
Opportunistic Network Environment simulator

Ari Keränen

ari.keranen@tkk.fi

Helsinki University of Technology

Department of Communications and Networking

Special assignment

Supervisor: Professor Jörg Ott

May 29, 2008

Contents

1 Introduction 1

2 Background 3

3 The Opportunistic Network Environment simulator 6

3.1 Mobility modeling . 7

3.2 Routing simulation . 9

3.3 External event and reporting frameworks 11

3.4 Running simulations . 12

3.4.1 Graphical User Interface mode 12

3.4.2 Batch mode . 14

3.4.3 Post-processing . 15

3.4.4 Configuring scenarios 16

3.5 Software architecture . 17

3.5.1 Movement models . 18

3.5.2 Routing modules . 19

3.5.3 Extending the simulator 21

3.6 Limitations . 23

3.7 Results . 24

4 Conclusions 25

A The ONE ReadMe I

I

Acronyms

API Application Programming Interface

ASCII American Standard Code for Information Interchange

DTN Delay Tolerant Networking

GIS Geographic Information System

GPL GNU General Public License

GPS Global Positioning System

GUI Graphical User Interface

MAC Media Access Control

MANET Mobile Ad-hoc NETwork

ONE Opportunistic Network Environment simulator

POI Point Of Interest

RAM Random Access Memory

RWP Random WayPoint

TTL Time To Live

WKT Well Known Text

WLAN Wireless Local Area Network

II

Chapter 1

Introduction

Today many personal mobile devices include capabilities to communicate

with infrastructure networks but also with each other. The latter can be

used to form ad-hoc networks where common infrastructure is no longer

needed for communication among hosts participating in the network. Ad-

hoc networks can also help mobile nodes to reach infrastructure if some node

in the network is able and willing to act as a gateway and possibly other

nodes as relays for the traffic. Networks can be formed this way as long as the

node density is large enough so that there exists possible end-to-end paths

between all nodes wanting to communicate. However, if the node density

decreases or the connectivity breaks for some other reason (e.g., the radios

are switched off occasionally), traditional network communication protocols

are no longer able to provide means for multi-hop communication.

Delay Tolerant Networking (DTN) [10, 4] is a communication networking

paradigm that enables communication in environments where there may be

no end-to-end paths, communication opportunities come and go and their

interval can be very long and not even known beforehand. Routing messages

in this kind of environments can be quite different compared to traditional

networks. This has created a need to find new routing protocols that take

efficiently into account the distinct nature of these networks. Different ap-

proaches can be tested and evaluated by simulation, but the simulation

results are really useful only if they are a result of somewhat credible simu-

lation scenarios.

1

The goal of this study is to add more realism to the simulations of Delay

Tolerant Networks. For this purpose we created a new simulation environ-

ment called Opportunistic Network Environment simulator (ONE). Unlike

other DTN simulators, which usually focus only on routing simulation, the

ONE combines mobility modeling, DTN routing and visualization in one

package that is easily extensible and provides a rich set of reporting and

analyzing modules.

2

Chapter 2

Background

One hindrance for research on DTNs is the lack of good simulators. Many

simulators exist for MANETs (e.g., ns2 [19] and OMNeT++ [27]) and also

for DTN routing (e.g., dtnsim [13] and dtnsim2 [20]) but the former lack

good DTN support and the latter concentrate solely on routing simulation.

The DTN routing simulators have also seen little evolution since their first

public release and implementations of recent routing protocols don’t exist

or are not publicly available.

Another problem for a simulator that considers only routing is that it

needs input data that tells the routing protocols when a network link be-

tween two DTN nodes is up and when it is down. This data can be gen-

erated based on some random process (e.g., just drawing contact durations

and endpoints from a pseudo random number generator), it can be derived

from real-world trace (e.g., using CRAWDAD [5] data) or it can be derived

from mobility simulation. The problem with the first approach is that val-

ues from some random distribution are hard to prove to have some validity

behind them. For example, even if human interactions may seem some-

what random, humans usually do have some purpose for their actions and

for meeting certain people and visiting some places more often than others.

Capturing this in a simple, or even complex, random number distribution

would be challenging, to say the least.

The real-world traces obviously capture real human behavior well but

they have other kinds of problems. The number of usable traces has been

3

low even though the CRAWDAD project is bringing some relief into this.

Unfortunately, the existing traces have low spatial and temporal granularity.

To save battery life of the mobile devices that are used to track people, the

interval the devices scan for others has been kept low [7]. This results in

missing possible contacts but also in that we don’t know how long the actual

contacts lasted — we just know how many scanning intervals they were in

contact with each other. This information can be of course used for many

simulations, but if we are interested in utilizing even the shortest contacts,

or want to experiment with different scanning intervals, these traces are

not that useful anymore. If we had traces of the nodes’ exact locations,

we could derive contact times from that information by setting a simulated

link between two nodes up when they are within certain distance (the radio

range of the simulated device) of each other. Some of the wireless traces

that are available support this to some extent because they have logs of

the people who have been within the radius of some WLAN base stations

whose location is known. From that information the nodes’ approximate

location can be estimated but the spatial granularity is not high enough

for simulating devices with small or moderate radio range (e.g., Bluetooth

with 10 meter radius). Yet another problem with the gathered traces is that

the population in them is fixed and often highly specialized. One cannot

increase the number of people that participated in the trace after the trace

is gathered and the number is often quite low because of practical reasons.

Also, so far the traces consist of more or less selected group of people (e.g.,

people participating in a conference or working in a research laboratory)

and their behavior is not likely to be representative of some other group of

people in other kind of situation. For these reasons, the real-world traces

do not provide comprehensive solution for the connectivity data problem.

A third approach is to simulate the movement of the nodes and derive

contact information from that. With this approach the temporal and spatial

granularity can be set as high as what is needed for good simulation. Also,

the number of nodes and their behavior is easily varied for different scenarios

and sensitivity analysis. Even with simple mobility model the connectivity

pattern is easily more realistic than with some random distribution. Then

again, finding a good and somewhat realistic mobility model is a harder task.

4

One of the simplest ones that is commonly used is the Random Waypoint

(RWP) [14]. In RWP random coordinates in the simulation area are given

to the node. Node moves directly to the given destination at constant speed,

pauses for a while, and then gets a new, random, destination. This continues

throughout the simulations and nodes using RWP move along these zig-zag

paths. This creates simple, but quite artificial movement: hardly ever hu-

mans can move unconstrained using direct paths or select their destinations

randomly in a square area.

Even if we had a good algorithm for a movement model, it would be

hard to program and validate it without seeing how the nodes move if the

model is used. The same goes for DTN routing simulation: even though the

simulation progress can usually be followed from text output to the terminal

console, it requires a considerable amount of expertise to be able to see and

understand what is happening there. For this purpose a Graphical User

Interface (GUI) is an efficient tool. For ns-2 simulations, the iNSpect [16]

addresses the visualization problem, but for the DTN routing simulators

there have not been similar tools available.

For these reasons, there appears to be a need for a simulator that has rea-

sonable mobility modeling capabilities, integrated support for DTN routing,

and ways for visualizing the simulation progress and results in an intuitive

way. The next chapter presents our response to this need: the Opportunistic

Network Environment simulator.

5

Chapter 3

The Opportunistic Network

Environment simulator

To make complex DTN simulations more feasible and understandable, we

created a new simulation environment that combines movement modeling,

routing simulation, visualization and reporting in one program. Movement

modeling can be done either on-demand using the integrated movement

models or movement data can be imported from an external source. The

node position data that the movement models provide is then used for deter-

mining if two nodes can communicate and exchange messages. This infor-

mation can be exported for routing simulation in external simulators (such

as dtnsim) or it can be given to the internal routing modules which im-

plement several different DTN routing algorithms. The internal routing

modules perform operations on the messages on their own, but they can

also be commanded using event generator modules or external traces. The

movement modeling and routing simulation is interactively observable in

the simulator’s GUI and report modules can gather data of the simulation

for further analysis or interaction with other programs. An overview of the

whole process is depicted in figure 3.1.

