
Helsinki University of Technology

Department of Electrical and Communications Engineering
Networking Laboratory

Eeva Nyberg

How to Achieve Fair Differentiation:

Relating Flow Level QoS Requirements

to DiffServ Packet Level Mechanisms

The thesis has been submitted for official examination for the degree of Licentiate
of Science (Technology).

Supervisor: Professor Jorma Virtamo

Helsinki University of Technology Abstract of the Licentiate Thesis

Author: Eeva Nyberg
Title of the thesis: How to achieve fair differentiation: Relating

flow level QoS requirements to DiffServ packet
level mechanisms

Language of the thesis: English
Date: 9.9.2002
Pages: 105

Faculty: Electrical and Communications Engineering
Chair: Networking Technology, S-38

Supervisor: Professor Jorma Virtamo
Examiner: PhD Samuli Aalto

Quality of Service (QoS) is a general notion of introducing different
quality levels to the best-effort Internet. Differentiation of traffic is
needed both to guarantee quality requirements for real-time applica-
tions as well as to offer different levels of priority inside traffic classes.
Differentiated Services (DiffServ) is a set of mechanisms aiming at
providing scalable differentiation, where quality treatment inside the
network is done to aggregates of flows not to individual flows. Quality
guarantees can be divided into two service models. In assured services
the flow should receive a rate at least equal to the contracted rate,
while in relative services the rate of the flow should be proportional
to the contracted rate.

The thesis models QoS mechanisms used and proposed for use in
DiffServ networks. The modelling concentrates on the interaction
between various differentiation mechanisms and traffic flows using a
given transport protocol. This type of closed loop modelling of the de-
pendency of the flow sending rate on the metering, marking, dropping
and scheduling mechanisms has not been done before.

The mechanisms are modelled and analyzed on two levels: flow level
and packet level. Furthermore detailed simulation of the packet level
are performed. The correspondence between the models is good, and
each modelling approach is able to illustrate a different aspect of mech-
anism design, either through the choice of parameter values or through
the choice between two complementary mechanisms.

Based on the models, we study how well relative services can be
achieved, i.e. in what proportion network bandwidth is divided, us-
ing DiffServ without admission control.

Keywords: Mathematical modelling, QoS, DiffServ, TCP, fairness

Contact information: Networking laboratory, P.O. Box 3000, 02015 HUT

The thesis is in electronical form at http://www.tct.hut.fi/julkaisut/lisurit/

Teknillinen korkeakoulu Lisensiaattityön Tiivistelmä

Kirjoittaja: Eeva Nyberg
Työn nimi: Kuinka eriyttää reilusti: Vuotason palvelun-

laatuvaatimusten ja pakettitason DiffServ–
mekanismien välinen yhteys

Työn kieli: Englanti
Päiväys: 9.9.2002
Sivumäärä 105

Osasto: Sähkö- ja tietoliikennetekniikan osasto
Professuuri: Tietoverkkotekniikka, S-38

Valvoja: Professori Jorma Virtamo
Tarkastaja: FT Samuli Aalto

QoS eli palvelunlaatu on yleisnimitys laatuluokkien lisäämiselle best-
effort Internetiin. Liikennettä eriytetään sekä reaaliaikaliikenteen
laadun takaamiseksi että liikenneluokan sisällä olevien prioriteet-
titasojen tarjoamiseksi. Eriytetyt palvelut (DiffServ) koostuvat
mekanismeista, joiden avulla pyritään toteuttamaan skaalautuvaa
eriytystä verkossa. Ideana on, että verkon sisäsolmuissa laatuerot-
telua tehdään vuoryhmille, ei yksittäisille voille. Laatutakeet voidaan
jakaa kahteen luokkaan. Taatussa palvelussa (assured services) vuon
bittinopeus ei saisi olla pienempi kuin sopimusnopeus. Suhteellisessa
palvelussa (relative services) vuon bittinopeuden tulisi olla verrannolli-
nen sopimusnopeuteen.

Työssä mallinnetaan palvelunlaatumekanismeja, joita käytetään tai
on ehdotettu käytettäväksi DiffServ–verkoissa. Tuloksena on
mallinnettu eriytysmekanismien ja liikennevoiden välinen vuorovaiku-
tus. Tämän tyyppistä suljettua mallia, joka huomioi mittaus-
, merkkaus-, tiputus- ja skedulointimekanismien sekä voiden lähe-
tysnopeuden välisen yhteyden, ei ole ennen toteutettu.

Mekanismeja mallinnetaan ja analysoidaan kahdella eri tasolla: vuo-
ja pakettitasolla. Lisäksi pakettitasoa simuloidaan yksityiskohtaisem-
malla simulointimallilla. Eri tasojen mallien yhtäläisyys on hyvä, ja
jokainen malli ilmentää mekanismeista eri piirteitä, antaen joko os-
viittaa parametrien valinnalle tai kahden vaihtoehtoisen mekanismin
valinnalle.

Mallien avulla voidaan tutkia, kuinka hyvin suhteellinen palvelu
saavutetaan eli kuinka kaista jakautuu eri voiden välillä DiffServ–
verkossa, jossa ei ole käytössä pääsynvalvontaa.

Avainsanat: Mallinnus, palvelunlaatu, DiffServ, TCP, reiluus

Yhteystiedot: Tietoverkkolaboratorio, PL 3000, 02015 TKK

Tämä työ on saatavilla sähköisessä muodossa WWW-osoitteesta
http://www.tct.hut.fi/julkaisut/lisurit/

Preface

The title of the thesis is deliberately ambitious: How to achieve fair differentia-
tion. The purpose of the work is not to give a final and concise answer to this
question. However, reading through previous work conducted in this area, it has
struck me that very few authors consider the question. Different mechanisms and
proposals exist for bringing service differentiation into the Internet, but less effort
has been put in evaluating these proposals and especially in comparing them in
terms of the service they provide. By posing the question of how and by writing
this thesis, I aimed at understanding better what Quality of Service (QoS) mech-
anisms are needed and why they are needed in the Internet.

Now as the thesis is ready and my understanding of QoS is better, I would like to
thank my supervisor Jorma Virtamo for supporting me in my aim and letting me
start this new research topic. My gratitude goes to my instructor Samuli Aalto.
Without his insight, patience and true interest in my ideas this work would never
have finished. Other people were also valuable especially in the beginning of
my graduate studies; Kalevi Kilkki had a great influence on my work and topic
through his two graduate level courses that I attended. He has also provided
valuable help throughout the process.

I have also had the pleasure to work with summer trainees, who have each con-
tributed to parts of the thesis. Many of the packet level mechanism modelling
ideas of chapter 6 emerged through the work of Eemeli Kuumola on Assured For-
warding. Riikka Susitaival performed the simulations of chapter 7. With Laura
Kneckt we polished up some of the buffer model equations of chapter 6. I thank
each of you, and hope that I was able to offer you good supervision in return.

The work was carried out in the Networking laboratory and in the COST 257
and COST 279 projects funded by Nokia, Sonera, Nokia Research Center, Elisa
Communications and Siemens. I have also received a personal grant from the
Nokia foundation and have been a student of the graduate school GETA funded
by the Academy of Finland since March 2001.

v

I thank my colleagues at the laboratory for useful discussions on work matters and
on all those other topics. An especially great cheer for our laboratory’s unofficial
floorball team!

