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Abstract—We present a delay-tolerant networking (DTN)
module for ns-3 simulator that can be used, e.g., in DTN routing
and congestion control studies. We have validated the code by
replicating our extensive DTN congestion control simulations that
we performed last year with ns-2. New simulation results show
that our ns-3 DTN code works as intended. However, the results
are not identical, due to implementation differences in the two
DTN modules.
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I. INTRODUCTION

The DTN [2] architecture introduces a bundle protocol
[14], which offers transport services for applications. The
bundles are usually much larger than IP packets. This allows
creation of self-contained messages that enable complete ap-
plication interactions with a single message exchange. The
architecture is designed for networks where an end-to-end
path may not exist, i.e., the bundles are transmitted based on
hop-by-hop reliability. Any suitable convergence layer (such
as TCP or UDP) can be used for transmitting a bundle over
a single hop. Bundle has a lifetime, after which the bundle
expires and is removed from the network.

A number of different routing protocols have been pro-
posed for DTNs. Most of the routing protocols create multiple
copies of the bundle in order to increase the probability of
reaching the destination. Epidemic routing [17] does not limit
the number of messages: a message is copied to all nodes
that do not yet have a copy. This kind of flooding has been
shown to cause congestion and message buffer overflows,
which decreases message delivery probability. Spray and wait
routing, on the other hand, [15] explicitly limits the number of
bundle copies to a fixed value. We have implemented epidemic
routing and spray and wait for ns-3.

Independent of the DTN routing protocol, the destination
node may generate a return receipt to the source node upon
bundle reception. These return receipts can also act as an-
tipackets as in VACCINE mechanism [6], which deletes the
bundles from the message buffers and gives immunity to nodes
upon seeing a return receipt. Antipackets are always sent using
epidemic routing [18] and they are removed from the network
as they eventually expire. In our code, antipackets are used by
default.

The rest of this paper is organized as follows. Section
2 presents our DTN module for ns-3. Section 3 shows the
results of simulating the same DTN scenarios obtained with
ns-3 and ns-2, highlighting their differences. Finally, Section
4 concludes the paper with a discussion.

II. SIMULATION MODEL

We have added several extensions to the ns-3.16 simulator
[3] that allows us to study DTN routing and congestion control
together with accurate models for radio links. Our simulations
build on top of (1) synthetically generated random waypoint
(RWP) model, (2) real-world vehicular traces, and (3) more
realistic yet synthetic pedestrian mobility model.

A. Traffic and Mobility Models

We apply a simple traffic model in which each node sends
a variable size message at a random time with 200 second in-
tervals [t, t+200s] to another, randomly selected, node. Before
sending to MAC layer, the bundles are fragmented into 1500-
byte datagrams. A retransmission mechanism, providing reli-
able delivery of datagrams is implemented, so that messages
will not be lost due to transmission errors. In our code, this
can be accomplished by using UDP with retransmissions or
having TCP as bundle transport protocol. However, TCP may
consume a lot of memory in the simulating machine, because
there could be hundreds of simultaneous TCP connections.
Their number (and thus the memory consumed) depends on
the routing algorithm, traffic patterns, etc.

(1) RWP is our first mobility model. This model is well
understood and it is easy to generate scenarios with different
network densities and node velocities. In our ns-2 [13] DTN
model [11], we generated random waypoint node mobility
using the setdest program. In ns-3, no additional programs
are needed for this. We have 40 mobile nodes that select a
random direction and a random (uniformly distributed) speed
at random times. Maximum speed is 20 m/s and pause length is
two seconds. We always pause before choosing a new direction
and a new speed. In our RWP scenarios, area size ranges from
10 m × 10 m to 2000 m × 2000 m, and the simulation time is
always 5000 seconds.

(2) ns-3 is able to read ns-2 trace files as such and thus
we can use exactly the same trace files as in [12]. In both of
our trace-based mobility models the number of mobile nodes
is 116 and the simulation time is 3600 seconds. In the first
mobility trace, the San Francisco taxi cab trace [1], the area
size is 5700 m × 6600 m. The whole data set contains GPS
coordinates of approximately 500 taxis collected over 30 days
in the San Francisco Bay area.