The core of the ONE is an agent-based discrete event simulator. To make

it suitable and efficient enough for simultaneous movement and routing sim-

ulation, it uses time slicing approach [2], so the simulation time is advanced

in fixed time steps. The time slicing can be complemented by scheduling

6

routing

visualization and results

simulation
engine

connectivity
data

external DTN
routing sim

internal routing
logic

routing
data

visualization,
reports, etc.

post processors
(e.g. graphviz)

graphs,
charts,

etc.

event generators

External events file

Message event generator

etc.

movement models

Random waypoint

External trace

Map-based movement

etc.

Figure 3.1: Overview of the ONE

update requests between the fixed time steps for higher simulation time

resolution.

The simulations can contain any number of different types of agents,

i.e., wireless nodes. The nodes are grouped in node groups and a one group

shares a set of common parameters such as message buffer size, radio range

and mobility model. Since different groups can have different configurations,

creating e.g., a simulation with pedestrians, cars and public transportation

is possible. All movement models, report modules, routing algorithms and

event generators are dynamically loaded into the simulator so extending

and configuring the simulator with different type of plugins is made easy for

users and developers: just creating a new class and defining its name in the

configuration file is usually enough.

3.1 Mobility modeling

Mobility models dictate how the nodes move during the simulation. Three

different types of mobility models were initially implemented for ONE. For

reference purposes, even despite of its shortcomings, ONE includes the basic

Random Waypoint movement model. For more realistic mobility scenarios

7

ONE provides variety of map-based movement models which constrain the

node movement to predetermined paths. Finally, ONE also supports im-

porting of mobility data from external sources.

Map-based movement models accept map data that is described using a

subset of the Well Known Text (WKT) format. WKT is an ASCII based

format that is commonly used in Geographic Information System (GIS)

programs. Since basically all the digital map data is available in some format

that GIS programs understand, they are usually relatively easily convertable

to the form supported by the ONE. Also, GIS programs can be used as

powerful map editors for the ONE. The free, Java-based, open source GIS

program OpenJUMP [21] was used for editing and converting the maps in

our experiments. In map-based models, the nodes move using only the roads

and walkways of the map area. Different node groups can be configured to

use only certain parts of the maps which can prevent, e.g., cars driving on

pedestrian paths or inside buildings (if paths in buildings are also defined).

The simplest Map-Based Model, MBM, places nodes randomly in the

map area and moves them forward on the path segments until they hit the

end of the road and turn back or end up in an intersection. In intersec-

tions, nodes using MBM select randomly a new direction but do not head

back where they came from. When a node has traveled a configurable dis-

tance, it stops for a (configurable) while, and then continues its journey.

The more advanced version of MBM, Shortest Path Map-Based movement

Model, SPMBM, also initially places the nodes in random places but selects

a certain destination in the map for all nodes and uses Dijkstra’s shortest

path algorithm [6] to find the shortest path to the destination. When the

destination is reached, the node waits for a while and selects a new desti-

nation. Normally all the places in the map have equal probability of being

chosen as the next destination, but the map data can also contain Points

of Interest (POIs). POIs are grouped in POI groups and every node group

can have configurable probability for choosing a POI in certain group as

the next destination. POIs are useful for modeling e.g., restaurants, tourist

attractions and other places where people tend to gather. Some nodes can

also have predetermined routes that they travel on the map. This kind of

Route-Based Models, RBMs, are good for simulating e.g., bus and tram

8

routes. Routes consist of map points that model the stops on the route and

nodes wait on every stop for some time before continuing, using the shortest

path, to the next stop. Both POIs and routes can be defined using the same

GIS programs that are used for converting the map data.

The external mobility model takes a set of timestamped coordinates as

the input and moves the simulated nodes accordingly. This model can be

used e.g., with GPS traces of real users or synthetic mobility traces generated

by other programs. One program that is suitable for creating synthetic

traces is the Transportation Analysis and Simulation System (TRANSIMS)

[18]. TRANSIMS contains an agent-based microsimulator that takes into

account activities of individuals and their interactions when they move in

simulated metropolitan area and use different transportation options. The

agent movement data can be exported from TRANSIMS and imported into

ONE’s external mobility model and used for DTN simulations.

3.2 Routing simulation

While the mobility models decide where the nodes should move next, the

routing modules get to decide where the messages, or bundles, end up. The

ONE has six implementations of different well known routing algorithms and

also a passive routing module that can be used for interaction with external

DTN routing simulators.

The active routing modules included in the ONE are: First Contact [13],

Direct Delivery [24], Spray and Wait [25] (normal and binary), Epidemic

[26], PRoPHET [17] and MaxProp [3]. When two (or more) nodes meet

and there is a chance to exchange messages, all of the routing modules first

check if they have any messages that are destined for the other node and

try to send them. If the message was already earlier received by the node, it

declines receiving it and other messages can be tried. After all, if any, such

messages are exchanged, the behavior with rest of the messages depends on

the routing algorithm.

The most simple routing modules are the Direct Delivery, Epidemic and

First Contact. The Direct Delivery module does not start any further trans-

actions after exchanging the deliverable messages since it will send messages

9

only if it is in contact with the final recipient. This saves buffer space and

bandwidth but is not obviously an optimal approach in many cases if a high

message delivery probability is the goal. The Epidemic routing module uses

quite different approach since after two nodes have exchanged the deliv-

erable messages, it tries to exchange also all the other messages until both

nodes have the same set of messages or the connection breaks. If we had un-

limited buffer space and bandwidth, this would result in maximal spreading

of the messages throughout the nodes and therefore also to maximal deliv-

ery probabilities. However, if the buffer space and/or bandwidth is limited,

Epidemic routing is also likely to waste a lot of resources. For example, a

message that was delivered shortly after it was created could be transmitted

and stored by all the nodes for a long time even if there is no longer use for

it. This way the message is using resources that could be better used for the

messages that are not yet delivered. While also the First Contact module

sends as many messages to the other node as it has time, it removes the

local copy of the message after a successful transfer. This results in only a

single copy of every message in the network. To prevent two nodes who stay

in contact for a long time exchanging the same messages back and forth, the

receiving node accepts a message only if the message has not passed through

it before. Unfortunately, there are no guarantees that the first node that is

met is a better candidate than the previous node carrying the message, so

First Contact is not likely to achieve very high delivery probabilities either.

The Spray and Wait works a bit like the Epidemic but is a bit more

complex routing module since it restricts the amount of copies that are

spread in the network. This is done by letting each created message to

replicate only a certain amount of times. A node that has more than one

copy of the message left, can give either a one copy to another node (the

normal mode) or half of the copies (the binary mode). If the node has only

a single copy of the message left, it is transmitted only to the final recipient.

By using a different amount of initial copies, Spray and Wait can balance

between high diffusion of messages and excess use of resources. PRoPHET

and MaxProp take the complexity a bit further since they keep track of

which node has been in contact with which nodes. This information can be

used to reason if a certain node is a good candidate for delivering a message

10

to another node by assuming that if two nodes have met before, they are

more likely to meet (soon) again. While PRoPHET checks if another node is

more likely to meet the final recipient, MaxProp takes this idea further and

uses Dijkstra’s algorithm to calculate whole paths from node to node using

the meeting probabilities. MaxProp also uses acknowledgments of delivered

messages that help flushing redundant messages from the network.

The passive routing module can be used as an interface to other DTN

routing simulators. If a DTN routing simulator can output timestamped

information about message related events (creating, relaying and removing

messages), this data can be input to ONE for analysis and visualization. For

example, dtnsim2’s debug trace can be converted to suitable form for the

ONE. If the contact schedule for dtnsim2’s input is created using the ONE,

the message routing and mobility modeling can be visualized and inspected

in the GUI in similar way as if the routing was done by the ONE.