My friends and family have been the greatest as always. Many hugs and kisses.
Olli I have the delight of thanking, hugging and kissing after yet another thesis.

Helsinki, September 9th, 2002

Eeva Nyberg

Contents

1 Introduction 1

1.1 Outline of the thesis . 2

1.2 Related publications . 2

2 Best-effort TCP 3

2.1 The TCP mechanism . 4

2.2 Congestion control . 4

2.2.1 Basic proposal . 4

2.2.2 Algorithms in terms of implementations 8

2.2.3 Recent developments . 8

2.3 TCP models . 11

2.3.1 Model by Floyd and Fall 12

2.3.2 Model by Padhye et al. 13

2.3.3 Model by Kelly . 13

2.3.4 TCP model assumptions 14

2.4 Fairness . 15

2.4.1 Theoretical fairness concepts 16

2.4.2 Fairness of TCP . 18

2.5 TCP friendliness . 19

2.5.1 UDP traffic . 20

2.5.2 Tests for fair sharing of bandwidth 20

3 Quality of Service: guarantees and differentiation 23

3.1 IntServ . 24

3.1.1 Integrated services model 24

3.1.2 Elements of the architecture 25

3.2 DiffServ . 28

3.2.1 EF . 29

vii

CONTENTS

3.2.2 AF . 29

3.2.3 SIMA . 30

3.3 DiffServ research . 32

3.3.1 Analytical studies on AF 33

3.3.2 Simulation studies on AF 36

3.3.3 Studies on SIMA . 37

3.3.4 Further research on SIMA and AF 37

4 Underlying mechanisms in differentiating traffic 39

4.1 Network model . 40

4.2 Flow level mechanisms at the boundary nodes 40

4.2.1 Metering and marking mechanisms 41

4.2.2 Metering and marking model 43

4.3 Packet level mechanisms inside the DiffServ nodes 44

4.3.1 Discarding . 45

4.3.2 Scheduling . 46

5 Flow level differentiation model for greedy TCP flows 49

5.1 Marking model for TCP flows . 49

5.1.1 Per flow marking . 51

5.1.2 Per packet marking . 58

5.2 Numerical results . 62

5.2.1 Per flow marking . 62

5.2.2 Per packet marking . 63

5.3 Effect of marking . 64

6 Packet level differentiation model 65

6.1 Non-TCP flows . 66

6.1.1 Packet arrival model . 66

6.1.2 Buffer models . 67

6.1.3 Flow group loss probability 70

6.2 TCP flows . 71

6.2.1 Flow behavior . 71

6.2.2 Flow aggregates . 72

6.2.3 Buffer models . 74

6.2.4 Loss probability feedback signal 74

6.2.5 Fixed point equation . 75

viii

CONTENTS

6.2.6 Example solution, one flow 75

6.3 Numerical results . 77

6.3.1 One buffer with only TCP traffic 77

6.3.2 One buffer with TCP and UDP traffic 80

6.3.3 Two buffers with nrt TCP traffic and rt UDP traffic 82

7 Simulations 89

7.1 Simulation setting . 90

7.1.1 Metering flows at the conditioner 90

7.1.2 TCP model . 91

7.1.3 Scheduling unit . 92

7.2 Numerical results . 92

7.2.1 EWMA parameter α . 92

7.2.2 Token bucket parameter c 95

7.2.3 Analytical results . 96

7.3 Metering mechanisms compared 98

8 Conclusions 99

Bibliography 101

ix

Chapter 1

Introduction

New service concepts have been designed to overcome the problems of converged
networks: delivering real time applications in the best-effort Internet. One of
these concepts is Differentiated Services (DiffServ). DiffServ is termed a scalable
architecture, as inside the network quality treatment is only offered to aggregate
classes not to each individual traffic flow. The scalability is achieved at the price
of losing strict quantitative guarantees and bounds on the level of service.

We can divide the differentiation into two categories: assured services and relative
services. In assured services the flow should receive a rate at least equal to
the contracted rate, while in relative services the rate of the flow should be in
proportion to the contracted rate.

The approach taken in this work is to model the interaction between various dif-
ferentiation mechanisms and traffic flows using a given transport protocol, namely
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP). This
type of closed loop modelling of the dependency of the flow sending rate on the
metering, marking, dropping and scheduling mechanisms has to our knowledge
not been done before.

The thesis is related to previous work by Sahu et al. [STK99], [SNT+00], May
et al. [MBDM99] and Yeom and Reddy [YR01]. We also use results on TCP
modelling by Floyd and Fall [FF99], Padhye et al. [PFTK98] and Kelly [Kel99], as
well as results on flow level fairness studies by Kelly [Kel97], [KMT98], Massoulié
et al. [MR99], [BM01] and others.

The new models presented in the thesis include a flow level model of differentiation
among elastic flows, a packet level model of the interaction between differentiation
mechanisms and flow congestion control as well as a simulation model of the
corresponding network setting.

We study what kind of differentiation can be achieved using DiffServ without ad-
mission control. Specifically, previous work on DiffServ modelling and especially
on the Assured Forwarding (AF) service proposal have shown that assured ser-
vices cannot be achieved without admission control. We challenge this claim by
stating that a more valid service requirement in DiffServ is relative services, where

1

CHAPTER 1. INTRODUCTION

the received rate does not have to be equal to the contracted rate, but where the
link bandwidth should be divided in proportion to the contracted rates.

1.1 Outline of the thesis

The thesis is written to be as self contained as possible. In chapter 2 the fun-
damentals of the best-effort Internet relying on TCP congestion control are re-
viewed. This includes both a review on the congestion control mechanism as
well as the packet level models and flow level models of TCP and its fairness
in dividing bandwidth between flows. Chapter 3 reviews the Quality of Service
mechanisms that have been proposed for the Internet, since it was noticed that
the mechanisms of the best-effort Internet do not suffice in transporting both real
time and elastic traffic. Chapter 3 also presents previous work related to DiffServ
modelling.

Chapter 4 then presents our architectural model for a DiffServ Internet. We divide
the mechanisms into flow level mechanisms at the boundary nodes and packet
level mechanisms inside the DiffServ nodes. Based on this network model we
study on the flow level, in chapter 5, on the packet level, in chapter 6, and using
simulations, in chapter 7, how the division of bandwidth between elastic flows
and between elastic and non-elastic flows depends on the DiffServ mechanisms of
metering, marking, dropping and scheduling.

The flow level modelling of chapter 5 in essence extends the results of TCP fairness
studies to include the effect that marks or priorities in a DiffServ network have
on the fairness of bandwidth division of elastic flows. A more detailed model is
given by the packet level model of chapter 6, where the TCP congestion control
behavior, the priority mechanism and the forwarding treatment of packets is
modelled. This results in a fixed point equation relating the TCP equilibrium
sending rate to the priority dependent dropping rate of a scheduler. In chapter
7 the simulation model also demonstrates the effect that the time parameters of
the metering mechanisms have on the achieved differentiation.

Chapter 8 then gathers the results of chapter 5, 6 and 7, in order to understand
how the three levels of modelling relate to each other in terms of the results they
deliver.

