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ABSTRACT
Delay tolerant networking (DTN) allows endpoints to exchange in-
formation in networks where end-to-end path may not exist at any
given time. In this opportunistic model, routing and forwarding
functionality in intermediate nodes enables data transfer following
the store, carry, and forward paradigm. Thereby, even in sparsely
populated settings, node-to-node contacts can be exploited for com-
munications where network infrastructure does not exist or is not
viable to use. Beyond plain message forwarding, the increasing
amount of storage in modern devices enables nodes to hold mes-
sages for an extended period of time. This feature can then be uti-
lized to create an opportunistic cooperative storage. Having estab-
lished how to leverage DTN routing nodes for distributed content
retrieval, caching, and storage in previous work, in this paper, we
investigate applying redundancy schemes to improve message de-
livery and content retrieval.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed net-
works; C.2.4 [Distributed System]: Distributed applications;
C.2.6 [Internetworking]: Routers

General Terms
Algorithms, Performance, Design, Reliability

Keywords
Delay Tolerant, DTN, Caching, Storage, Bundle, Application, Mo-
bile Ad-hoc Networking

1. INTRODUCTION
An increasing number of handheld devices are shipped today

with short range wireless technologies which allow opportunistic
communication with other portable personal devices, in addition to
talking to infrastructure networks. At the same time, the amount
of memory in these devices is constantly increasing to the extent
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where it is not too scarce a resource anymore. Together with the im-
provements in the user interface design, these personal communi-
cation devices have become an interesting platform to create, store,
use, access, and share an increasing amount of content.

Infrastructure networks are the primary means for accessing and
exchanging information, particularly as they enable access to re-
sources in the Internet. But they have their drawbacks, too: the
network services may be too costly to use, may be congested, or
may not cover peripheral areas. Moreover, today’s most promi-
nent mobile applications (mail, web, file and database access) rely
on infrastructure-based servers as “hubs” for communication. This
dependency prevents mobile nodes from exploiting proximity for
communication even though their basic capabilities would allow it.

Protocols have been designed to enable communication in mo-
bile ad-hoc networks (MANETs), e.g., between nodes in sensor
networks, but also to extend the reach of infrastructure networks by
using other mobile nodes for packet forwarding. It has been recog-
nized, however, that the density of cooperating mobile nodes will
often be insufficient to establish end-to-end paths between a mo-
bile node and its fixed or mobile peers. To overcome the node den-
sity constraints, the concept of delay-tolerant networking (DTN)
[7] has been applied to MANETs: DTN nodes interact by means
of exchanging messages in a store, carry, and forward manner, not
requiring the existence of an instant end-to-end path [15, 25]. How-
ever, only enabling mobile nodes to communicate with one another
and with the Internet does not yet address the application needs—
and thus ultimately the user demands—of completing their respec-
tive operations within reasonable time. Studies on routing proto-
cols for opportunistic communication between mobile and/or fixed
(infrastructure) nodes have shown that message delivery time may
be significant, depending on the contact and inter-contact times ex-
perienced by the involved nodes [9, 8, 30].

This motivates exploiting the storage space available on mobile
devices by empowering intermediate nodes for caching or even
for distributed storage, thus trading storage for communication re-
sources. Assuming suitably designed or modified application pro-
tocols [16, 17], intermediate nodes may keep messages containing
information resources in addition to forwarding them. Such inter-
mediate nodes can then reply to passing requests if they hold a local
copy of the sought resource—assuming that that the resources are
identifiable (so that requests and stored resources can be matched)
and that sufficient information about the application protocols is
available to allow replicating or constructing responses [18].

The nature of DTNs allows transmitting large messages which
may thus contain complete Application Data Units (ADUs), e.g., a
web resource, as opposed to only ADU fractions in small IP pack-
ets. Working with such messages facilitates application-supportive
operations as mentioned above because all the application data is



available at once and no reassembly from individual packets is
needed.

