period with setup delay S is E[B] = E[X ]+E[S]
1−ρ

The mean running cost is rR = E[B]
E[B]+1/λ ·e, which yields (21)
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Delay and Running costs in M/G/1

M/G/1-queue:
ν

λ

Static switch-off policy:
1 NeverOff: keep the server always ON

2 InstantOff: switch off immediately when idle

Mean running cost:

rR =

{
λ(E[X ] + E[S])

1+ λE[S]
e, if InstantOff

e, if NeverOff

Mean delay cost: (depends on scheduling)

rT =

{

λE[T ], if InstantOff

λE[T |S ≡ 0], if NeverOff
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Example: Optimal Switch-off in M/G/1

The total cost rate under InstantOff in M/G/1-FCFS is

rInstant =

Sojourn time
︷ ︸︸ ︷

λ2 E[X 2]

2(1− ρ)
+

λ(E[S] + (λ/2)E[S2])

1+ λE[S]
+ λE[X ] +

Running cost
︷ ︸︸ ︷

λ(E[X ] + s)

1+ λs
e

and under NeverOff,

rNever =
λ2 E[X 2]

2(1− ρ)
+ λE[X ] + e

Studying rInstant < rNever ⇒ InstantOff better if

e >
2λE[S] + λ2 E[S2]

2(1− ρ)

(

e >
λs(2+ λs)

2(1− ρ)

)

Note:

Threshold depends on λ, E[X ] and the first two moments of S

It is the same also for LCFS and for all work-conserving M/M/1-queues

With M/D/1-PS, the threshold gets multiplied by (1+ ρ)
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Summary

Mean value results for M/G/1 queues often available

Extra delay due to setup is the same for FCFS and LCFS

In fact, this extra delay is (mean increase per job)

pS(λ) =
E[S] + λE[S2]/2

1+ λE[S]

for an arbitrary (incl. multi-server) system, if the mean
delay is additively separable, E[T ] = gX (λ) + pS(λ)

This holds for FCFS and LCFS

. . . but not for PS

Setup delay breaks the insensitivity property of PS
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7.3 Static Dispatching
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Model

λ
Switch−off

DispatchingSystem model:

n identical parallel servers

Jobs dispatched upon arrival

Running costs at rate e (energy)

Idle servers can be switched off

Setup delay of s when switched on

Objective:

min E[N] + e · E[A] or min rT + rR

where

E[N] is the mean number in the system (E[N] = λE[T ])
E[A] is the mean number of running servers
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Example: two servers

Two identical servers:

Setup time s = 2

Running cost rate e = 1

Poisson arrival process with rate λ

Service times X ∼ Exp(1) (and any work-conserving scheduling)

RND dispatching (Bernoulli split) w.p. p

Switch-off policies: NeverOff and InstantOff

RND p

1−p InstantOff

InstantOff

λ

1−p

RND p
λ

NeverOff

NeverOff

1−p

pRND
λ

InstantOff

NeverOff

(1) InstantOff (2) NeverOff (3) Mixed
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Static dispatching

Numerical Results

NeverOff

Mixed

InstantOff

50:50 split

Optimal split
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Static dispatching

Results

InstantOff

Mixed NeverOff

Offloading probability p
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Figure 11: Optimal operation with RND.
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Static Dispatching

Observations

Optimal switch-off policy changes as the load increases

InstantOff → Mixed → NeverOff

NeverOff always splits the jobs uniformly

Running costs are fixed, 2× e

Uniform split minimizes the mean sojourn time

InstantOff and Mixed use

Only one server under a very low load

Uniform split under a very high load

All makes sense, but static control cannot be optimal?
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7.4 Value Functions with Setup Delay
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Value Function for FCFS with Setup Delay

Theorem 14 (M/G/1-FCFS)

The value function w.r.t. delay in an M/G/1-FCFS with setup

delay s is

vu − v0 =
λ u2

2(1− ρ)
−

λs(2+ λs)

2(1− ρ)(1+ λs)
u (22)

Proof.

See Hyytiä et al. (2014b).

Note: With immediate costs (or add the remaining sojourn times . . . )
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Value Function for LCFS with Setup Delay

Theorem 15 (Value function)

The value function w.r.t. the response time in an M/G/1-LCFS

with setup delay s is

vz − v0 =
nδ +

∑n
i=1 i∆i

1− ρ
+

λ δ2

2(1− ρ)
−

λs(2+ λs)

2(1− ρ)(1+ λs)
u (23)

Proof.

See Hyytiä et al. (2014a).

Note:

Job n is currently receiving service (head of queue)

Linear “setup delay” term is the same as with FCFS
n

1

∆

∆

ν

..
.