1.2 Related publications

Most of the results presented in the thesis have been published in conferences
and technical documents. The first version of the results of chapters 5 and 6
were presented in [NAV01]. In [NAS02] the simulation results of chapter 7 were
presented. In [NA02] the packet level modelling ideas of chapter 5 as well as the
mechanism modelling approach of chapter 4 were refined to their present state,
and in [AN02] the flow level modelling was strengthened.

2

Chapter 2

Best-effort TCP

Data delivery in IP has been designed to be undemanding, so that any under-
lying physical network can provide the service. The delivery is done through a
connectionless datagram mode.

In datagram delivery, every packet contains the complete address to enable a
switch to decide how the packet is forwarded to its destination. The packet can
be sent anywhere at any time. When the packet is sent, there are no guarantees
of delivery, packets can be forwarded independently and an alternate route can
be found if a failure occurs at a switch.

The delivery is thus unreliable, as messages may be dropped, reordered, and
delivered as duplicate copies. Other limitations of datagram delivery are that the
messages are of some finite size and messages may be delivered after an arbitrarily
long delay.

The transport protocol assures that the service is reliable, by guaranteeing mes-
sage delivery, delivering the messages in the order they were sent, delivering at
most one copy, supporting arbitrarily large messages, supporting synchronization
between sender and receiver, allowing the receiver to apply flow control to the
sender, and supporting multiple application processes on each host.

The transportation protocol together with flow control makes the datagram deliv-
ery service model reliable. By introducing congestion control or resource reserva-
tions, the now reliable best-effort service model can be made fairer and the scarce
resources can be divided in a more optimal way. As TCP congestion control is
the most prevailing way of introducing fairness to the network, the mechanism
as well as its modelling will be discussed in this chapter and in this work instead
of resource reservations.

3

CHAPTER 2. BEST-EFFORT TCP

2.1 The TCP mechanism

The TCP mechanism is described in RFC 793 [Pos81], dating back to 1981.
The transport protocol is a connection oriented and end-to-end reliable protocol
designed to fit into a layered hierarchy of protocols that support internetworking
applications. The operative entities include a basic data transfer, reliability, flow
control, multiplexing, connections, precedence and security.

During the connection establishment phase a TCP connection is formed with
a three-way handshake mechanism with random initial sequence numbers sent
by both sender and receiver to synchronize sequence numbers between the end-
points. A TCP connection is uniquely identified by the 4-tuple of source and
destination ports and addresses. The TCP header includes also the sequence
number field for reliability, where the sequence number of the segment corresponds
to the sequence number of the first byte.

The receiver advertised window (rwnd) and the acknowledgment (ack) fields are
needed for flow control. The so called smart sender/dumb receiver rule means
that the sender adjusts the size of its sliding window according to the size of the
rwnd. The sender also paces the datagram transmission according to the acks
sent by the receiver. This is termed ack or self clocking.

To retransmit packets that are lost, adaptive retransmission is used. Segments
are retransmitted if an ACK for the segment has not been received within a
specific timeout. To this end, TCP has to have an effective and adaptive timeout
as a function of both estimated round trip time (RTT) and its variance. The
RTT is sampled once per RTT rather than once per packet using a coarse 500
ms clock. Furthermore each time TCP retransmits, the next timeout is set to
twice the previous timeout, resulting in exponential backoff of the retransmit
timer. Note that the original retransmission timeout algorithm did not have
exponential backoff and did not take into account the variance of the estimation.
These have been added later on. Karn and Partridge [KP91] have proposed the
exponential backoff and Jacobson and Karels [V.88] the use of the variance of the
RTT estimation.

2.2 Congestion control

2.2.1 Basic proposal

RFC 2581 [APS99] from 1999 defines the four congestion control algorithms to
control traffic:

• slow start

• congestion avoidance

• fast retransmit

4

CHAPTER 2. BEST-EFFORT TCP

• fast recovery.

It also specifies how TCP should begin retransmission after a relatively long idle
period as well as acknowledgment (ack) generation methods.

The TCP header field includes the sequence number and advertised window field
(rwnd) for reliability and flow control. Adding congestion control requires adding
a new variable to the TCP per-connection state, the congestion window (cwnd).
The rwnd is the sender side limit and the cwnd the network limit on the amount
of data the sender can transmit into the network before receiving an ACK.

The TCP source is not allowed to send faster than the slowest component – the
network or the destination host – can accommodate. Thus the effective window
of TCP is the minimum of these two variables (cwnd and rwnd).

2.2.1.1 Slow Start and Congestion Avoidance

The purpose of slow start is to quickly probe the network to determine the avail-
able capacity in order to avoid congesting the network. Slow start is used in the
beginning of a transfer or after repairing a loss detected by the retransmission
timer. It is called slow start as opposed to sending an entire advertised window’s
worth of data at once.

Slow start ends either when a packet is lost or when a specific threshold is at-
tained indicating that the algorithm should change to congestion avoidance mode.
Congestion avoidance is thus used to slow down the sending rate, when the slow
start mechanism has detected congestion.

For slow start and congestion avoidance, a state variable, the slow start threshold
(ssthresh), is used to determine which mode, slow start or congestion avoidance
takes place.

At the beginning of a connection, the sender only knows the advertised window
size, not the congestion window size. Thus the initial congestion window is set
to one segment.

The choice between using the slow start or the congestion avoidance algorithm
is made based on the congestion state of the network indicated by the slow start
threshold. When cwnd < ssthresh, the slow start algorithm is used, otherwise
when cwnd > ssthresh congestion avoidance is used. Therefore, as slow start
is always used in the beginning of the connection, the initial value of ssthresh
may be arbitrarily high, e.g. equal to the advertised window. The threshold is
then reduced in response to congestion.

Slow start is designed so that it approximates increasing the congestion window
exponentially from a cold start by doubling the number of packets it has in transit
every RTT. This is implemented so that during slow start TCP increments the
congestion window by at most one sender maximum segment size (SMSS) worth of
bytes for each received acknowledgment. Slow start continues until the ssthresh

5

CHAPTER 2. BEST-EFFORT TCP

is reached or until congestion is detected.

During congestion avoidance, the congestion window is incremented by 1 full sized
segment per RTT, termed additive increase. It then continues until congestion
is detected. TCP updates the congestion window per every received ack. There
are two options in updating cwnd, both designed to approximate the increment
of 1 full sized segment per RTT .

1. When a non-duplicate ack arrives, the update is

cwnd = cwnd + SMSS2/cwnd.

2. This option requires an additional state variable to count number of bytes
that have been acknowledged by acks for new data. When cwnd bytes
have been acknowledged, cwnd can be incremented by up to SMSS bytes.
However, during congestion avoidance the increment may not be more than
the maximum of 1 full sized segment per RTT or the increment given by
option 1.

The difference between the options is in how the units of cwnd are calculated. If
they are in bytes, option 1 is better suited. If units are in full sized segments,
option 2 is easier to use.

When a loss is detected through the retransmission timer, the slow start threshold
must be updated to

ssthresh = max(flightSize/2, 2 ∗ SMSS).