We have shown that opportunistic caching by minimally en-
hanced (and optionally application-aware) intermediate DTN nodes
may improve the accessibility of information to mobile nodes in
network scenarios where sparsely distributed mobile nodes cooper-
ate to provide access to resources in the Internet [18]. Likewise,
distributed storage may be realized amongst cooperating mobile
nodes. However, while DTN messages originated by the applica-
tion may contain integer ADUs, the forwarding process may lead
to message fragmentation [26]. This may be due to short-lived con-
tacts or limited storage capacity allowing only parts of a message
to be transmitted or received. In addition fragmentation may stem
from routing protocols, as seen with erasure- or network-coding
based routing [30, 8, 31].

In this paper, we generalize our notion of cooperative caching
and storage from dealing only with complete resources—i.e. un-
fragmented bundles—to operating also on fragments: to work with
the aforementioned routing protocols, to take advantage of short
contact times, to allow exploiting even limited (remaining) storage
capacity, and to be able to deal with very large resources. After re-
viewing related work in section 2, we introduce the research prob-
lem and our protocol design in section 3, and present our validation
setup and simulation results in section 4. We conclude this paper
with a summary and hints at future work in section 5.

2. RELATED WORK
In this paper, we assume delay-tolerant networking [7] as basis

for information exchange, using the DTNRG architecture [3]. We
focus on hybrid networking environments, where users in mobile
ad-hoc networks may indirectly obtain access to infrastructure net-
works via other mobile nodes or dedicated gateways. Routing in
such opportunistic networks has been studied extensively (for sur-
veys see [33, 19]). We borrow routing and forwarding algorithms
from the vast literature and focus on adding content storage and
retrieval.

2.1 DTN and Erasure Coding
Jain et al. have discussed how redundancy can be used to cope

with communication failures in DTN [8]. They formalize the prob-
lem of sending coded blocks over different paths so that the over-
all message delivery probability is maximized. And they also pro-
pose strategies on deciding on how large fraction of blocks should
be sent over which path. Erasure coding-based flooding has been
shown to provide good performance in opportunistic networks [30],
reducing the message delivery delay. Other proposals [2, 23] to
use erasure coding discuss the benefits of removing the need for
interactive communications, especially sending acknowledgments,
during reliable data transfer. Moreover, modern coding theory has
proposed several codes (Raptor, LT, Tornado) that achieve fast de-
coding by using only small amount of extra information. While
these codes may provide interesting approaches for DTN-based
data transfer, they have disadvantages when used to provide redun-
dancy for storage: modern low-density parity-check codes (LDPC)
suffer from property that not all combinations of fragments can be
used to reconstruct a resource (e.g., file) [4]. Furthermore, Reed-
Solomon (RS) codes have been shown to be also more efficient
with coding parameters m and n in the range we envision to be
used with our cooperative storage design [4].

Kamra et al. [10] present Growth Codes which can be used to
increase the amount of data that reaches sink in zero-configuration
sensor networks. Growth codes also allow recovering partially
transferred data the utility of which is, however, highly application-

dependent. How to generate new coded fragments in a bandwidth-
efficient manner to replace the failed ones is discussed in [5]. They
propose regenerating codes which require less bandwidth for stor-
age maintenance than previous approaches.

2.2 Storage in the Network
Erasure coding has been used to provide reliability of the archival

layer for collaborative network storage in the OceanStore project
[12]. Scalable peer-to-peer overlays have also been studied in the
content addressable network (CAN) [22] and Chord [29] projects.
These projects have provided algorithms for addressing content in
scalable manner. However, in highly dynamic networks that we
focus on in our study, the maintenance cost of look-up structure
easily becomes unacceptably high. The PAST project has contin-
ued to study the caching in storage overlays. Study has shown how
locally controlled caching may be used to increase the fetch perfor-
mance in the storage overlays [24]. The study also discussed how
even during very high storage utilization the small files may be still
cached to where some unused storage exists. This has in common
to our motivation to look into cooperative caching since we may
opportunistically cache even smaller bundle fragments without in-
ducing overhead of registering the stored fragment to look-up ser-
vice.

Our earlier work has shown how large files can be efficiently
striped and erasure coded for storage both in local [20] and in Grid
environments [21]. The chosen striping scheme easily works with
data entities at the quite arbitrary sizes, similar to our ADUs. The
Internet Backplane Protocol [1] creates a global storage service by
sharing an end system’s disk resources via an infrastructure net-
work and offering access and management functions. While the
above approaches provide rather predictive resource access, our fo-
cus in more on probabilistic operation.