(3) Another mobility trace was obtained in a synthetic
fashion: the map of Helsinki city center (area dimensions:
4500 m × 3400 m) is used as input for the ONE simulator [9]
and the nodes are configured to move between selected points
of interest. Node velocity is uniformly distributed between



0.7 m/s and 1.4 m/s and pause length between 0 and 120 s.
This model provides a denser network scenario in comparison
to the aforementioned taxi cab scenario.

B. The DTN code

The DTN simulation code is available from [10]. It is
implemented in dtn.cc, mypacket.cc and mypacket.h
files. The first file includes the code for all DTN node functions
as well as the ‘simulation script’ that creates the network and
sets the parameters. The two latter files implement bundle and
antipacket headers. Header sizes are 28 bytes for bundles and
26 bytes for antipackets.

Discovery mechanism. In our implementation DTN nodes
advertise their buffer content to each other every 100 ms by
sending Hello messages. We have limited Hello message size
to 2280 bytes. If there is not enough room for all identifiers
of buffered bundles and return receipts, the return receipt
identifiers are dropped first. In SendHello function, we
broadcast a Hello message that contains the identifiers of those
bundles and return receipts that are stored in this node as well
as advertised free buffer capacity of the node. The size of
the Hello message depends on the number of items stored in
the node. Hello messages have forwarding priority over all
other messages; in our code this is implemented with quality
of service on MAC level. ReceiveHello function receives
Hello messages and updates neighbor information, i.e., what
bundles the neighbors currently store in their buffers.

Routing and congestion control. A bundle can be generated
only if the node has sufficient amount of free buffer space.
Moreover, if DTN congestion control (see [12]) is enabled,
a bundle can be forwarded only to such intermediate nodes
that have enough free buffer space. DTN congestion control
is independent of the selected DTN routing algorithm. The
routing algorithm is either epidemic routing or binary spray
and wait. In the latter, the default number of forwarding
tokens is 16, i.e., a bundle can be forwarded to a maximum
of 16 nodes. If the sender does not receive a return receipt
within retransmission timeout, it will retransmit the bundle.
In our code, the number of bundle retransmissions is hard-
coded to three. Return receipts also serve as antipackets [6];
their lifetime is the minimum of retransmission timeout (1000
seconds) less bundle forwarding time and bundle lifetime (750
seconds). Antipacket size is 10 bytes without headers.

Buffer management. In CheckBuffers function we pe-
riodically check what bundles and return receipts can be
forwarded. Here we also remove expired bundles and return
receipts from the storage. If the MAC queue occupancy is
below a given threshold (currently hard coded to two packets),
we select the next packet to be transmitted. Return receipts
are forwarded first. When the head-of-line receipt has been
forwarded to all current neighbors (SendAP function is called
to send a given antipacket to a given neighbor), one by one,
we put that return receipt to the tail of the return receipt queue
and dequeue the next return receipt. Then, we forward regular
bundles to their destinations (if they are within radio range),
in a similar manner as return receipts (SendBundle function
is called to send a given bundle to a given neighbor). After
this, the bundle queue is re-ordered so that the least forwarded
bundles are put to the head of the queue. Finally, regular
bundles are forwarded to neighboring, non-destination nodes.

Transmitting bundles. Both UDP and TCP can be used for
bundle transmission. In the UDP case, acknowledgements (one
ack per packet) and retransmissions (retransmission timeout:
1.0 seconds) are applied. With UDP-based transmission, we
check before sending each packet if the neighbor is still within
transmission range. If that is not the case, we shall continue
sending when we are close enough.

Receiving bundles. Bundle reception is handled in
ReceiveBundle function. Here we first check if all packets
of a bundle have been received. If the answer is yes, then we
forward, receive or delete the bundle. Tail dropping is applied
if bundle storage is full. ReceiveAP function receives an-
tipackets (i.e., return receipts) and processes them accordingly:
the corresponding bundles are deleted from bundle storage and
their identifiers are added to the database so that further bundle
copies can be deleted upon their arrival.