This corresponds to halving the congestion window, as flightSize is the amount
of bytes in transit, i.e. the size of the congestion window.

Upon such a timeout the congestion window is bounded to 1 full sized segment.
After retransmitting the dropped segment, the window is reopened at 1 full sized
segment and slow start is used up to the halved value of cwnd. The additive in-
crease mode of the congestion avoidance algorithm is employed once the threshold
is attained.

Some alternatives to slow start in probing the network for congestion have been
proposed. One interesting one is sending a packet pair, with no initial gap in
between.The gap between the returning acks, i.e. the delay, then indicates how
much congestion is present.

2.2.1.2 Fast Retransmission and Fast Recovery

When only slow start and congestion avoidance are used, losses are detected
through timeouts. A faster way is to use the acks sent by the receiver as an
indication of loss and thus congestion.

Upon the receipt of a segment, the sender sends an acknowledgment. If the re-
ceived segment is out-of order, the receiver cannot acknowledge that segment,

6

CHAPTER 2. BEST-EFFORT TCP

but sends a duplicate ack, re-acknowledging the last segment that has arrived
successfully and in order. If the reason for an out-of order packet is a dropped
segment, all subsequent segments will generate duplicate acks. Note that, dupli-
cate acknowledgments may also be caused by reordering of data segments, or by
replication of acknowledgments or of data segments by the network.

When the sender receives duplicate acks, it uses the fast retransmit algorithm to
detect and repair the loss. The arrival of three duplicate acks, i.e. four identical
acks, is used as an indication that a segment has been lost. The TCP then
performs a retransmission of what is assumed to be the lost segment without
waiting for the timer to expire. Fast retransmission thus gives an improvement in
throughput as it eliminates half of the coarse grained timeouts on a typical TCP
connection.

In the original TCP congestion control proposal [V.88], which did not include fast
recovery, after three duplicate ACKs slow start was used. However, it was argued
that the arrival of duplicate acknowledgments is an indication that packets are
being transmitted and that these acknowledgments can also be used to clock the
TCP transmission. This is called the fast recovery algorithm.

Following fast retransmission, the slow start phase is not entered, but fast recovery
is used, where the congestion window is halved and transmission continues in
congestion avoidance mode, until a non-duplicate ACK arrives.

The fast retransmission fast recovery algorithm has the following steps

1. Third duplicate ACK arrives

ssthresh = max(FlightSize/2, 2 · SMSS)

2. Retransmit the lost segment and inflate the congestion window to

cwnd = ssthresh + 3 · SMSS

3. For each duplicate ACK received, increment cwnd by SMSS

4. Transmit a segment if allowed by cwnd and rwnd

5. When the next ACK acknowledging the new data arrives, deflate the window
by setting

cwnd = ssthresh

The algorithm does not recover very efficiently from multiple losses in a single
flight of packets or for small window sizes, as there are not enough duplicate
acknowledgments to clock the algorithm. Thus with multiple losses timeouts
may occur and then the slow start phase is used to increase the window size. The
modification to the algorithm when multiple losses occur is given in RFC 2582
[FH99].

With fast retransmit and fast recovery added to TCP congestion control, slow
start is only used in the beginning of the connection and when coarse grained
timeouts occur.

7

CHAPTER 2. BEST-EFFORT TCP

2.2.2 Algorithms in terms of implementations

The different versions of the TCP algorithm and especially the TCP congestion
control algorithms have different names mainly based on the implementation
version of TCP in the BSD Unix operating system. The original TCP with flow
control and other transport related mechanisms was included in the 4.2 BSD Unix
version in 1983.

As occurrences of congestion collapse were detected, congestion control was dis-
tributed in the 4.3 BSD Unix version. In 1988 the TCP congestion control algo-
rithms included went by the name of TCP Tahoe. Tahoe included the original
implementation of Jacobson’s [V.88] congestion control mechanism: slow start,
congestion avoidance, fast retransmit, but not fast recovery. Other improvements
were better RTT variance estimation and exponential backoff of the retransmit
timer.

In 1990 the TCP Reno was included in the 4.3 BSD Unix. TCP Reno included
the fast recovery algorithm, header prediction to optimize for the common case
that segments arrive in order, and delayed acknowledgments where only every
second segment was acknowledged.

In 1993 the 4.4 BSD Unix operating system appeared with modifications to TCP
for large bandwidth delay networks and gigabit throughput rates. It included
window scaling, allowing a scaling factor for advertised window, Protect Against
Wrapped Sequences, preventing sequence number wrapping on connections such
as satellite links with long delays but high bandwidth capacity, and round trip
time (RTT) measurement using time stamps.

In 1994 the TCP Vegas was included in the 4.4 BSD Unix. It was based upon the
4.3BSD Reno source. An improvement in throughput of up to 70% was achieved
through the utilization of congestion anticipation. Congestion anticipation is done
by calculating and comparing the expected throughput and achieved throughput
every RTT. If the expected rate is clearly less than achieved rate TCP Vegas
increases the congestion window linearly. If the expected rate is clearly more
than the achieved rate, the congestion window is decreased linearly during the
next RTT. In other cases, the congestion window is left unchanged. Though
the congestion anticipation does increase the throughput in a network with only
TCP Vegas, the acquiescent behavior of TCP Vegas may reduce its achieved
throughput in a network with more aggressive TCP implementations such as
Tahoe or Reno running concurrently.

2.2.3 Recent developments

One main focus of TCP congestion control research has been in developing loss
recovery algorithms. As will be seen in the next section on TCP modelling, the
target of TCP research has been in ensuring that after the initial setup using
slow start, TCP works as if it were in congestion avoidance. Thus the focus has
been on elimination of timeouts and the consequent re-entering of slow start and

8

CHAPTER 2. BEST-EFFORT TCP

to ensure that only actual packet losses are detected and only relevant packets
retransmitted, i.e. fast recovery upon loss detection.

With the TCP selective acknowledgment (SACK) option (RFC 2018 [MMFR96]),
the receiving TCP sends back SACK packets to the sender informing the sender
of data that has been received. The sender can then retransmit only the missing
data segments and it can retransmit more than one data segment per RTT.

Other developments in the area of retransmissions include increasing robustness
when multiple packet losses occur without using SACK and adding more func-
tionality to the ACK mechanism through ACK filtering and ACK congestion
control.

Recent developments, outlined in [Flo01], to the TCP congestion control mecha-
nism focus on reducing costs of unnecessary retransmissions. The article discusses
in detail a limited transmit mechanism for transmitting new packets upon receipt
of one or two duplicate ACKs and a SACK-based mechanism for detecting and
responding to unnecessary fast retransmits or retransmit timeouts. Furthermore
network changes such as explicit congestion notification and active queue man-
agement have also enhanced the principles of congestion control.

2.2.3.1 Changes to algorithms

Limited transmit With fast retransmit and fast recovery, the sender has to
wait only for three duplicate ACKs before transmitting again as opposed to wait-
ing for a timeout to occur. In limited transmit, described in RFC 3042 [BF01]
and first proposed in RFC 2760 [ADG+00], the sender transmits a new segment
after receiving one or two duplicate ACKs, if allowed by the window size. Thus
continuing transmission even though a possible loss may have occurred.