Recent research has discussed optimizing the file availability in
peer-to-peer content distribution communities, defined by intermit-
tently connected (mobile) nodes that contribute storage, contents,
and bandwidth [11]. The primary goal is to satisfy file requests
from within the community, which also increases the speed of
downloads from the global network since less peers compete for
the outgoing link. Only when the community cannot serve the file
the request should be sent further to the global network. Similarly,
cooperative caching may be applied in ad-hoc networks to serve
requests from mobile users and reduce the distance requests and
responses have to travel (and thus the communication overhead)
[32]. This issue is further discussed in the context of cooperative
caching for multimedia contents in [13].

Finally, the bundle protocol [26] defines the custody transfer
mechanism which combines hop-to-hop reliability and persistent
storage to enable reliable end-to-end communications. As node re-
source constraints may lead to congestion, Seligman et al. propose
mechanisms to temporarily shift storage load by moving custody
bundles from one node to another and retrieving them when the
congestion has cleared [28]. Moreover, Seligman has has shown
how the storage usage of the custody transfer mechanism can lead
to efficient resource utilization in networks with intermittent con-
nectivity when targeting reliable transfer [27].

3. DTN-BASED REDUNDANT STORAGE
We consider a (sparse) mobile community consisting of set of

nodes, as depicted in figure 1, willing to contribute storage and
communication resources to other nodes in the community, while
other nodes (those not containing a storage icon) only provide for-
warding functions. The community nodes cooperate to create dis-
tributed storage from these resources, used for caching information
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Figure 1: Cooperative DTN storage with gateway nodes.

resources previously retrieved from the infrastructure network via
gateway nodes. Fulfilling requests from within such a community
network increases the performance of fetching data from outside
the community as the gateway nodes become less congested [11]
and reduces the response time, particularly in disconnected envi-
ronments [18].

3.1 DTN Nodes for Distributed Storage
To enable cooperation between nodes, we have defined an ar-

chitecture for supporting message-based content storage in DTN
nodes [18]. In this environment, the ADUs exchanged between
DTN nodes are semantically self-contained protocol messages,
e.g., comprising all objects of a web page. The contained resources
have unique identifiers (e.g., derived from the respective URIs).
The identifiers and the application layer protocol operation (e.g.,
POST vs. GET) are made visible to the DTN layer via a dedicated
bundle protocol extension header. Forwarding in DTN nodes op-
erates on these complete ADUs. We have defined extensions to
the per-node bundle processing: routing, forwarding, and queuing
behavior may be adapted upon the identified protocol operations
and the enclosed resources (if any). In particular, this allows us
to leverage the DTN store-carry-and-forward paradigm and make
DTN nodes keep a copy of a message for a longer period of time
than required by the forwarding algorithm, i.e., cache the ADU.

Storage/retrieval logic and cache

Incoming
bundles

Forwarding
buffer

Request
lookup

Resource
caching

Resource
retrieval

Figure 2: Architecture for distributed DTN storage module.

We propose a design for a community DTN node that includes
a cache-enabling module and contributes storage to the forwarding
buffer and the caching functionality, as illustrated in figure 2. The
storage/retrieval logic module provides interfaces to perform cache
lookups for resources stored as bundles in the queue or the cache
for retrieving them to respond to passing requests. It also provides
a caching interface for storing resources based on probabilistic se-
lection (or other selection policies to be defined in the future).

3.2 Modeling Erasure-Code-based Operation
We consider a sparse network of mobile nodes Ni which send,

forward, and receive requests for resources and responses contain-
ing one out of many resources U as self-contained and identifiable
ADUs. We call these operations req(U) and rsp(U), respectively.
Some of these nodes act as Internet gateways and thus are the ulti-
mate target for requests as they represent all resources in the Inter-
net and hence the origin of responses. Responses may be cached
by intermediate nodes forwarding them. This leads to a model in
which requests may also be served from the cooperative storage
formed by the community nodes. Our research problem is then
defined as introducing redundancy to bundle communication and
storage in order to increase the response probability and the cache
hit rate and, at the same time, to reduce the response latency.