3.3 External event and reporting frameworks

While the routing modules could spawn new messages whenever needed,

it is often more convenient to have a routing module independent way of

creating them. Also, for interaction with other programs, there needs to be

a way to import message and connectivity related events to the simulation.

The external events framework is the solution for this.

There are two different ways to import events to the ONE: trace files

and event generator modules. A trace file is a simple text file that has

timestamped events such as creating a message, removing a message from

the message buffer or setting up a new connection. The trace files can also be

saved and loaded in binary mode to save time from parsing text files. Event

generator modules are normal Java classes that can dynamically create the

same events as the trace files. While the event traces are usually generated

with a script or converted from some other program’s output, the event

modules can be configured using the same settings system as the rest of the

simulator. The ONE supports multiple simultaneous event generators and

their events are automatically interleaved in the simulation.

While the external events provide input for the simulation, the most

11

important output is generated by the report modules. Report modules can

register to connection, message, and/or movement related events. Whenever

such an event happens in the simulation, the related method is called for

all registered report modules and a reference to the relevant objects (e.g.,

nodes and messages) is given to the report module. The report modules

usually either write information about the event to a report output file if it

was relevant or just store the information to an internal data structure for

creating a summary when the simulation is done.

The ONE has already numerous reporting modules, for example, for

message statistics (such as delivery probability and round-trip times), node

contact and inter-contact times and message delivery delays and distances.

Other interesting report modules are the ones used for communication with

other programs. The node connectivity information can be directly reported

in a suitable form for dtnsim2 simulations so the ONE can be used as a

mobility simulator for it. Also, another report module is able to output

mobility traces suitable for ns2’s Monarch [23] mobile node extension.

3.4 Running simulations

The ONE can be run in two different modes: batch and GUI. The GUI

mode is especially useful for testing, debugging and demonstration purposes

and the batch mode can be used for running large amount of simulations

with different set of parameters. Both modes can include any number of

report modules which produce statistics of the simulation. These statistics

can be further analyzed with post-processing tools to create different kind

of summaries, graphs and plots.

3.4.1 Graphical User Interface mode

In the GUI mode the simulation is visualized in real time as shown in the

figure 3.2. The largest part of the GUI is taken by the play field view

which contains a bird’s-eye view of the geographical simulation area. Node

locations, their radio range, current paths, amount of messages etc. are

visualized on the play field view. If the current movement model is map-

based, also the map path segments are drawn in the view. Additionally, a

12

background image, such as an aerial photograph or a raster map, can be

displayed under the other graphics. The play field view can be centered by

clicking with a mouse button and zoomed with the mouse wheel.

The simulation speed can be adjusted with the controls in the upper

part of the GUI and any node can be selected for inspection with the node

selector panel on the right side. When a node is selected for inspection, its

current location and amount of messages is displayed. Any of the messages

the node is carrying can be taken for further inspection and also routing

module specific information can be retrieved. The GUI also keeps track of

notable events and displays them in the event log panel. By clicking a node

or message name in the log panel, more information will be shown about

that node or message. The event log controls panel can be used to adjust

which events are shown in the log and the simulation can also be made

automatically pause in case of some type of event.

Figure 3.2: ONE screen shot (map data copyright: Maanmittauslaitos, 2007)

When a new movement model or routing module is created, the GUI

can give an intuitive view on how it works and whether the operations

13

make much sense. Since node locations are shown on the map, by following

their movement for a while, the movement model’s creator can see if the

nodes move like they were supposed to move and end up in places where

they were expected to go. This also applies to the routing modules: the

simulation can be automatically paused when, e.g., a message is transferred

between two nodes. Then, the routing module’s state can be inspected to

see if the message was really supposed to be transferred or not. During the

development of the ONE, these methods were extensively used to test and

debug the simulator.

Also, when deciding on the simulation parameters, it may be sometimes

hard to come up with reasonable values: for example, is 1000 nodes with a

50 meter radio range a lot in a 10 square kilometer urban area? Trying to

deduce this analytically can be a tedious job, but running such a simulation

with the GUI gives immediately an intuitive overview, e.g., on how well

connected the nodes are and how fast the messages are spread in the network.

Finally, the GUI can be useful for demonstration purposes. Seeing nodes

moving and messages being passed between them is often more intuitive than

a text trace in a console window or seeing just the final result in a plot when

the simulation is over.

3.4.2 Batch mode

When the movement models and routing modules seem to work as expected,

and if there is no need for real-time visualization, it is more efficient to run

simulations in the batch mode. The batch mode does not have a GUI so all

the processing power can be used for the simulation.

In the beginning of every scenario the name of the scenario and the

amount of scenarios left in this batch is printed to the console. If a scenario

takes more than one minute to run, a progress message is printed once every

minute that shows the current simulation time and the speed of the simu-

lation (simulated seconds per second). All simulation results are gathered

using the output of report modules.

For scenario configuration, the batch mode has a useful feature called

run indexing. This allows easily defining a set of scenarios with varying set

14

of parameters and trying out different parameter combinations with only

one configuration file. The idea in run indexing is that the user provides for

some configuration parameters, instead of a single value, an array of values.

The user also defines, with a command line parameter, how many simulation

runs should be performed. When started, the simulator first selects the first

value on each settings array and runs a simulation using those values. When

the simulation is finished, the second value from each array is chosen for the

next simulation and so forth. If an array’s length is smaller than the amount

of runs, the indexing wraps around, so the first parameter is selected after

the last one. Therefore, if the amount of arrays and their length is chosen

so that all array lengths have one as their smallest common nominator (e.g.,

by using prime numbers), all setting combinations can be run with a single

configuration file. For example, three setting arrays with lengths of 3, 5 and

7 will result in 3× 5× 7 = 105 different combinations.

3.4.3 Post-processing

When a set of report files have been created, either with GUI or batch mode,

they can be further post-processed with suitable programs.

Two of the ONE’s ready-made report modules produce files that are di-

rectly suitable for Graphviz [1] input. The adjacency graphviz report module

creates node adjacency graphs such as shown in the figure 3.3. In the graph

the nodes that have been in contact more than once have an edge drawn

between them and nodes that have been more often in contact are drawn

closer to each other. For example, it can be seen from the graph that tram

nodes (marked with t), that use the same route, meet quite often during

the simulation. Another Graphviz suitable module is the message graphviz

report module which produces directed graphs of the delivered messages’

paths. An example of a message graph, with all the messages that were sent

from the node p1 to the node p2 during a simulation, is shown in the figure

3.4.

The ONE includes also a set of post-processing scripts that can auto-

matically create, for example, bar graphs of message delivery probabilities

or plot cumulative distribution of inter-contact times using gnuplot [12].

15

c15

w20

c18

c13

p0

t35

t34

w22

c14

c17

p9

p7

t31

p6

c16

w27

p2

c11

p5

w23w28

p4

c10

w26
t33

t32

c19

w25

t30

p1

p8

Figure 3.3: Example of a node adjacency graph

3.4.4 Configuring scenarios

For defining the simulation scenarios, a way to configure the simulator is

needed. The ONE is configured using settings files which provide key-value

setting pairs. The setting values can be strings, numeric values, or class

names. Settings are grouped into name spaces so that same setting key can

have different values in different contexts. Any settings object can have a

primary and secondary name space: if the value that is requested is not

found from the primary name space, it is looked up from the secondary

name space. This way, a single entry is enough for defining some value for

a whole group of settings (e.g., for all node groups) but still some or all

groups can override these values by defining a new value in their primary

name space.

Class name values are used for dynamically loaded components and a

class with the specified name is looked from the related package. If such a

class is found, the settings framework instantiates it giving the new object

a reference to the settings object that is initialized to its name space.