λ
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Value Function for M/D/1-PS

Theorem 16 (Value function)

The value function w.r.t. delay in M/D/1-PS with setup delay is

vz − v0 = q(z)−
u

1− ρ
λE[T ],

where u = δ +∆1 + . . .+∆n, and

q(z) =







ρ(nd + δ)

(1− ρ)2
+

2n2d + (1 + ρ)(2n + λ δ)δ

2(1− ρ)
, δ > 0,

2
∑

i

i∆i +

(

λ
d + (1− ρ)u

(1− ρ)2
− 1

)

u, δ = 0

where ∆1 ≥ . . . ≥ ∆n is assumed.
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Value Function for Running Costs

Theorem 17 (Value function)

The value function w.r.t. the running costs in an M/G/1 with

setup delay s is

vR(u)− vR(0) =

{ u
1+λs e, if InstantOff

0, if NeverOff
(24)

Proof.

See Hyytiä et al. (2014b)

Note: Under NeverOff, all states are equal w.r.t. running costs
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7.5 Dynamic Dispatching
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Dynamic Dispatching

Dynamic dispatching & switch-off decisions

Require state information

Can improve the performance

cf. JSQ vs. RND

Option to switch-off makes the situation more complicated

We consider size- and state-aware setting

How to capitalize the state information?
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Size-aware value functions for M/G/1

Virtual backlog u includes the remaining setup time δ,

u = δ +∆1 + . . . ,∆n.

Value function w.r.t. running costs is 21

vR(u)− vR(0) =

{ u
1+λs e, if InstantOff

0, if NeverOff

Value function w.r.t. sojourn time in M/G/1-FCFS is

vS(u)− vS(0) =







λ
2(1−ρ)

(

u2 − s(2+λs)u
1+λs

)

if InstantOff

λ u2

2(1−ρ) if NeverOff

The immediate cost is equal to the resulting backlog u.
21See (Hyytiä et al., 2014b)
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Improved dispatching

1 First policy iteration

(static policy) + (value function)
FPI
⇒ new policy

Queues are evaluated assuming future jobs according to α0

2 Lookahead
Evaluate decisions such as

This job to server i

Next job to server j (tentatively)

Later arriving jobs according to a static α0

More accurate evaluation of each possible action

Yields typically a better policy than FPI
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Example #1: Sending jobs to idle servers

Example: Routing to switched-off server

α

ν1

Jobs

Arriving

ν2

ServersDispatcher

d

d2

1
λ,X

Two identical servers
service rate setup delay

Queue 1: ν1 = 1, s1 = 1
Queue 2: ν2 = 1, s2 = 1

λ = 1.5 and E[X ] = 1

Minimize waiting time W

Basic policy α = RND

Server 1 busy, u1 > 0

Server 2 idle, u2 = 0

FPI sends a job to the idle

Server 2 earlier than LWL
L
W

L
:

to
b
u
s
y

s
e
rv

e
r

L
W

L
:

to
id

le
s
e
rv

e
r

To busy

Server 1
To idle

Server 2
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Threshold with FPI-RNDU : d=1
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Example #2:

Two servers

Server 1: NeverOff

Server 2: InstantOff

Setup delay: s = 2
Running cost: e = 1

1−p

pRND
λ

InstantOff

NeverOff

Minimize rW + rR (waiting time + running costs)

Reference dispatching policies

RND: random 50:50 split

SITA-E: short jobs to server 1, long to server 2

Myopic: socially optimal if no later arrivals

Greedy: individually optimal choice (only delay)
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Example #2: X ∼ Exp(1)

r (α)

r (SITA−E)
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Offered load ρ

Exp-jobs with InstantOff and NeverOff server
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SITA-E

Myopic

GreedyFPI
Lookahead

Figure 12: Relative mean cost rate with the objective of rW + rR .
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Example #2: X ∼ Pareto (truncated)

r (α)

r (SITA−E)

 0.6
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 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

Offered load ρ

Pareto-jobs with InstantOff and NeverOff server

RND

SITA-E

Myopic

Greedy

FPI

Lookahead

Figure 13: Relative mean cost rate with the objective of rW + rR .
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Example #3: Dispatching & Switching off

System

4 identical LCFS servers:

Service rate ν = 1

Setup delay s = 1

Running cost e = 1

Decision parameters:

1 Dispatching decisions

2 Switch-off policy: InstantOff or NeverOff (per server)

Objective: min rT + rR

Numerical evaluation

We compute FPI and Lookahead policies

. . . and compare them to RND, SITA-E, LWL and Myopic

For each α and λ, we consider all (InstantOff, NeverOff)4

combinations, and choose the best among them
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Example #: Results
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Figure 14: Performance with 4 servers when a tradeoff between the

mean response time and energy consumption must be made.

The pool of always running servers increases as the load increases
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Summary

Server farm modelled as a queueing system

Job dispatching decisions

Server switch-off decisions to save energy

Setup delay included

Cost structure

1 Running costs [1/time]

2 Delay costs T for FCFS, LCFS, and PS

Static control straightforward

Mean results available

Dynamic control is harder

Value functions available ⇒ FPI and Lookahead

Can be applied to both dispatching and switching off
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References

1 Penttinen, Hyytiä and Aalto, Energy-aware dispatching in parallel queues with
on-off energy consumption, IEEE IPCCC (2011).
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7.6 General Cost Structure
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General Cost Structure

Consider the following queue-specific cost structure: 22

(i) Switching costs (kon, koff) (per cycle)

A cost of kon when the server is switched on, and

A cost of koff when it is switched off

(ii) Running costs (eon, eoff) (per unit time)

Costs are incurred at rate eon when the server is on

and at rate eoff when it is switched off

(iii) Holding cost c(u) (per unit time), u = virtual backlog

Backlog based holding cost, some increasing function

Note: These costs are independent of the scheduling!