To address these issues we do not define a new DTN forwarding
scheme, but (1) allow bundles to be fragmented for transmission
and (2) additionally apply application level erasure coding on top
of existing protocols. We propose to use Reed Solomon codes,
allowing us to divide single bundle carrying a resource U of size
S(U) into n source blocks and to encode m additional blocks of
the same size. Any combination of n blocks out of n + m of equal
size S(U)/n can be used to recover the bundle.

Generally, a request req(U) for a complete resource U is sent
by a node Ns. The request is forwarded until it hits a node Nr that
either has a cached copy of U or is a gateway and can thus retrieve
U from the Internet. For our starting point, which we refer to as
one bundle, bundles are never fragmented [18].

If we allow for fragmentation of responses, Nr may only have
one or more fragments of the resource (except if Nr is now a gate-
way node), a fragment of U being denoted as U [a, b] which indi-
cates that the fragment starts at offset a, ends at offset b (both inclu-
sive), and is of size b−a+1; with U = U [0, S(U)−1]. In this case,
Nr returns U [a, b] but forwards the request without change, indi-
cating which fragments have already been returned, or splitting it
up into two requests req(U [0, a−1]) and req(U [b+1, S(U)−1]).
We refer to this scenario as frag x/x, denoting that resource bundles
are split into x fragments.

To simplify the model and the subsequent simulation, we assume
that nodes fragment and store resources only at a minimal granular-
ity of F bytes, equal for all nodes, and that each resource consists
of an integer number of such fragments:1 a − b + 1 = kF and
S(U) = lF , with k, l = 1, 2, .... We model a request for a com-
plete resource req(U) as a sequence of requests for its fragments—
reqi(U [(i − 1)F, iF − 1]) with i = 1, ..., n and n = S(U)/F—
sent out in rapid succession. All requests are responded to individ-
ually, even if a responding node Nr holds multiple fragments.2

Extending the model further, we allow for erasure-coded trans-
mission of response bundles, with each erasure-coded block treated
as a fragment. In a simple case, a gateway node Ng splits the re-
trieved resource into n fragments—the source blocks—and then
adds m coded blocks of equal size, all of which are then sent
independently.3 We make two simplifying assumptions: 1) Ns

1This can be achieved by padding which is necessary for erasure
coding anyway.
2Note that, in practice, the client would issue just a single request
(as it would not know the resource size). The first node holding
one fragment of the resource—which thus knows the total size and
the fragmentation and erasure-coding parameters (if any)—could
create a partial response and easily generate the requests for the
remaining fragments.
3Note that, depending on the erasure coding scheme used, a coded
block (symbol) does not necessarily reflect a consecutive portion of
the resource (i.e., a source symbol) and source symbols may not be



knows n and m and issues n + m individual requests, one for each
fragment—this splitting could easily be done at the first node that
has one fragment and thus knows the total size and the encoding pa-
rameters. 2) The generation of the erasure-coded fragments takes
place at the gateway—which could also be done in any other node
in the network [31]. This scheme is referred to as code n/(n+m).

Requests for resource fragments are identified (see next subsec-
tion) and treated similarly to requests for the entire resource and so
are the corresponding response bundles. This common treatment
allows intermediate nodes who do not understand erasure coding
or fragmentation to reply to requests if they hold a copy of the re-
source (fragment) in question. In addition, the nodes which do not
have functionality to perform the look-ups in the forwarding buffer
or cache may still participate with plain forwarding functionality.
If a match for one fragment is found, the reply is generated and
the request for this fragment is dropped while the requests for other
fragments are forwarded further.

3.3 Protocol Aspects
We extend the bundle protocol specification by an Application

Hints header block that carries sufficient information for identify-
ing the resource contained in a bundle (e.g., its URI), the applica-
tion protocol and operation, the application-layer lifetime [18]. We
add information about the total bundle size, a bundle fragment off-
set and size or the erasure coding scheme (if any) and the symbol
number—which are included in every bundle. Finally, we use the
bundle layer identity for loop detection and to prevent bundles from
oscillating between nodes.