String values are passed to the requesting object as such but the numeric

values, integers and decimals, can contain kilo (k), mega (M) or giga (G)

suffix for easily presenting large values which the settings framework auto-

matically parses on behalf of the requester. Any key can also have more than

16

p1

p0

p2

w26

w22

t35

c11

w29

t32 c16

t33

t31

t34

c13

p7

p5

p9

c10

p8

Figure 3.4: Example of a message graph

one value in which case the values are separated by commas. For example,

value ranges and area sizes are presented this way. Further description and

examples on how to configure the simulation environment are shown in the

appendix A.

3.5 Software architecture

The simulator part of the ONE is written using the Java programming lan-

guage. Different parts of the program are divided in different packages as

described in the figure 3.5. The figure also depicts, roughly, the dependen-

cies between the packages. Core components of the simulator, such as classes

presenting a DTN host or a connection, are in the core package. GUI-related

classes are in the gui package, which also has the playfield sub-package con-

taining classes presenting graphical objects in the play field view. Generic

user interface class and the text-based console class are stored in the ui

package. The (G)UI classes instantiate SimScenario and World classes from

the core package which in turn create instances of routing modules from the

routing package and movement models from the movement package. During

the simulation, routing and movement modules provide output for report

17

modules from the report package. The test package is not directly related

to the simulator, but it contains a set of unit and system tests that can be

run to check if the system performs as expected.

test

ui

report

core

gui

playfield

movement

map

routing

maxprop

Figure 3.5: The ONE software packages

3.5.1 Movement models

Some of the most important classes in the movement package are shown in

the figure 3.6. All movement models extend the MovementModel class which

provides the interface for requesting a new path for a node and asking when

the next path is available. The subclasses provide different implementa-

tions for these and implement this way different modes of movement. For

example, RandomWaypoint objects gives out simple zig-zag path whereas

MapBasedMovement objects restrict the path components to path segments

defined in a map data. The map sub-package has utility classes for the map

based movement models. The SimMap class provides a presentation of the

map data and the DijkstraPathFinder class can use that data to find the

shortest path between two map nodes. The PointsOfInterest class in turn

takes care of reading POI data and selecting appropriate POIs according to

the defined configuration.

18

movement

MovementModel

MapBasedMovement

ExternalMovementRandomWaypoint

ShortestPathMapBasedMovement MapRouteMovement

map

SimMap DijkstraPathFinder PointsOfInterest

Figure 3.6: The movement package

The MapBasedMovement class extends the default movement model class

by adding map-related features such as reading and caching map data.

MapRouteMovement and ShortestPathMapBasedMovement movement mod-

els also use the map data and the DijkstraPathFinder class to move using

shortest paths between route stops and and other map destinations.

3.5.2 Routing modules

The routing package, shown in figure 3.7, has a similar structure as the

movement package discussed in section 3.5.1. All routing modules must ex-

tend the MessageRouter class which provides the basic interface and func-

tionality for routing modules. The ActiveRouter class provides many utility

functions that (currently) all active routing modules use. The PassiveRouter

class does not need those, so it is inherited directly from the MessageRouter.

The MaxProp routing module requires some helper classes which are stored

in the maxprop package.

The MessageRouter class takes care of storing information of the mes-

sages the node currently has in its buffer, the messages it is currently receiv-

ing on its active connections, and about the messages that it has received

as the final recipient and has moved to the application layer so they are

no longer in the message buffer. When a node wishes to try to transfer a

message to another node, it asks the related connection object to start the

transfer, which in turn forwards the request to the other node. The other

19

routing

MessageRouter

ActiveRouter

EpidemicRouter

PassiveRouter

SprayAndWaitRouter

MaxPropRouter ProphetRouter

maxprop

Figure 3.7: The routing package

node calls its router module’s receiveMessage method and then the router

module can check whether it wants to receive the message. The router mod-

ule may reject the message, e.g., if it already has it in its message buffer.

The MessageRouter class accepts any incoming messages, but the modules

extending it may, and most likely will, have additional logic for accepting

or denying messages. With the method return value the router module can

also signal whether the other node should try to send the same message later

again or just stop trying.

In addition to the message receiving method, the MessageRouter class

also has methods that are called when a message was transferred successfully,

when a transfer was aborted, when a new message should be created or

when a message should be deleted from the buffer. The implementations for

these methods are fairly straightforward and their most important task is to

inform registered event listeners, such as report modules or the GUI event

panel, about the events. The class also has two important methods that it

does not provide implementations for: the changedConnection and update

methods. The former is called every time a new connection comes up or an

old connection goes down, and the latter is called on every update round.

Active router subclasses have to provide implementations for both of these,

since with them they are able to react to connection opportunities and also

handle the ongoing transactions.

The ActiveRouter class extends the MessageRouter and provides imple-

mentations for the most common tasks, such as sending messages that can

20

be delivered to a directly connected host or trying to send a set of messages

in certain order using a given set of connections. It also provides a simple

implementation for the update method. The update implementation finishes

ready transfers, aborts transfers if the connection was torn down before the

message transfer finished and also drops messages whose time-to-live (TTL)

has expired. A simple routing module does not need much more to function

and the simplest modules extending the ActiveRouter have only a few lines

of code.

3.5.3 Extending the simulator

As mentioned before, the ONE is meant to be an easily extendable sim-

ulation environment. Since the program is released under an open-source

GPL license [11], anyone is free to modify the behavior of the simulator

practically in any way they seem fit. However, to make things easier, we

have introduced several extension hooks which can be used without need

for any changes in the original source code. This allows sharing modules

as plugins and using them in different versions without needing to patch

the other parts of the simulator code. Routing modules, movement models,

event generators and report modules are all dynamically loaded when the

simulator is started using the Java reflection API. Due to the use of dynamic

loading, user only needs to create a new class, define its name in the con-

figuration file, and the simulator automatically loads it when the scenario is

started. All these modules can also have any number of settings defined in

the configuration files and these settings are accessible to the module when

its loaded.

As described in the section 3.5, all routing modules must extend the

MessageRouter class, but for implementing a routing algorithm, its usually

more convenient to extend the ActiveRouter class. The most important one

to override is the update-method. Finishing the ongoing transfers and also

exchanging the deliverable messages can be delegated to the ActiveRouter

superclass but further routing logic must be implemented by the routing

module itself in the update method. Also, if a router module needs to

keep track of all connections, even when its transferring messages, it should

21

override the changedConnection method for doing the necessary actions. For

example, the PRoPHET routing module keeps track of nodes who have met

each other this way.

New movement models can be created by extending the MovementModel

class and overriding at least the getInitialLocation and getPath methods. The

first method is used for getting the location where the node should be in the

beginning of the simulation and the second for requesting a new path the

node will use. The paths are sequences of waypoints and the nodes move

from waypoint to waypoint with speed determined by the movement model.

The MovementModel class also provides ability to configure and generate

uniform speed and wait-time1 distributions.

Event generators should be created to the input package and they must

all implement the EventQueue interface. Using the interface the simulator

engine can query when the next event is due and when the time is there, it

can also ask for the event. When the event is processed, it gets a reference to

all the simulated nodes so it can, e.g., create messages, setup connections or

abort transfers between them by calling the right methods for the DTNHost

objects.

Finally, the report modules, found from the report package, provide

means for generating customizable statistics and reports of the simulation.

All custom modules must extend the Report class and implement one or

more of the event listening interfaces. A report module implementing the

MessageListener interface will be informed of message-related events such as

creating a new message or transferring it from a node to another. Modules

implementing the ConnectionListener interface get notified when a connec-

tion between two nodes goes up or down. The MovementListener interface

is for tracking new destinations of the moving nodes, and if none of these

interfaces is enough, a report module can implement the UpdateListener in-

terface and get notified every time the nodes are updated (i.e., on every time

step).
1The time to wait still before selecting a new path

22

3.6 Limitations

Even though the ONE is a quite capable simulator, it naturally also has

its limitations. To make simulations feasible, many real world aspects have

been abstracted or even completely discarded. Some of these features are

due to the innate nature of the simulator but others are possibly some day

solved by future versions of the simulator.