22See Heyman (1968) and Feinberg and Kella (2002) for normal M/G/1,

Hyytiä et al. (2014b) for M/G/1 with setup delay.
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General Cost Structure

λ1

ServersTasks

3λ

2λ

cost
switch offswitch on

cost
switching
delay over

Arrivals

X

d

V
ir
tu

a
l 
b
a
c
k
lo

g
 u holding cost: c(u)

d
u

processing  cost e

The queue-specific cost structure:

(i) switching costs (kon, koff) (per cycle)

(ii) running costs (eon, eoff) (per unit time)

(iii) holding cost c(u) (per unit time), u = virtual backlog
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General Cost Structure without Setup

Delay
Cost Mean rate r∗ Value function v∗(u)− v∗(0)

Switching λ(1− ρ) · k −λu · k

Running ρ · e u · e

Holding H1
λE[X 2]

2(1− ρ)

u2

2(1− ρ)

Holding cost Hk is a cost rate defined as (Ut)
k , k = 1, 2, . . .

(i.e., a cost related to holding backlog in the system)
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General Cost Structure with Setup Delay

Cost Mean rate r∗ Value function v∗(u)− v∗(0)

Switching
λ(1− ρ)

1 + λs
· k −

λu

1 + λs
· k

Running
ρ+ λs

1 + λs
· e

u

1 + λs
· e

Holding H1
λE[X 2]

2(1− ρ)
+

s(2ρ+ λs)

2(1 + λs)

u2

2(1− ρ)
−

s(2ρ+ λs) · u

2(1− ρ)(1 + λs)

Note:

State u = virtual backlog (incl. remaining setup time)

Holding cost with s = 0 is the Pollazcek-Khinchine formula

Setup delay shows up as an extra term in rH1 and vH1(u)

Extra cost in vH1(u) due to setup delay ∝ u

Decomposition property (Fuhrmann & Cooper, 1985)
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Quadratic Holding Costs

Linear holding cost corresponds to metrics such as (for
FCFS)

Latency (i.e., delay, sojourn time, waiting time)

Slowdown (ratio of the latency to job size, T/X )

. . . anything that is directly proportional to T

Not everything is linear

E.g., longer waiting may cause more customer

dissatisfaction ⇒ cost rate increases!

What about quadratic costs?

Virtual backlog, cost rate ∝ U(t)2

Latency of Job i , cost incurred ∝ (Ti)
2

Good news: These can be computed too!
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Quadratic Holding Costs

The mean holding cost rate is

rH2 = E[U2]

=
3λ2 E[X 2]2+2λ(1−ρ)E[X 3]

6(1− ρ)2
+

3ρ+ λs

3(1+λs)
s2 +

λ(2+λs)E[X 2]

2(1−ρ)(1+λs)
s

︸ ︷︷ ︸

setup delay

The corresponding value function is

vH2(u)− vH2(0) =

1

3(1−ρ)
u3+

λE[X 2]

2(1−ρ)2
u2−

(
3ρ+ λs

3(1−ρ)(1+λs)
s2+

λ(2+λs)E[X 2]

2(1−ρ)2(1+λs)
s

)

u

︸ ︷︷ ︸

setup delay

Mean cost rate (cf. PK) and value function resemble each other

Setup delay appears as extra terms in both

In value function, the cost of setup delay is proportional to −u
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Waiting Time and Latency (FCFS)

For an arbitrary cost function c(u)

c1 , E[c(W1) + . . .+ c(WNu
)]

c2 , λE[

∫ Bu

0

c(Ut) dt ]
PASTA ⇒ c1 = c2

For waiting time W and its square (FCFS)

Linear vW (u)− vW (0)=λ

(

vH1(u)− vH1(0)−
du

1+λs

)

Quadratic vW2(u)−vW2(0)=λ

(

vH2(u)− vH2(0)−
s2u

1+λs

)

For latency, vT (u)− vT (0) = vW (u)− vW (0)
Similarly, an expression for vT 2(u) can be obtained
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Summary

So what do we have?

Cost type mean

rate

value

function

immediate

cost

Switching cost ✓ ✓ ✓

Running cost ✓ ✓

Holding costs Uk
✓ ✓

Waiting time W ✓ ✓ ✓

(F
C

F
S

)

Waiting time W 2
✓ ✓ ✓

Latency T ✓ ✓ ✓

Latency T 2
✓ ✓ ✓

Reference:

1 Hyytiä, Righter and Aalto, Task Assignment in a Heterogeneous Server Farm
with Switching Delays and General Energy-Aware Cost Structure, Performance
Evaluation (2014).
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