The per bundle overhead incurred is 4 bytes for the extension
block, expected 4+ bytes for the application-layer lifetime, vari-
able length fields for the fragment offsets and the total bundle size,
1 bytes for the operation type, 8 bytes for the erasure coding in-
formation, and a variable length field to carry the resource iden-
tification. Assuming, e.g., 100 bytes for the URI length, the per
bundle overhead will be some 120 bytes. This appears acceptable
compared to the typical size of, e.g., a web requests (some 500–
700 bytes) and does not make the request grow beyond the typical
MTU size and become negligible compared to the typical size of
web page contents.

Above the bundle protocol and our extensions, we assume an
application protocol in which two requests from different nodes
can be satisfied by the same response bundle (except for the mod-
ified destination address), given an appropriate bundle encapsula-
tion.4 This holds, e.g., for many types of HTTP responses, net-
news articles, RSS feeds, and mails (to mailing lists) and thus
addresses quite a few applications that can benefit from sharable
and/or cachable contents.

Furthermore, we assume for now that, if security mechanisms
(e.g., for origin authentication and integrity protection) are applied,
they do not affect re-targeting a response. This means that content
protection is only applied to those parts of the message that remain
unchanged, e.g., by including an S/MIME signed message in the
bundle payload block body rather than signing the entire bundle.
But this kind of content protection independent of the transport is
desirable for cached contents anyway.

Finally, if not all response fragments can be recovered it may be
beneficial if the application protocol allows retrieving only parts of
the resource from the Internet if it has not changed (as achievable
by the HTTP headers Range: and If-Modified-Since:). Achieving

transmitted at all. Hence, we label the coded fragments by numbers
rather than byte ranges.
4Alternatively, the application protocol must be known to the node
so that a matching response can be created from a stored bundle.

selective retrieval may also be replicated at the bundle layer using
our fragment selection mechanisms described above.

4. SIMULATIONS
We have extended the functionality of the publicly available

Java-based dtnsim [9] to include the functionality described in sec-
tions 3.2 and 3.3. For investigating protocol behavior in our sce-
narios, we run simulations using publicly available mobility trace
[6]. The trace provides behavior of 100 users at MIT recorded dur-
ing the academic year 2004-2005. For our simulation reported be-
low, we have used the “devicespan” information which provides
the inter-personal Bluetooth connectivity. The connectivity periods
are recorded by using commodity mobile phones, which fits our
envisioned usage scenario.
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Figure 3: Contact durations in the mobility trace.

Figure 3 shows the cumulative distribution function of contact
durations between the nodes in our simulations. Granularity of
5 minutes was used in plotting the distribution and we can ob-
serve how the majority of the connections are relatively short-
lived. We use a trace with over 62,000 bidirectional connections
among 100 nodes over 288 days and make the following assump-
tions: The nodes communicate through bidirectional wireless links
with 100 ms delay and a capacity of 2.1 Mbit/s (Bluetooth EDR).
Bundles (and fragments) are transmitted in an all-or-nothing fash-
ion: if the link breaks before the transfer is complete, the bundle is
dropped on the receiving and retried on the sending side. Reactive
fragmentation [26] is not used.

Each node contributes 512 MB of buffer space for (short-term)
DTN forwarding using a FIFO queue. If cooperative caching is en-
abled, 256 MB out of these are reserved for longer term caching.
Requests for resources or resource fragments may be answered
from the regular forwarding queue and its part “protected” for
caching. Regularly queued bundles have a TTL of one hour,
whereas those in the cache part are kept for 12 hours. Messages
are discarded after eight hops (as we have observed that responses
generally come from close by) or when their TTL expires. Bun-
dles are also removed from the queue after successful forwarding.
If the queue—regular or cache part–is full when a new bundle ar-
rives, the arriving bundle is dropped. Our simulation results have
shown that the queue capacity of 256 MB is never reached, i.e.,
the observed communication performance is influenced by the user
contacts rather than by congestion.