During the simulation, the simulation time is increased in finite steps,

and all nodes are moved and their message transfers are progressed for the

same time. If something would have happened in the middle of the time step,

e.g., a transfer had finished or a connection would have broken because of

node mobility, from simulator’s point of view, the event happens only before

or after a full time step. The time step can be configured to be practically as

small as needed, but this also makes the simulation slower. As a compromise,

additional update requests can be scheduled by any module between time

steps, but the simulation is still done using discrete events which can only

approximate real-world behavior.

Even if the time step size is kept reasonable, simulating interactions of

large amount of nodes requires quite a lot of processing power. A scenario

with one thousand nodes and 0.1 second time step can still be simulated with

speed of over 10 simulated seconds per second on a commodity hardware,

but with larger population, and using some of the more complex routing

modules, the speed can quickly drop to less than one simulated second per

second. Also, the Random Access Memory (RAM) consumption, especially

with the MaxProp routing module and thousands of nodes, can be multiple

gigabytes. This sets limits on the size of the scenarios that can be simulated

using the ONE.

Another limitation of the simulation environment is the lack of lower

layer, such as physical and MAC, support. When two nodes are in the

range of each other they can communicate at whatever speed is configured

for connections. In real world obstacles, distance and interference affect the

achievable transmission speed, but, at the moment, this is not taken into

consideration. Also, the radio devices that the nodes use in simulation are

now constantly turned on whereas in real world, e.g. to save battery, they are

23

often switched to idle mode and other devices are probed only periodically.

Because of this, the contact times the ONE generates can be too optimistic

in many scenarios.

The mobility models, even though fairly complex and realistic compared

to simple models such as RWP, still lack many real-world details. For ex-

ample, node movement using SPMBM is similar throughout the simulation

time, whereas normally people behave differently depending on the time of

the day. The simulation of public transportation, such as buses and trams,

is also limited since they can only act as a single node and other nodes can

not travel using them. However, the movement models have become more

realistic with recent additions [8]. The new movement model, dubbed Work-

ing Day Movement Model, takes into account many factors of real human

daily behavior and also evolves the way how different transport mechanisms

can be used.

3.7 Results

This report did not include any simulation results from the ONE, but it has

already been actively used for DTN and mobility research. For example,

the first published results using the ONE [15] looked into how adding bits

of realism change the connectivity patterns of wireless nodes and how dif-

ferent DTN routing algorithms perform in these settings. We ran over 1000

different scenarios and found out, e.g., that more realistic movement (e.g.,

SPMBM vs. RWP or MBM) increases substantially the delivery probability

and decreases latency for most of the routing modules if the other variables

are kept constant. Another study [22] focused on fragmentation in DTNs

and for that both proactive and reactive fragmentation schemes were imple-

mented to the ONE. In that study we showed that reactive fragmentation

can have in many cases a positive impact on message delivery probabilities

without hurting the delivery latency.

24

Chapter 4

Conclusions

In this report we have introduced the Opportunistic Network Environment

simulator, the ONE, and described it’s features, usage, and how it can be

extended. The main parts of the ONE: mobility modeling, routing simula-

tion, event generators and report modules where described in more detail

and also different way of running simulations were introduced in chapter 3.

The section 3.5 focused on illustrating the software architecture and how it

can be used for extending the features of the simulation environment. Also,

limitations of the ONE were discussed in the section 3.6. Finally, some DTN

and mobility research done using the ONE was presented in the section 3.7.

The ONE, as how we see it, is now just at the beginning of it’s evolution

to a great tool for DTN, and also other opportunistic network paradigm,

simulations. Our future work includes addressing the limitations discussed

in section 3.6, exploring security issues in DTNs, and also implementing new

routing algorithms, movement models, event generators and report modules.

Hopefully many of the new modules will be usable as plugins for ONE so that

also other research teams can easily start using them. However, many new

modification are likely to need more work in the simulation internals and

thus new versions of the simulation environment are likely to be released.

We also hope that ONE is taken widely into use in the DTN community

and for fostering this purpose we have created a mailing list forum where

users can ask questions, get answers, and share their knowledge of the ONE

and DTN simulations in general. So far the ONE home page has had over

25

one thousand visitors from 43 different countries [9], and also the numerous

questions received by e-mail about the ONE imply that multiple research

institutes around the world have already taken the ONE into use.

26

Bibliography

[1] AT&T Research. Graphviz - Graph Visualization Software.

http://www.graphviz.org/, 2008. [Online; accessed 19-May-2008].

[2] P. Ball. Introduction to Discrete Event Simulation. University of Strath-

clyde, 1996.

[3] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine. MaxProp: Rout-

ing for Vehicle-Based Disruption-Tolerant Networks. In Proceedings of

IEEE Infocom, April 2006.

[4] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,

K. Fall, and H .Weiss. Delay-Tolerant Networking Architecture. RFC

4838, April 2007.

[5] Dartmouth College. Community Resource for Archiving Wireless Data

At Dartmouth. http://crawdad.cs.dartmouth.edu/. [Online; ac-

cessed 19-May-2008].

[6] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1):269–271, December 1959.

[7] Nathan Eagle and Alex (Sandy) Pentland. Reality mining: sensing

complex social systems. Personal Ubiquitous Computing, 10(4):255–

268, 2006.

[8] Frans Ekman. Mobility models for mobile ad hoc network simulations.

Master’s thesis, Helsinki University of Technology, May 2008.

27

[9] eXTReMe digital. Statistic for the ONE homepage.

http://extremetracking.com/open;geo?login=akeranen. [On-

line; accessed 28-May-2008].

[10] Kevin Fall. A Delay-Tolerant Network Architecture for Challenged In-

ternets. In Proceedings of ACM SIGCOMM 2003, pages 27–36, August

2003.

[11] Free Software Foundation. GNU General Public License.

http://www.gnu.org/licenses/gpl-3.0.html. [Online; accessed

22-May-2008].

[12] Gnuplot - An Interactive Plotting Program. http://gnuplot.info/,

2008. [Online; accessed 19-May-2008].

[13] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a delay toler-

ant network. In SIGCOMM ’04: Proceedings of the 2004 conference

on Applications, technologies, architectures, and protocols for computer

communications, pages 145–158, New York, NY, USA, 2004. ACM.

[14] David B Johnson and David A Maltz. Dynamic source routing in ad hoc

wireless networks. In Imielinski and Korth, editors, Mobile Computing,

volume 353. Kluwer Academic Publishers, 1996.

[15] Ari Keränen and Jörg Ott. Increasing Reality for DTN Protocol Simula-

tions. Technical report, Helsinki University of Technology, Networking

Laboratory, July 2007.

[16] Stuart Kurkowski, Tracy Camp, Neil Mushell, and Michael Colagrosso.

A visualization and analysis tool for ns-2 wireless simulations: in-

spect. In MASCOTS ’05: Proceedings of the 13th IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, pages 503–506, Washington, DC, USA,

2005. IEEE Computer Society.

[17] Anders Lindgren and Avri Doria. Probabilistic Routing Protocol for In-

termittently Connected Networks. Internet Draft draft- lindgren-dtnrg-

prophet-02, Work in Progress, March 2006.

28

[18] Gustavo Marfia, Giovanni Pau, Enzo De Sena, Eugenio Giordano, and

Mario Gerla. Evaluating Vehicle Network Strategies for Downtown

Portland: Opportunistic Infrastructure and the Importance of Real-

istic Mobility Models. In Proceedings of ACM MobiOpp, June 2007.

[19] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/. [On-

line; accessed 24-May-2008].

[20] University of Waterloo. DTNSim2 Delay-tolerant Network Simulator.

http://watwire.uwaterloo.ca/DTN/sim/. [Online; accessed 24-May-

2008].

[21] OpenJUMP - The free, Java based and open source Geographic Infor-

mation System for the World. http://openjump.org, 2008. [Online;

accessed 19-May-2008].