The first or second duplicate ACK is interpreted as evidence of a packet being
delivered and not as an indication of a loss. Thus a new packet should be allowed
into the network. This mechanism is robust to reordered packets, as it doesn’t
retransmit but sends a new packet. Loss is indicated only when the third duplicate
ACK arrives. Then fast retransmit and fast recovery are used, with the window
halved and the TCP congestion control mechanism working as described in the
previous section.

D-SACK The SACK option was designed for acknowledging out-of-sequence
data not covered by TCP’s cumulative acknowledgement field. RFC 2883
[FMMP00] extends RFC 2018 [MMFR96] by specifying the use of the SACK op-
tion for acknowledging duplicate packets. When duplicate packets are received,
the first block of the SACK option field can be used to report the sequence num-
bers in question. This extension, named D-SACK, gives the sender information
to determine when an unnecessary retransmission has occurred. A TCP sender
can then use this information if reordered packets, acknowledgment losses, packet
replications, and/or early retransmit timeouts occur. The advantage is in a more

9

CHAPTER 2. BEST-EFFORT TCP

robust operation of the TCP congestion control algorithm, taking into account
different reasons for duplicate ACKs.

If the sender has responded by an unnecessary congestion control action to re-
ordered or delayed packets with D-SACK, the sender may, after 1 RTT time,
determine if the retransmitted packet was necessary. If it was unnecessary, the
sender can undo the halving of the congestion window by setting ssthresh to
the previous value of the window, i.e. reentering slow start, or by restoring slow
start. The old window is thus recovered in one RTT, not in half of a window
size of RTTs. The sender may then also adjust the duplicate ACK threshold or
retransmit timeout parameters.

2.2.3.2 Changes to network

Active Queue Management Active queue management (AQM) algorithms,
of which random early detection (RED) is the most popular example, are im-
plicit congestion notification algorithms that drop packets in case of congestion
at routers.

With every queue management algorithm there is a tradeoff in the network be-
tween low delay and high throughput. The main motivation for employing active
queue management (AQM), instead of simple tail drop, is to control queueing
delays, while at the same time preventing transient fluctuations in the queue size
from causing unnecessary packet drops. For environments with the same worst
case queueing delay for tail drop and AQM, the lower average queue size main-
tained by AQM can sometimes come at the cost of a higher packet drop rate. On
the other hand, with highly bursty packet arrivals, tail drop results in unneces-
sary large packet drops. A higher drop rate wastes resources up to the congested
link and introduces higher variance in transfer times.

In RED the queue management is based on two main features. First the dropping
decision is made based on average queue length, essentially filtering out changes
in queue length in shorter time scales. Secondly, the dropping of packets is done
with a positive low probability before the queue is full, the probability of dropping
packets increasing to one as the queue length increases.

Furthermore, through RED, dropping of packets are randomized, thus bringing
the TCP algorithm closer to the ideal models of TCP introduced in the next
section.

Further improvement is obtained by using AQM algorithms to explicitly notify
of congestion through marking of packets. Then the indication of congestion is
given in advance by AQM algorithms through marking of packets; drops and
retransmissions are not necessarily required.

Explicit Congestion Notification Instead of implicitly notifying the end
hosts of congestion by dropping packets, ECN explained in RFC 2481 [RF99],
can be used to notify end hosts explicitly by marking packets as an indication of

10

CHAPTER 2. BEST-EFFORT TCP

congestion. For TCP sources ECN behaves in the same way, as the response to
a mark is the same as the response to a packet loss. The advantage, however, is
for real time or interactive traffic that do not use TCP because of losses or delays
from retransmitting lost segments.

For TCP, the main difference is that no retransmissions are needed and there is
no retransmission timeout. However, packets are still dropped when queues are
full, and ECN can thus not eliminate packet losses altogether. Therefore, there
is still need for the TCP extensions such as limited transmit and D-SACK for
undoing the unnecessary halving of the congestion window.

2.3 TCP models

The TCP models in the literature are often based on the ideal and canonical form
of the TCP congestion control algorithm [MSMO97]. It is assumed that

1. The sender is saturated, it has always a congestion window amount of traffic
to send.

2. The receiver advertised window is always larger than the congestion window,
i.e. the bottleneck is the network not the receiver.

3. All segments are of size maximum segment size (MSS).

4. Recovery from lost segments does not interact with congestion avoidance,
i.e. SACK is implemented.

5. The connection does not contribute to delays and the RTT is independent
of the window size.

6. Loss intervals are from a defined process, e.g. deterministic.

Some of these assumptions have been relaxed, as the research has advanced,
namely assumptions 2 and 4. However, the focus of the design of TCP congestion
control has at the same time been in pushing the algorithms towards the ideal
model, which limited transmit and D-SACK, as well as the earlier development
of fast recovery and retransmit algorithms are examples of.

Note further that the ideal model assumes that the connection is in congestion
avoidance mode. The slow start phase is ignored as it is usually of short duration
and with new developments to TCP congestion control should only occur at the
beginning of a connection.

We consider three TCP congestion control models. The heuristic model by Floyd,
the model by Padhye et al., which relaxes most of the ideal TCP assumptions,
and the model by Kelly for a collection of TCP connections.

We then give a brief discussion on how different network conditions may affect
the use of the listed assumptions and thus the use of the ideal TCP models.

11

CHAPTER 2. BEST-EFFORT TCP

2.3.1 Model by Floyd and Fall

In [Flo91] a steady state model for multiple TCP gateways using different rate
increase algorithms and having different RTTs is given. In [FF99] a steady state
model for the throughput of a TCP connection as a function of the packet drop
rate is given. The model derivations are based on heuristics, but have been
validated through simulations and other analytical models. We will concentrate
on the latter model, which is able to capture the basics of the throughput of a
TCP connection as a function of RTT and packet drop rate.

The idea is to calculate the throughput if a single packet is dropped from a
TCP connection each time the congestion window has increased to W packets.
The average steady-state packet drop probability is p, when an individual TCP
connection has at most one packet drop in a window of data when in steady-state.
Each time a packet is dropped, the congestion window size has increased to W ,
and upon packet drop is halved to W/2. The cycle of the TCP connection is thus
the time it takes for the sender to increase its window size from W/2 to W .

The TCP connection sends segments with maximum size B bytes (B = MSS).
The RTT is assumed to be fairly constant and it includes the queueing delays.
The derivation of the equations is done in terms of a lower bound on RTT.

Under the given assumptions, the TCP sender thus transmits

W

2
+ (

W

2
+ 1) + · · ·+W ≈ 3

8
W 2

per each packet dropped. Thus

p ≤ 8

3W 2

and

W ≤
√

8

3p
.

Now, there are W/2 round trip times between packet drops and as the TCP
connection sends 3

8
W 2 packets between packet drops, the throughput T (in terms

of bits) is

T =
0.75WB

RTT
≤ 1.5

√
2/3B

RTT
√
p
,

T ≤
√

3/2B

RTT
√
p
.