For our simulations, we have added client and gateway function-
ality to a subset of nodes. From those nodes having large numbers
of Bluetooth contacts, four nodes (101, 102, 14, 30) were chosen
to act as clients and four nodes (79, 86, 91, 88) to act as storage
gateways. The clients send requests for files that have sizes picked
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Figure 4: FC, responses from a) only gateways (left), b) also forwarding buffers (center), c) enhanced caching (right).

evenly distributed from {600, 1200, 1800} KB. To emphasize the
community aspect, all clients share a common core interest of six
resources out of which 70% of the requests are chosen; the other
30% of are selected from 400 other possible URIs. The requests
are sent out from each client, at application level, at 100 minute
(small variations added to avoid synchronization) intervals.

The clients are capable of sending bundle requests in plain, frag-
mented, or coded form. When a client requests a resource in coded
form it sends separate request for each of the n + m fragments and
starts decoding when the first n fragments have arrived. With extra
fragments are discarded by the client.

In figures 4 and 5, we show the impact of redundancy and
caching for two extreme routing strategies—First Contact (sec-
tion 4.1) and flooding (section 4.2)—together with several differ-
ent transfer strategies as per section 3.2: non-fragmented one bun-
dle, fragmented Frag 5/5, and coded (Code 5/8 and Code 6/11).
The values for m and n can be chosen freely but we limit our ob-
servations to two alternatives, one being significantly more redun-
dant than the other. The three subfigures show performance met-
rics for a) end-to-end communication without caching support, b)
caching support in the regular forwarding buffer (TTL=1 h, mes-
sages dropped after forwarding), and c) enhanced caching for half
of the forwarding buffer (TTL=12 h, messages kept after forward-
ing). With c), bundles or fragments are cached at a probability of
50%.5 The reference values to scale both figures are provided in
table 4.

Table 1: Reference values for scaling figures 4 and 5.
Metric Value
Traffic during simulation 450 GB
Average response time 2500 s
Number of results 2500
Number of cache hits 2500
Number of forwarding buffer responses 200

4.1 Non-Redundant Forwarding
First, we start by investigating a protocol that does not create

multiple copies of a message in the intermediate nodes. We use the

5We have run simulations allowing either all or at most one frag-
ment per message to be cached at a single node, with little differ-
ence in the resulting client performance. We report only on the
latter.

First Contact (FC) forwarding [9] with a minor extension to prevent
message oscillation. This forwarding scheme simply chooses the
first available link and forwards the first message(s) in the FIFO
queue. If multiple links are available simultaneously one of them
is chosen randomly.

The simulation results are shown in figure 4. Without caching
(a), the one bundle strategy manages to deliver a larger amount
of responses than the simple fragmentation. This does not come
as a surprise as multiple fragments need to be delivered to lead to
successful delivery of the entire bundle. But fragmentation signifi-
cantly reduces the response delay which suggests that contacts are
often too short to allow for transmitting entire large messages (so
that the fragmentation capability appears crucial). Both coding ap-
proaches increase the success in the message delivery beyond the
one bundle strategy and reduce message delivery time further—
which is in line with other findings (e.g., [30]). As expected, the
total traffic grows with fragmentation (smaller fragments propagate
further) and increases further with erasure coding since overhead is
added.

For FC forwarding, allowing responses from bundles or frag-
ments stored in the forwarding buffer (b) has only a marginal effect
on the number of responses or the response delay: both figures are
largely identical. The line FWD BUFF indicates that less than 10%
responses come from the forwarding buffer—which is not surpris-
ing for a protocol that only maintains a single copy of a message in
the network.

We continue by enhancing the bundle lifetime and maintaining a
copy in the dedicated cache part of the buffer even after forward-
ing (c), the number of responses increases marginally and the re-
sponse time drops drastically for the one bundle case—while re-
maining roughly the same for fragmented and coded bundle trans-
mission. Again, FC forwarding does not spread the messages
widely, thereby limiting the likelihood for cache hits.

4.2 Redundant Forwarding
We now look at a forwarding algorithm that adds redundancy and

thus potentially increases the spread of each message. The flood-
ing approach also uses a FIFO queue but forwards the message to
all available contacts at a time. This opportunistically introduces
redundancy while messages are being transferred. Messages are
deleted from the queue if at least one forwarding was successful.
Hence, the algorithm is less aggressive than epidemic routing. Fig-
ure 5 illustrates the simulation results for the same three scenarios.