[22] Mikko Pitkänen, Ari Keränen, and Jörg Ott. Message Fragmentation in

Opportunistic DTNs. In Proceedings of the Second WoWMoM Work-

shop on Autonomic and Opportunistic Communications (AOC) 2008.

IEEE, 2008.

[23] The Rice Monarch Project. Rice Monarch Project Extensions to ns-2.

http://www.monarch.cs.rice.edu/cmu-ns.html. [Online; accessed

19-May-2008].

[24] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S.

Raghavendra. Single-copy routing in intermittently connected mobile

networks. In Proc. Sensor and Ad Hoc Communications and Networks

SECON, pages 235–244, October 2004.

[25] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S.

Raghavendra. Spray and Wait: An Efficient Routing Scheme for In-

termittently Connected Mobile Networks. In Proceedings of ACM SIG-

COMM Workshop on Delay-Tolerant Networking (WDTN), 2005.

[26] A. Vahdat and D. Becker. Epidemic routing for partially connected

ad hoc networks. Technical Report CS-200006, Duke University, April

2000.

29

[27] Andras Varga. The OMNET++ discrete event simulation system. In

Proceedings of the European Simulation Multiconference, pages 319–

324, Prague, Czech Republic, June 2001. SCS – European Publishing

House.

30

Appendix A

The ONE ReadMe

The ONE is a Opportunistic Network Environment simulator which provides a

powerful tool for generating mobility traces, running DTN messaging

simulations with different routing protocols, and visualizing both

simulations interactively in real-time and results after their completion.

Quick start

===========

Running

ONE can be started using the included one.bat (for Windows) or one.sh (for

Linux/Unix) script. Following examples assume you’re using the Linux/Unix

script (just replace .sh by .bat for Windows).

Synopsis:

one.sh [-b] [conf-file] [run-index (count)]

Options:

-b Run simulation in batch mode. Doesn’t start GUI but prints

information about the progress to terminal.

Parameters:

conf-file: The configuration file where simulation parameters

are read from.

I

run-index: If running in GUI mode (without -b option), you can give which

run index to use in the given run. In batch mode, the last parameter is

the run index count, i.e., how many runs with different run indeces are done.

Configuring

===========

All simulation parameters are given using configuration files. These files

are normal text files that contain key-value pairs. Syntax for most of the

variables is:

Namespace.key = value

I.e., the key is (usually) prefixed by a namespace, followed by a dot, and

then key name. Key and value are separated by equals-sign. Namespaces

start with capital letter and both namespace and keys are written in

CamelCase (and are case sensitive). Namespace defines (loosely) the part

of the simulation environment where the setting has effect on. Many, but

not all, namespaces are equal to the class name where they are read.

Especially movement models, report modules and routing modules follow this

convention.

Numeric values use ’.’ as the decimal separator and can be suffixed with

kilo (k) mega (M) or giga (G) suffix. Boolean settings accept "true",

"false", "0", and "1" as values.

Many settings define paths to external data files. The paths can be relative

or absolute but the directory separator must be ’/’ in both Unix and Windows

environment.

Some variables contain comma-separated values, and for them the syntax is:

Namespace.key = value1, value2, value3, etc.

For run-indexed values the syntax is:

Namespace.key = [run1value; run2value; run3value; etc]

I.e., all values are given in brackets and values for different run are

separated by semicolon. Each value can also be a comma-separated value.

II

For more information about run indexing, go to section "Run indexing".

Setting files can contain comments too. A comment line must start with "#"

character. Rest of the line is skipped when the settings are read. This can

be also useful for disabling settings easily.

Some values (scenario and report names at the moment) support "value

filling". With this feature, you can construct e.g., scenario name

dynamically from the setting values. This is especially useful when using

run indexing. Just put setting key names in the value part prefixed and

suffixed by two percent (%) signs. These placeholders are replaces by the

current setting value from the configuration file. See the included

snw_comparison_settings.txt for an example.

File "default_settings.txt" is always read and the (optional)

configuration file given as parameter can define more settings or override

some (or even all) settings in the default settings file. The idea is that

you can define in the default file all the settings that are common for

all the simulations and run different, specific, simulations using

different configuration files. If your simulations don’t have any common

parameters (which is highly unlikely) just provide an empty default

settings file. If you want to use more than one default configuration set, just

create separate folders for all configuration sets and provide one default

settings file for each folder.

Run indexing

Run indexing is a feature that allows you to run large amounts of

different configurations using only single configuration file. The idea is

that you provide an array of settings (using the syntax described above)

for the variables that should be changed between runs. For example, if you

want to run the simulation using five different random number generator

seeds for movement models, you can define in the settings file the

following:

MovementModel.rngSeed = [1; 2; 3; 4; 5]

III

Now, if you run the simulation using command:

one.sh -b my_config.txt 5

you would run first using seed 1 (run index 0), then another run using

seed 2 etc. Note that you have to run it using batch mode (-b option) if

you want to use different values. Without the batch mode flag the last

parameter is the run index to use when running in GUI mode.

Run indexes wrap around: used value is the value at index (runIndex %

arrayLength). Because of wrapping, you can easily run large amount of

permutations easily. For example, if you define two key-value pairs:

key1 = [1; 2]

key2 = [a; b; c]

and run simulation using run-index count 6, you would get all permutations

of the two values (1,a; 2,b; 1,c; 2,a; 1,b; 2,c). This naturally works

with any amount of arrays. Just make sure that the smallest common

nominator of all array sizes is 1 (e.g., use arrays whose sizes are primes)

-- unless you don’t want all permutations but some values should be

paired.

Movement models

Movement models govern the way nodes move in the simulation. They provide

coordinates, speeds and pause times for the nodes. The basic installation

contains 5 movement models: random waypoint, map based movement, shortest

path map based movement, map route movement and external movement. All

models, except external movement, have configurable speed and pause time

distributions. A minimum and maximum values can be given and the movement

model draws uniformly distributed random values that are within the given

range. Same applies for pause times. In external movement model the speeds

and pause times are interpreted from the given data.

IV

When a node uses the random waypoint movement model (RandomWaypoint), it is

given a random coordinate in the simulation area. Node moves directly to the

given destination at constant speed, pauses for a while, and then gets a new

destination. This continues throughout the simulations and nodes move along

these zig-zag paths.

Map-based movement models constrain the node movement to predefined paths.

Different types of paths can be defined and one can define valid paths for

all node groups. This way e.g., cars can be prevented from driving indoors or

on pedestrian paths.

The basic map-based movement model (MapBasedMovement) initially distributes

the nodes between any two adjacent (i.e., connected by a path) map nodes and

then nodes start moving from adjacent map node to another. When node reaches

the next map node, it randomly selects the next adjacent map node but chooses

the map node where it came from only if that is the only option (i.e., avoids

going back to where it came from). Once node has moved trough 10-100 map

nodes, it pauses for a while and then starts moving again.

The more sophisticated version of the map-based movement model

(ShortestPathMapBasedMovement) uses Dijkstra’s shortest path algorithm to

find its way trough the map area. Once a node reaches its destination, and

has waited for the pause time, a new random map node is chosen and node moves

there using the shortest path that can be taken using only valid map nodes.

For the shortest path based movement models, map data can also contain Points

Of Interest (POIs). Instead of selecting any random map node for the next

destination, the movement model can be configured to give a POI belonging to

a certain POI group with a configurable probability. There can be unlimited

amount of POI groups and all groups can contain any amount of POIs. All node

groups can have different probabilities for all POI groups. POIs can be used

to model e.g., shops, restaurants and tourist attractions.

Route based movement model (MapRouteMovement) can be used to model nodes that

follow certain routes, e.g. bus or tram lines. Only the stops on the route

have to be defined and then the nodes using that route move from stop to stop

using shortest paths and stop on the stops for the configured time.

V

All movement models can also decide when the node is active (moves and can be

connected to) and when not. For all models, except for the external movement,

multiple simulation time intervals can be given and the nodes in that group

will be active only during those times.