C. Wireless Channel Model

Our DTN code can be used with any wireless model found
in ns-3. However, in order to validate our code, we chose to
use the wireless PHY and MAC parameters listed in Table 1.
Some of the parameters are set using the wifi.SetStandard
(WIFI PHY STANDARD 80211g) command. In the ns-3
802.11g model, there is no support for short slot time. Oth-
erwise, the parameters are almost the same as in [12]. The
selected parameters lead to radio range of 130 m for each node.

TABLE I: IEEE 802.11g simulation parameters.

Parameter Value

RxNoiseFigure 7

TxPowerLevels 1

TxPowerStart/TxPowerEnd 12.5 dBm

m channelStartingFrequency 2407 MHz

TxGain/RxGain 1.0

EnergyDetectionThreshold -74.5 dBm

CcaMode1Threshold -77.5 dBm

RTSThreshold 0 B

CWMin 15

CWMax 1023

ShortRetryLimit 7

LongRetryLimit 7

SlotTime 20 µs

SIFS 10 µs

III. SIMULATION RESULTS

A. Random Waypoint Mobility

Figure 1 compares routing performance in the random
waypoint scenario, showing plain epidemic, spray and wait,
and epidemic routing enhanced with congestion control (CC).
Node buffer sizes are randomly set to 250 KB or 2 MB so that
both occur with equal probability. The size of the individual
bundles is uniformly distributed between 1 Byte and 20 KB,
and the static congestion threshold (TC) is set to 0.8. The top
row contains ns-3 results while the bottom row contains ns-2
results.

As expected, the results are qualitatively very close to the
ones reported in [12] (reprinted here, in the bottom row): a
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Fig. 1: Heterogeneous nodes, RWP mobility. ns-3 results: top, ns-2 results: bottom.

significant improvement in message delivery ratio is gained by
applying congestion control or explicitly limiting the number
of copies per message (spray and wait) when the network
is sparse (1500 m × 1500 m and up). However, delays are
systematically larger with ns-2. This happens because the
simulation model details are not identical. We can also observe
that with ns-3, epidemic routing leads to higher delays than
spray and wait when the network is dense (250 m × 250 m).
The likely reason this does not happen in ns-2 simulations is
the less accurate Hello message implementation compared to
ns-3. In ns-2 simulations, Hello messages have a fixed size;
in ns-3 they carry bundle identifiers and get bigger when the
network is dense, because then the nodes have more neighbors.

B. Trace-based Mobility

Figures 2 and 3 illustrate the performance evaluation with
more realistic conditions. Figure 2 shows performance with the
San Francisco cab trace scenario and Figure 3 with pedestrian
mobility created using the Helsinki City scenario. In both
cases, the message size is uniformly distributed and varies
between 10 KB and 100 KB with 10 KB granularity. In the
San Francisco case, the node buffer size is either 1.375 MB
or 11 MB (both occur with 50% probability) whereas in the
Helsinki case the node buffer size is always 6 MB. The average
node buffer size is almost the same in these two different
scenarios.

The results of the two simulation scenarios are quite
similar. With both mobility models, using congestion control
leads to better delivery ratios. But this gain is marginal in the
more dense Helsinki city scenario and it seems that bandwidth

is a bottleneck too. We can also see that the use of TCP
as transport protocol (ns-3 results only1) leads to decreased
bundle delivery ratio. The likely reason is that upon antipacket
reception the on-going TCP connections related to a given
bundle finish their file transfers, rather than being stopped and
deleted.

There are some differences between ns-2 and ns-3 results.
In the cab trace scenario, spray and wait enhanced with con-
gestion control gives better delivery ratio with ns-2. Moreover,
pure epidemic routing gives worse delivery ratio with ns-2. In
the Helsinki city scenario, spray and wait gives better delivery
ratio with ns-2 and epidemic routing (with congestion control,
too) gives worse delivery ratio with ns-2.

The mobility traces and traffic patterns (sending of bundles)
are identical in our ns-2 and ns-3 simulations2. Even though
the wireless models used in different simulators are somewhat
different3, both models result in a radio range of 130 meters.
Another difference is the greater realism of Hello messages in
our ns-3 DTN code. In ns-2, the Hello messages had a fixed
size, while in ns-3 the size of the Hello messages depends on
the number of bundle identifiers they carry.