If delayed ACKs are used, an acknowledgment is sent for every second packet,
and the throughput is

T ≤
√

3/4B

RTT
√
p
. (2.1)

12

CHAPTER 2. BEST-EFFORT TCP

2.3.2 Model by Padhye et al.

The TCP model by Floyd, does not take into account TCP delays due to waiting
for retransmit timers to timeout. The model in [PFTK98] is able to take into
account retransmit timeouts and the congestion window size being limited by
the receiver’s advertised window. The model does not, however, include the fast
recovery algorithm and is thus a model for TCP Tahoe.

The model assumes that the TCP sender is saturated, that the RTT is indepen-
dent of window size and thus the throughput can be given in terms of average
RTT. Here the cycle of a TCP connection starts with the back-to-back transmis-
sion of W packets (current size of congestion window), and the first ACK marks
the end of the cycle.

The model includes the possibility of delayed acknowledgments, with b being the
number of packets that are acknowledged by a received ACK. For the delayed
ACK algorithm b = 2.

A packet loss occurs either through the arrival of a triple duplicate ACK or
through a timeout. The packet losses are assumed to be independent from losses
in other cycles, but inside a cycle, once a packet is lost all remaining packets
transmitted in that cycle are also lost. The loss process can be characterized as
deterministic [Bar01].

If the loss indications result from triple duplicate ACKs, the throughput (in terms
of segments) is

T =
1

RTT

√
3

2bp
+ o(1/

√
p). (2.2)

If the loss indications are due to triple duplicate ACKs and timeouts, the through-
put is

T ≈ 1

RTT
√

2bp
3

+ T0 min (1, 33bp
8

)p(1 + 32p2)
,

where T0 is the length of the first timeout period assuming that following a
timeout the window is reduced to one and linear increase is resumed.

The derivation of the throughput for the impact of the congestion window limita-
tion is also found in [PFTK98], taking into account the small windows advertised
by current Internet receivers. However, assuming employment of window scaling
and increasing the advertised window field, the model is not of such importance
[Bar01].

2.3.3 Model by Kelly

In [Kel99] the behavior of TCP connections is studied through differential equa-
tions for the rate control of TCP. Differential equations and their steady state

13

CHAPTER 2. BEST-EFFORT TCP

solutions are given for a network with many links and routes. Here, we will
present the results for one link.

Let xr be the rate allocated to the user r ∈ R. For a collection of m single TCP
connections the differential equation of the so called MulTCP algorithm is derived
as follows. The expected change in the congestion window cwnd per update step
is

m

cwnd
(1− p)− cwnd

2m
p,

with p being the probability of congestion indication. As the time between update
steps is RTT/cwnd, the expected change in rate x per unit time is approximately

(m
cwnd(1− p)− cwnd

2m
p)/RTT

RTT
cwnd

=
m

RTT 2
(1− p)− x2

2m
p.

In equilibrium, we have

xr =
mr

RTTr

√
2(1− pr)

pr
. (2.3)

The steady state result for the TCP congestion control of equation (2.3) has the
same 1

RTT
√

(p)
relation as the relations (2.1) and (2.2). The reason why (2.3) is

adopted here is that the differential equation and rate control framework it was
built from is best suited for our work.

2.3.4 TCP model assumptions

In [Bar01] TCP modelling is divided into two parts: the modelling of the TCP
mechanisms and the modelling of the network reaction to congestion. In terms
of the ideal model presented in the beginning of the section, we have

• Network assumptions

1. The connection does not contribute to delays and the RTT is indepen-
dent of window size.

2. Loss intervals are from a defined process, e.g. deterministic.

• TCP mechanism assumptions

1. The sender is saturated, it always has a congestion window amount of
traffic to send.

2. The receiver advertised window is always larger than the congestion
window, i.e. the bottleneck is the network, not the receiver.

3. All segments are of size MSS.

4. Recovery from lost segments does not interact with congestion avoid-
ance, i.e. SACK is implemented.

14

CHAPTER 2. BEST-EFFORT TCP

All the models presented in the previous section assume that the connection is in
the congestion avoidance mode and therefore implicitly assume that the connec-
tion is in additive increase multiplicative decrease (AIMD) mode as a function of
time.

The models further assume that the RTT is constant and independent of the
connection’s window size. If this assumption was not made, the increase would
be linear only with respect to RTT, but not with respect to time. For window
sizes small compared to the large bandwidth delay product of the network, linear
increase with respect to RTT would be linear with respect to time. However, if
the window sizes are large and thus contribute to the RTT, the simple models
overestimate the throughput. At this point, no models taking the sub-linearity
into account and giving closed form expressions exist for the TCP throughput.

The multiplicative decrease holds, if the congestion detection is done using the
fast retransmit and fast recovery mechanisms. However if congestion is detected
only after a timeout, TCP will go into slow start mode and the assumption of
congestion avoidance mode continuing does not hold. Fortunately, this is an
example where the TCP mechanism has been improved towards the ideal model
and the assumption of multiplicative decrease upon congestion indication holds.

Modelling of window limitation was already done in [PFTK98]. Furthermore, its
importance is diminishing as larger advertised window fields are added to the
TCP protocol.

In modelling the TCP mechanisms a further assumption of continuous congestion
window increases is often made. These fluid models are used as they simplify the
analysis. The fluid models, however, overestimate the throughput. In [Bar01] a
correction factor to the overestimation of throughput when using fluid models is
given. The model of [PFTK98] is an example of a discrete model while the model
by [Kel99] is an example of a continuous model.

On the network level, there are two main options. Either the network behavior
is modelled, where as a result an indirect characterization of the occurrences of
losses is obtained. An easier task is to model directly the loss occurrences as
seen by the connection. As discussed, the models given in [PFTK98] assume
a deterministic loss process. Poisson process is also used, e.g. in [Flo91]. In
[AAB00] it is shown that the throughput is an increasing function of the variance
of interloss times. Thus if a deterministic process is used instead of one with
some variance, the throughput is underestimated.

2.4 Fairness

Linked with the study of TCP models and the resulting steady state throughputs
is the study of how fair TCP is in dividing bandwidth between competing flows.
The notion of fairness was set to assess this question. The study of pricing
schemes is also strongly wrapped around the fairness concepts, mainly due to its
economical heritage.

15

CHAPTER 2. BEST-EFFORT TCP

Fairness is a measure of the equal fulfilment of requirements of the network users
in the same way as efficiency is a measure of the fulfilment of the technical
requirements. As fairness measures the satisfaction of customer needs, it can
be assessed using utility functions and social optima calculations. This has been
the formulation in the work performed by Kelly et al. [Kel97] and [KMT98].

If a price is introduced that depends on the flow pattern x, we can formulate
the measure of fairness as an optimization problem. Given a utility function
Ur(xr), the optimization problem of maximizing overall utility results in charging
and allocating network resources according to some fairness criteria. Besides
the work by Kelly et al. different fairness concepts and TCP fairness have been
studied by Massoulié et al. [MR99] and [BM01], by Mo and Walrand [MW00], by
Ben Fredj et al. [FBAPR01] and by Vojnovic et al. [VBB00].

Ideally, assuming all customers are well behaving, the use of TCP should result
in each flow receiving the same amount of service, e.g. capacity and packet loss.
A natural extension is to design a mechanism that offers the same amount of
service inside a class, while between classes the service offered differs by a given
proportion.