All map-based models get their input data using files formatted with a subset

of the Well Known Text (WKT) format. LINESTRING and MULTILINESTRING

directives of WKT files are supported by the parser for map path data. For

point data (e.g. for POIs), also the POINT directive is supported. Adjacent

nodes in a (MULTI)LINESTRING are considered to form a path and if some lines

contain some vertex(es) with exactly the same coordinates, the paths are

joined from those places (this is how you create intersections). WKT files

can be edited and generated from real world map data using any suitable

Geographic Information System (GIS) program. The map data included in the

simulator distribution was converted and edited using the free, Java based

OpenJUMP GIS program.

Different map types are defined by storing the paths belonging to different

types to different files. Points Of Interest are simply defined with WKT

POINT directive and POI groups are defined by storing all POIs belonging to a

certain group in the same file. All POIs must also be part of the map data so

they are accessible using the paths. Stops for the routes are defined with

LINESTRING and the stops are traversed in the same order they appear in the

LINESTRING. One WKT file can contain multiple routes and they are given to

nodes in the same order as they appear in the file.

The experimental movement model that uses external movement data

(ExternalMovement) reads timestamped node locations from a file and moves the

nodes in the simulation accordingly. See javadocs of ExternalMovementReader

class from input package for details of the format. A suitable, experimental

converter script (transimsParser.pl) for TRANSIMS data is included in the

toolkit folder.

The movement model to use is defined per node group with the "movementModel"

setting. Value of the setting must be a valid movement model class name from

the movement package. Settings that are common for all movement models are

read in the MovementModel class and movement model specific settings are read

in the respective classes. See the javadoc documentation and example

VI

configuration files for details.

Routing modules and message creation

Routing modules define how the messages are handled in the simulation. Six

different active routing modules (First Contact, Epidemic, Spray and Wait,

Direct delivery, PRoPHET and MaxProp) and also a passive router for external

routing simulation are included in the package. The active routing modules are

implementations of the well known routing algorithms for DTN routing. See the

classes in routing package for details.

Passive router is made especially for interacting with other (DTN) routing

simulators or running simulations that don’t need any routing functionality.

The router doesn’t do anything unless commanded by external events. These

external events are provided to the simulator by a class that implements the

EventQueue interface.

The current release includes two classes that can be used as a source of

message events: ExternalEventsQueue and MessageEventGenerator. The former

can read events from a file that can be created by hand, with a suitable

script (e.g., createCreates.pl script in the toolkit folder), or by

converting e.g., dtnsim2’s output to suitable form. See StandardEventsReader

class from input package for details of the format. MessageEventGenerator is

a simple message generator class that creates uniformly distributed message

creation patterns with configurable message creation interval, message size

and source/destination host ranges.

The toolkit folder contains an experimental parser script (dtnsim2parser.pl)

for dtnsim2’s output (there used to be a more capable Java-based parser but

it was discarded in favor of this more easily extendable script). The script

requires a few patches to dtnsim2’s code and those can be found from the

toolkit/dtnsim2patches folder.

The routing module to use is defined per node group with the setting

"router". All routers can’t interact properly (e.g., PRoPHET router can only

work with other PRoPHET routers) so usually it makes sense to use the same

(or compatible) router for all groups.

VII

Reports

Reports can be used to create summary data of simulation runs, detailed data

of connections and messages, files suitable for post-processing using e.g.,

Graphviz (to create graphs) and also to interface with other programs. See

javadocs of report-package classes for details.

There can be any number of reports for any simulation run and the number of

reports to load is defined with "Report.nrofReports" setting. Report class

names are defined with "Report.reportN" setting, where N is an integer value

starting from 1. The values of the settings must be valid report class names

from the report package. The output directory of all reports (which can be

overridden per report class with the "output" setting) must be defined with

Report.reportDir -setting. If no "output" setting is given for a report

class, the resulting report file name is "ReportClassName_ScenarioName.txt".

All reports have many configurable settings which can be defined using

ReportClassName.settingKey -syntax. See javadocs of Report class and specific

report classes for details (look for "setting id" definitions).

Host groups

A host group is group of hosts (nodes) that shares movement and routing

module settings. Different groups can have different values for the settings

and this way they can represent different types of nodes. Base settings can

be defined in the "Group" namespace and different node groups can override

these settings or define new settings in their specific namespaces (Group1,

Group2, etc.).

The settings

There are plenty of settings to configure; more than is meaningful to

present here. See javadocs of especially report, routing and movement

model classes for details. See also included settings files for examples.

Perhaps the most important settings are the following.

VIII

Scenario settings:

Scenario.name

Name of the scenario. All report files are by default prefixed with this.

Scenario.simulateConnections

Should connections be simulated. If you’re only interested in movement

modeling, you can disable this to get faster simulation. Usually you want

this to be on.

Scenario.updateInterval

How many seconds are stepped on every update. Increase this to get faster

simulation, but then you’ll lose some precision. Values from 0.1 to 2 are good

for simulations.

Scenario.endTime

How many simulated seconds to simulate.

Scenario.nrofHostGroups

How many hosts group are present in the simulation.

Host group settings (used in Group or GroupN namespace):

groupID

Group’s identifier (a string or a character). Used as the prefix of host

names that are shown in the GUI and reports. Host’s full name is

groupID+networkAddress.

nrofHosts

Number of hosts in this group.

transmitRange

Range (meters) of the hosts’ radio devices.

transmitSpeed

Transmit speed of the hosts’ radio devices (bytes per second).

IX

movementModel

The movement model all hosts in the group use. Must be a valid class (one

that is a subclass of MovementModel class) name from the movement package.

waitTime

Minimum and maximum (two comma-separated decimal values) of the wait time

interval (seconds). Defines how long nodes should stay in the same place

after reaching the destination of the current path. A new random value within

the interval is used on every stop. Default value is 0,0.

speed

Minimum and maximum (two comma-separated decimal values) of the speed

interval (m/s). Defines how fast nodes move. A new random value is used on

every new path. Default value is 1,1.

bufferSize

Size of the nodes’ message buffer (bytes). When the buffer is full, node can’t

accept any more messages unless it drops some old messages from the buffer.

router

Router module which is used to route messages. Must be a valid class

(subclass of Report class) name from routing package.

activeTimes

Time intervals (comma-separated simulated time value tuples: start1, end1,

start2, end2, ...) when the nodes in the group should be active. If no

intervals are defined, nodes are active all the time.

msgTtl

Time To Live (simulated minutes) of the messages created by this host group.

Nodes (with active routing module) check every one minute whether some of

their messages’ TTLs have expired and drop such messages. If no TTL is

defined, infinite TTL is used.

Group and movement model specific settings (only meaningful for certain

movement models):

X

pois

Points Of Interest indexes and probabilities (comma-separated

index-probability tuples: poiIndex1, poiProb1, poiIndex2, poiProb2, ...).

Indexes are integers and probabilities are decimal values in the range of

0.0-1.0. Setting defines the POI groups where the nodes in this host group

can choose destinations from and the probabilities for choosing a certain POI

group. For example, a (random) POI from the group defined in the POI file1

(defined with PointsOfInterest.poiFile1 setting) is chosen with the

probability poiProb1. If the sum of all probabilities is less than 1.0, a

probability of choosing any random map node for the next destination is (1.0

- theSumOfProbabilities). Setting can be used only with

ShortestPathMapBasedMovement -based movement models.

okMaps

Which map node types (refers to map file indexes) are OK for the group

(comma-separated list of integers). Nodes will not travel trough map nodes

that are not OK for them. As default, all map nodes are OK. Setting can be

used with any MapBasedMovent -based movement model.

routeFile

If MapRouteMovement movement model is used, this setting defines the route

file (path) where the route is read from. Route file should contain

LINESTRING WKT directives. Each vertex in a LINESTRING represents one stop

on the route.

routeType

If MapRouteMovement movement model is used, this setting defines the routes

type. Type can be either circular (value 1) or ping-pong (value 2). See

movement.map.MapRoute class for details.