As expected (remember that we do not face congestion), the per-
formance without any caching (a) is far better than for FC forward-
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Figure 5: Flooding, responses from a) only gateways (left), b) also forwarding buffers (center), c) enhanced caching (right).

ing and the response time is much lower. Fragmentation reduces the
response time further but coding does not yield additional reduc-
tions. The message delivery rate is lower with fragmentation, not
reaching the one bundle case even with erasure coding—because
the complete message already gets widely replicated so that retriev-
ing it is easier than many fragments.

Allowing responses from the forwarding buffer (b) shows that
some requests may be satisfied by this kind of caching but there is
only a marginal overall improvement: the inter-contact times are
too long for the 1 h caching period in the regular queue and bundle
deletion after forwarding reduces the availability further. Using the
enhanced caching (c), i.e., keeping messages for 12 h, improves the
response rate for the one bundle case, reduces it for fragmentation,
and leaves it unchanged for erasure coding. The response time in-
creases slightly for the one bundle case (more responses arrive) and
remains unchanged otherwise; total traffic increases for (b) and (c)
as expected. With (c), fewer answers are generated from the for-
warding buffer as the cache maintains the bundles longer.

4.3 Observation Summary
Combining the findings from both simulations, we observe that

adding redundancy—either through erasure coding in the endpoints
or by using flooding—improves the retrieval performance. Apply-
ing both, however, does not lead to further improvements in re-
source retrieval from within the community. Caching in intermedi-
ate nodes may provide additional performance gain, provided that
the bundles are kept sufficiently long—which calls for considering
application layer lifetimes for extended caching. This also moti-
vates differentiating between bundles containing resources that can
be re-used for satisfying further requests and those that simply need
forwarding to their destination but have no value for third parties.

Looking closer at end-to-end delivery performance, we can ob-
serve how the response time (latency) always decreases with frag-
mentation and further with coding strategies. However, even if a
small response time is a desirable property, at the same time it is
important to maintain sufficient communication reliability. For re-
liability, the redundancy of transferred bundles needed to be added.
Adding too much redundancy (both coding and flooding), however,
leads to fewer responses being delivered. While this is particularly
true if congestion occurs and bundles need to be dropped from the
queues, we found this even in our simulations without congestion
because the longer FIFO queues reduced the chances for a bundle
to be forwarded during the relatively short contact periods.

We have confirmed our above observations on the protocol be-
havior with other traces which do not report upon in detail. We

have also conducted simulations using the Bluetooth traces col-
lected by the Haggle project [14] which captures community in-
teractions between students of the university and some fixed in-
frastructure nodes. Moreover, we have used a challenging artificial
network scenario with rapidly changing link states, similar to the
simulation we used in [18].

5. CONCLUSION
In this paper, we have assumed mechanisms for cooperative

caching in mobile DTN nodes and investigated how different re-
dundancy mechanisms impact communication performance of mo-
bile clients retrieving resources from an infrastructure network. We
have considered two points in the spectrum of routing protocols,
one allowing for just a single copy of each message in the sys-
tem and one variant of flooding, and limited ourselves to simple
drop-tail FIFO queuing, with static storage space allocations. We
observe that applying erasure coding at the application layer may
improve performance as may DTN-layer flooding. Caching in in-
termediaries may provide further gains provided that the storage
period is sufficiently long and bundles are kept after forwarding.
Given that flooding may easily lead to congestion, the more sensi-
ble application-controlled approach peered with caching is clearly
preferable.

These findings give rise to numerous directions for future work:
in particular, routing protocols in-between these two extremes need
to be investigated: cooperative caching is expected to achieve the
best gain if the information is spread widely but not everywhere,
to allow exploiting the potential locality of references in communi-
ties. In addition, further queuing and replacement strategies peered
with dynamically dividing storage space between the forwarding
and caching buffer deserve attention—particularly in scenarios ex-
hibiting congestion. Adapting such strategies based upon appli-
cation parameters—such as bundle lifetime and size—may allow
further optimizations. Finally, we have also considered distributed
storage [18] to which we will apply the erasure coded opportunistic
caching concepts, so that mobile user communities can share local
resources as easily as retrieving others from the Internet.
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