2.4.1 Theoretical fairness concepts

Assume that a flow is related to the route r ∈ R and has utility function Ur(xr),
where xr is the rate allocated to each flow on route r, and forms a vector
x = {xr, r ∈ R}. Denote by nr the number of such flows. The objective is
to maximize the overall utility of the system (network and flows), i.e. to find the
social optimum.

max
∑

r∈R nrUr(xr)
subject to Ax ≤ C
over x ≥ 0.

Here the matrix A = {ajr, j ∈ J , r ∈ R} has ajr equal to the number of flows
nr on route r ∈ R that use link j ∈ J , and C is the vector of the link capacities
C = {Cj , j ∈ J }.

Let us consider the utility function Ur(xr) of the general form introduced in
[MW00] and [BM01],

Ur(xr) =
x1−α
r

1− α.

If a price or weight wr is introduced to each route, the optimization problem can
be written in a more general way, with the utility function

Ur(xr) = wr
x1−α
r

1− α.

Table 2.1 summarizes the resulting optimization problem for four fairness types
assuming weights wr = 1. Note that the constraints stay unchanged. The four

16

CHAPTER 2. BEST-EFFORT TCP

types, given at the limit when α→ 0, 1, 2, ∞, are: maximizing overall through-
put of the network, dividing the bandwidth in a proportionally fair manner,
minimizing the potential delay and maximizing the minimum allocation.

Table 2.1: Relation between α and four fairness concepts [BM01]

α→ concept maxx
∑
R nrUr(xr)

0 maximize overall throughput max
x

∑
R
nrxr

1 proportional fairness max
x

∑
R
nr log xr

2 minimize potential delay min
x

∑
R

nr
xr

∞ max min fairness max
x

min
R

nrxr

Note that the limit, as α→ 1, is

lim
α→1

max
x

∑
R
nr
x1−α
r

1− α

= max
x

∑
R
nr lim

α→1

x1−α
r

1− α

= max
x

∑
R
nr log xr.

Given that

lim
β→0

xβ

β
= log x+ lim

β→0

1

β
.

And the limit, as α→∞, is

lim
α→∞

max
∑
R
nr
x1−α
r

1− α

= min
x

lim
α→∞

∑
R

nr
(α− 1)xα−1

r

= max
x

min
R

nrxr,

as the minimum sum is achieved when the smallest xr is as large as possible.

In the case of only one bottleneck link, each of the fairness objectives results
in dividing the bandwidth equally among the flows on that link. For a more
general network, the topology of the network affects the way bandwidth is divided.
For example, in [BM01], the topologies considered are a linear network, a cyclic
network and a grid network.

As shown by examples in [MR99] and [BM01], in a simple linear network depicted
in figure 2.1 with routes either passing through only one link or routes passing

17

CHAPTER 2. BEST-EFFORT TCP

Link 1 Link 2 Link 3

Figure 2.1: The example linear network

through all the links, maximizing throughput results in giving no bandwidth
to the long route and all the bandwidth on each link to the routes using only
that link. For the other fairness definitions table 2.2 summarizes the resulting
bandwidth allocations. Here r = 0 represents a long route passing through all
links and r = j a route passing through only link j. The capacity constraint is

n0x0 + njxj = 1, j ∈ J .

α→ concept n0x0 njxj
0 maximize overall throughput 0 1

1 proportional fairness
n0

n0 +
∑
J nj

∑
J nj

n0 +
∑
J nj

2 minimize potential delay
n0

n0 +
√∑

J n
2
j

√∑
J n

2
j

n0 +
√∑

J n
2
j

∞ max min fairness
n0

n0 + maxj≥1 nj

maxj≥1 nj
n0 + maxj≥1 nj

Table 2.2: Bandwidth allocations nrxr in a linear network for the four different
fairness criteria, r = 0 represents a long route passing all links and r = j a route
passing through link j [MR99].

As α increases from 0 to ∞, the different allocations give relatively more band-
width to long routes.

2.4.2 Fairness of TCP

The fairness of TCP can be evaluated in two ways. Ideal TCP congestion control
can be modelled to be of form general additive increase general multiplicative
decrease and based on this assumption the type of fairness, e.g. max-min or
proportional can be deduced. On the other hand the fairness of TCP can be
evaluated based on how well actual TCP implementations are able to divide the
capacity in a non-ideal network.

Kelly et al. [KMT98] and Massoulié and Roberts [MR99] show that additive
increase multiplicative decrease (AIMD) is proportionally fair. Based on the

18

CHAPTER 2. BEST-EFFORT TCP

ideal model of TCP, which states that TCP is an AIMD mechanism, it can be
thus deduced that best-effort TCP using congestion control is proportionally fair.

Veciana et al. [dVLK01] employed these results and studied the stability of the
network with dynamic number of flows assuming that flows share bandwidth
according to a given fairness criteria.

Ben Fredj et al. [FBAPR01] have studied the statistics of the realized band-
width share for elastic document transfers, including short lived flows also. They
conclude that with similar RTTs and one bottleneck link TCP tends to share
bandwidth equally among all flows. Furthermore, they demonstrate that if the
bandwidth allocated to a flow r on a link j is given by the TCP equation, where
K is a constant, e.g.

√
3/2,

xr =
K

RTTr
√∑

j∈r p
,

then this is a unique solution to the optimization problem

max
∑

r∈Rwrnr
x1−α
r

1−α ,

subject to Ax ≤ C,
over x ≥ 0.

for α = 2 and wr = 1/RTT 2
r , demonstrating, contrary to Kelly et al. [KMT98] and

Massoulié and Roberts [MR99], that TCP divides bandwidth such that potential
delay is minimized according to weights proportional to the square of RTT.

As demonstrated above, due to the different level of modelling TCP, the fairness
of TCP is either max min fair (α→∞), proportionally fair (α→ 1) or something
in between e.g. minimizing potential delay. Vojnovic et al. [VBB00] give a TCP
fairness model assuming AIMD, heterogeneous RTTs and rare rate proportional
congestion feedback. They term the resulting fairness, which is between max min
fairness and proportional fairness, as F h

a -fairness.

Several factors affect the ideal TCP model based on AIMD and affect thus the
modelling of its fairness. The main factor is the bias of TCP against connections
with long round trip times, which results from the linear increase of one unit
per RTT. Other factors are: the implementation differences, especially in terms
of aggressiveness, between different versions of TCP, the difference in the TCP
algorithm for short lived flows compared to long lived flows, the topology and
routes of the network and the number of bottleneck links on the route and finally
the amount of non-TCP traffic in the network. TCP friendliness assesses these
issues by testing for the different biases.

2.5 TCP friendliness

TCP congestion control was designed as a response to the congestion collapse
observed in the Internet in the late 1980s. However, not all forms of traffic

19

CHAPTER 2. BEST-EFFORT TCP

want to use TCP as the transport mechanism. Namely, TCP together with its
congestion control mechanism is suited for traffic that prefers delays to packet
losses, i.e. one where a lost packet is always retransmitted. Real time traffic such
as voice and video can sustain losses but a change in the delay or jitter of the
transmission results in an apparent decrease in quality. Therefore these sources
rather use the other popular transport protocol of the Internet: UDP, where no
flow control nor congestion control is employed.