Movement model settings:

MovementModel.rngSeed

The seed for all movement models’ random number generator. If the seed and

all the movement model related settings are kept the same, all nodes should

move the same way in different simulations (same destinations and speed &

wait time values are used).

XI

MovementModel.worldSize

Size of the simulation world in meters (two comma separated values:

width, height).

PointsOfInterest.poiFileN

For ShortestPathMapBasedMovement -based movement models, this setting defines

the WKT files where the POI coordinates are read from. POI coordinates are

defined using the POINT WKT directive. The "N" in the end of the setting must

be a positive integer (i.e., poiFile1, poiFile2, ...).

MapBasedMovement.nrofMapFiles

How many map file settings to look for in the settings file.

MapBasedMovement.mapFileN

Path to the Nth map file ("N" must be a positive integer). There must be at

least nrofMapFiles separate files defined in the configuration files(s). All

map files must be WKT files with LINESTRING and/or MULTILINESTRING WKT

directives. Map files can contain POINT directives too, but those are

skipped. This way the same file(s) can be used for both POI and map data. By

default the map coordinates are translated so that the upper left corner of

the map is at coordinate point (0,0). Y-coordinates are mirrored before

translation so that the map’s north points up in the playfield view. Also all

POI and route files are translated to match to the map data transformation.

Report settings:

Report.nrofReports

How many report modules to load. Module names are defined with settings

"Report.report1", "Report.report2", etc. Following report settings can be

defined for all reports (using Report name space) or just for certain reports

(using ReportN name spaces).

Report.reportDir

Where to store the report output files. Can be absolute path or relative to

the path where the simulation was started. If the directory doesn’t exists,

it is created.

XII

Report.warmup

Length of the warm up period (simulated seconds from the start). During the

warm up the report modules should discard the new events. The behavior is

report module specific so check the (java)documentation of different report

modules for details.

Event generator settings:

Events.nrof

How many event generators are loaded for the simulation. Event generator

specific settings (see below) are defined in EventsN namespaces (so

Events1.settingName configures a setting for the 1st event generator etc.).

EventsN.class

Name of the generator class to load (e.g., ExternalEventsQueue or

MessageEventGenerator). The class must be found from the input package.

For the ExternalEventsQueue you must at least define the path to the external

events file (using setting "filePath"). See input.StandardEventsReader class’

javadocs for information about different external events.

Other settings:

Optimization.randomizeUpdateOrder

Should the order in which the nodes’ update method is called be randomized.

Call to update causes the nodes to check their connections and also update

their routing module. If set to false, node update order is the same as their

network address order. With randomizing, the order is different on every time

step.

XIII

GUI

===

The GUI’s main window is divided into three parts. The main part contains

the playfield view (where node movement is displayed) and simulation and

GUI control and information. The right part is used to select nodes and

the lower part is for logging and breakpoints.

The main part’s topmost section is for simulation and GUI controls. The

first field shows the current simulation time. Next field shows the

simulation speed (simulated seconds per second). The following four

buttons are used to pause, step, fast forward, and fast forward simulation

to given time. Pressing step-button multiple times runs simulation

step-by-step. Fast forward (FFW) can be used to skip uninteresting parts

of simulation. In FFW, the GUI update speed is set to a large value. Next

drop-down is used to control GUI update speed. Speed 1 means that GUI is

updated on every simulated second. Speed 10 means that GUI is updated only

on every 10th second etc. Negative values slow down the simulation. The

following drop-down controls the zoom factor. The last button saves the

current view as a png-image.

Middle section, i.e., the playfield view, shows the node placement, map

paths, node identifiers, connections among nodes etc. All nodes are

displayed as small rectangles and their radio range is shown as a green

circle around the node. Node’s group identifier and network address (a

number) are shown next to each node. If a node is carrying messages, each

message is represented by a green or blue filled rectangle. If node

carries more than 10 messages, another column of rectangles is drawn for

each 10 messages but every other rectangle is now red. You can center the

view to any place by clicking with mouse button on the play field. Zoom

factor can also be changed using mouse wheel on top of the playfield view.

The right part of main window is for choosing a node for closer inspection.

Simply clicking a button shows the node info in main parts lower section.

From there more information can be displayed by selecting one of the

messages the node is carrying (if any) from the drop-down menu. Pressing

the "routing info" button opens a new window where information about the

routing module is displayed. When a node is chosen, the playfield view is

XIV

also centered on that node and the current path the node is traveling is

shown in red.

Logging (the lowest part) if divided to two sections, control and log. From

the control part you can select what kind of messages are shown in the

log. You can also define if simulation should be paused on certain type of

event (using the check boxes in the "pause" column). Log part displays time

stamped events. All nodes and message names in the log messages are

buttons and you can get more information about them by clicking the

buttons.

Toolkit

=======

The simulation package includes a folder called "toolkit" that contains

scripts for generating input and processing the output of the simulator. All

(currently included) scripts are written with Perl (http://www.perl.com/) so

you need to have it installed before running the scripts. Some post processing

scripts use gnuplot (http://www.gnuplot.info/) for creating graphics. Both of

the programs are freely available for most of the Unix/Linux and Windows

environments. For Windows environment, you may need to change the path to the

executables for some of the scripts.

getStats.pl

This script can be used to create bar-plots of various statistics gathered by

the MessageStatsReport -report module. The only mandatory option is "-stat"

which is used to define the name of the statistics value that should be parsed

from the report files (e.g., "delivery_prob" for message delivery

probabilities). Rest of the parameters should be MessageStatsReport output

filenames (or paths). Script creates three output files: one with values from

all the files, one with the gnuplot commands used to create the graphics and

finally an image file containing the graphics. One bar is created to the plot

for each input file. The title for each bar is parsed from the report filename

using the regular expression defined with "-label" option. Run getStats.pl

with "-help" option for more help.

XV

ccdfPlotter.pl

Script for creating Complementary(/Inverse) Cumulative Distribution Function

plots (using gluplot) from reports that contain time-hitcount-tuples. Output

filename must be defined with the "-out" option and rest of the parameters

should be (suitable) report filenames. "-label" option can be used for

defining label extracting regular expression (similar to one for the getStats

script) for the legend.

createCreates.pl

Message creation pattern for the simulation can be defined with external events

file. Such a file can be simply created with any text editor but this script

makes it easier to create a large amount of messages. Mandatory options are

the number of messages ("-nrof"), time range ("-time"), host address range

("-hosts") and message size range ("-sizes"). The number of messages is simply

an integer but the ranges are given with two integers with a colon (:) between

them. If hosts should reply to the messages that they receive, size range of

the reply messages can be defined with "-rsizes" option. If a certain random

number generator seed should be used, that can be defined with "-seed" option.

All random values are drawn from a uniform distribution with inclusive minimum

value and exclusive maximum value. Script outputs commands that are suitable

for external events file’s contents. You probably want to redirect the output

to some file.

dtnsim2parser.pl and transimsParser.pl

These two (quite experimental) parsers convert data from other programs to a

form that is suitable for ONE. Both take two parameters: input and output

file. If these parameters are omitted, stdin and stdout are used for input and

output. With "-h" option a short help is printed.

dtnsim2parser converts dtnsim2’s (http://watwire.uwaterloo.ca/DTN/sim/) output

(with verbose mode 8) to an external events file that can be fed to ONE. The

main idea of this parser is that you can first create a connectivity pattern

file using ONE and ConnectivityDtnsim2Report, feed that to dtnsim2 and then

observe the results visually in ONE (using the output converted with

dtnsim2parser as the external events file).

transimsParser can convert TRANSIM’s (http://transims-opensource.net/) vehicle

snapshot files to external movement files that can be used as an input for

node movement. See ExternalMovement and ExternalMovementReader classes for

more information.

XVI