1In ns-2 results, which we replicated here from [12], RR stands for retiring
replicants [16]. The comparison of our congestion control algorithm and RR
is outside the scope of this paper.

2The problem in importing ns-2 trace files to ns-3 [8] has been solved.
3In our ns-2 simulations, we used a wireless channel model from the

dei80211mr library (not implemented in ns-3); in our ns-3 simulations,
IdealWifiManager is used. The trace files (e.g., packet error tables) in these
models are not identical.
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Fig. 2: Real mobility trace. ns-3 results: top, ns-2 results: bottom.

IV. CONCLUSIONS AND DISCUSSION

We have presented a new DTN module for ns-3 simulator
and validated the code by re-running our ns-2 simulation
scenarios for simple congestion control mechanism for mobile
opportunistic networks. Our new simulation results using the
random waypoint model as well as real-life and synthetic mo-
bility traces show that our ns-3 DTN code works as intended.
However, due to differences in the two DTN modules (e.g., the
more accurate Hello message modeling in ns-3), the results are
not identical.

We will end this paper with a few comments based on our
experience with the ns-2 and the ns-3 simulators.

• ns-2 is written in C++ and Otcl while ns-3 is written in
C++ and Python. In ns-2, the simulation scripts are written in
Otcl while the ‘building blocks’ are implemented in C++. In
ns-3, both the ‘building blocks’ and the simulation scripts can
be written in C++. In theory, the simulation scripts could be
written in Python, too.

• ns-2 is not as realistic as ns-3. For example, the packet
size is given by the user and when new packet header fields
are added packet size does not automatically increase. In ns-
3, packet header fields affect packet size. (The user-defined
tags in ns-3 can convey information inside packets without
increasing the packet size.)

• It is often claimed that one advantage of ns-3 over ns-2 is
a real-time emulation package that allows connecting ns-3 to
real networks and that ns-3 code could be better utilized in real
network equipment. But ns-2 also supports emulation, although
this feature has not been very popular. Moreover, in the latest

ns-2 releases, Linux source code for different TCP congestion
control algorithms can be used as such – and naturally vice
versa.

• Scalability has been reported as a problem in ns-2 [7]
while its successor, ns-3, is claimed to be more scalable.
However, some scalability issues, like the inability to delete
TCP connections that have not finished their transmission
in time, still exist in ns-3. The aforementioned feature (or
bug) increases memory consumption greatly if the simulation
script involves dynamic creation of TCP connections in a
congested environment. It should be noted, however, that this
is not different from ns-2. In general, ns-3 code is faster and
consumes less memory than ns-2 code.

• ns-2 is not updated anymore except for maintenance
releases. Latest release was ns-2.35 in November 2011. In con-
trast, ns-3 has periodic releases with new features every three
to four months. Latest release was ns-3.16 in December 2012.
As ns-2 code is pretty stable, most bugs have already been
found and fixed. ns-3 is still work in progress and the bug
fixes in new releases usually affect simulation results.

• ns-2 user community is still large, but its mailing list
(ns-users) is not so active anymore and most questions are
left unanswered. This may be a sign that users’ interest in
ns-2 is diminishing. ns-3 community is still rather small but
will likely continue growing. (There were 86,014 downloads
of the software in 2011 [3]). Moreover, ns-3 mailing list is
active and it might help many users. In ns-2, some features are
still not properly documented while ns-3 features are typically
documented well.
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Fig. 3: Synthetic mobility trace. ns-3 results: top, ns-2 results: bottom.

Transition from ns-2 to ns-3 can be difficult, especially if
one has no experience with network programming, sockets, etc.
Things can be kept more abstract in ns-2. In our opinion, ns-2
experts will not switch to ns-3 easily, while people without
previous experience from ns-2 might find the active ns-3
community more appealing. In addition, it remains to be seen
whether ns-3 is too real-life like for people with more theo-
retical (queueing/teletraffic theory) background. These people,
if they are not using ns-2, might prefer other tools such as the
commercial OPNET Modeler [5] or the free OMNeT++ [4]
over ns-3.
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