Because the UDP sources have no sending rate backoff mechanism, they may
capture all of the network capacity from the TCP flows, when the TCP flows
have reduced their sending rate as a response to congestion notification.

It would be desirable to have a way to control the sending rate of non-TCP
traffic so that the capacity is shared in a fair manner by all flows in the case
of congestion in the network. Furthermore, even flows using TCP do not share
bandwidth equally due to the biases discussed in the previous section. The tests
to control the sending rate of non-TCP flows can also be used to eliminate the bias
between TCP flows. These are the ideas behind the notion of TCP friendliness.

2.5.1 UDP traffic

User Datagram Protocol (UDP) is a transport protocol that adds demultiplexing
functionality allowing multiple application processes on each host to share the
network. Processes indirectly identify each other using an abstract locater, e.g.
the port. The UDP header includes the source and the destination ports. The
UDP thus provides a connectionless datagram service, as opposed to TCP, which
is connection oriented. UDP is also unreliable, as it does not use flow control, i.e.
acknowledgments to clock its sending rate.

2.5.2 Tests for fair sharing of bandwidth

A flow is not TCP friendly if its long term arrival rate exceeds that of any
conforming TCP flow in the same circumstances. A flow is unresponsive if it
fails to reduce its sending rate at a router in response to an increased packet
drop rate. A flow is a disproportionate-bandwidth flow if it uses considerably
more bandwidth than other flows in a time of congestion. These definitions are
given in [FF99]. We define a flow to be non-conforming if it is not TCP friendly,
unresponsive and if it is a disproportionate-bandwidth flow.

In [FF99] it is argued that end-to-end congestion control through router mech-
anisms are needed to identify and restrict the bandwidth of all flows in times
of congestion. Other mechanisms proposed are pricing mechanisms and per flow
scheduling mechanisms.

UDP flows are non-conforming flows as opposed to TCP flows, which are con-
forming. The effect of UDP flows is twofold. They can starve the bandwidth
from the TCP flows, resulting in unfair division of capacity. The UDP flows may

20

CHAPTER 2. BEST-EFFORT TCP

also, due to their unresponsive nature, bring to pass congestion collapse, where
the network is in a state of transmitting packets that will be discarded before
reaching the destination.

The approach taken in [FF99] is to build such incentives into the network that
flows find responding to congestion signals in a TCP friendly way as their most
appealing choice. Floyd and Fall found the incentives on the notion of coopera-
tion; cooperation in sharing bandwidth in times of congestion.

In order to be sure that all flows are conforming, the routers must identify the
flows that do not cooperate, i.e. those that are not TCP-friendly, unresponsive
or using disproportionate bandwidth, and regulate them.

2.5.2.1 Test for TCP friendliness

A flow sending B bytes is TCP friendly if its maximum sending rate is that of a
TCP flow. Any equation modelling TCP throughput could also be used, but let
us define TCP friendliness using equation (2.2),

T ≤ 1.5
√

2/(3b)B

RTT
√
p

.

The test can only be applied to a flow at the level of granularity of a single TCP
connection. Furthermore, equation (2.2) is suited for networks and routers with
large bandwidth delay products, but not for routers with attached links having
smaller propagation delays. Thus the TCP friendliness test by itself is not enough
to guarantee cooperative behavior.

2.5.2.2 Test for unresponsiveness

A more general test is to verify that a high-bandwidth flow does actually respond
to a congestion notification by decreasing its arrival rate. Equation (2.2) can
again be used. If the drop rate is increased by a factor of x a flow should decrease
its rate by a factor of

√
x or more. The same principle can be applied to an

aggregate of flows. The test for unresponsive flows would be applied to high
bandwidth flows.

Both the test for TCP friendliness and response to congestion have limitations.
The main limitation is the way bandwidth is shared. As already shown in section
2.4, TCP does not necessarily divide bandwidth in equal shares in more com-
plicated network scenarios. Furthermore, as the actual type of fairness of TCP
traffic is questionable, and there is a bias in the relationship of the throughput
to the RTT, the above tests do not remove the unwanted bias of the bandwidth
share as a function of RTT.

21

CHAPTER 2. BEST-EFFORT TCP

2.5.2.3 Test for disproportionate bandwidth

The authors of [FF99] wish to test for flows using disproportionate bandwidth
in times of high congestion. Due to difference in RTTs, use of window scaling
or difference between short and persistent TCP flows, a TCP flow may have a
disproportionate share of bandwidth. Flows can be forced to share bandwidth
in a max min fair manner by checking if a flow’s rate is more than 1/nth of the
aggregate rate. The authors have chosen a cut off rate of log 3n

n
, as it is close to one

for n = 2 and grows slowly as a multiple of 1/n. Because there is a relationship
between the arrival rate and the packet drop rate, the second step is to test the
rate relative to the level of congestion. The rate should be less than c√

p
, for some

constant c.

2.5.2.4 Comparison of the tests

Of these tests, the third one is clearly the most questionable, as it attempts to
change the resulting bandwidth share of TCP. This should rather be done at the
design level of the TCP congestion control mechanism, not by adding tests to be
performed at the routers.

The first and second tests aim at giving incentives for flows to adjust their sending
rate to the steady state of the TCP flows, without having to do it in the ”TCP
way”. In the sections to come it is especially the TCP friendliness of a non-TCP
flow, i.e. the steady state behavior of the flow, which will be considered.

Furthermore as discussed in section 2.3 and in [Bar01] the closed form TCP
throughput formulae have to be good enough in order to be usable as the basis
for the tests. If the closed form expressions used underestimate or overestimate
the throughput, the tests are not accurate enough and cannot be used in the
networks.

22

Chapter 3

Quality of Service: guarantees
and differentiation

As the section on TCP friendliness showed, problems arise when real-time appli-
cations are delivered in the best-effort Internet. As mentioned, real-time appli-
cations suffer from variable queueing delays and large losses due to congestion.
On the other hand, aggressive real-time applications may starve bandwidth from
TCP traffic. Furthermore, real-time applications would often desire to take ad-
vantage of the multicasting possibilities of the Internet.

To this end the IntServ service model was designed. Integrated Services aimed
at providing control over end-to-end packet delays and was designed primarily
for multicasting. Coupled with this aim, the problem of sharing bandwidth fairly
was also addressed by IntServ by introducing controlled link sharing between and
among real-time and best-effort traffic through per flow reservation.

The Differentiated Services (DiffServ) architecture [BBC+98] was designed to
provide service in a scalable way. Service is defined as a set of significant char-
acteristics of packet transmission in one direction across a set of one or more
paths within a network. The characteristics may be in terms of relative priority
in accessing network resources or in terms of quantitative or statistical variables
such as throughput, delay, jitter or loss.

Scalability of DiffServ, compared to the less scalable requirement of per flow state
in IntServ routers, is achieved by performing complex classification and condi-
tioning functions at network boundary nodes to aggregate traffic into forwarding
classes. Simple forwarding and discarding functions are then performed on the
aggregates inside the network.

It is appropriate to distinguish two main DiffServ aims: relative services and
assured services. The former does not make any quantitative nor statistical guar-
antees on the absolute level of service, but only guarantees that the higher priority
class receives better service than the lower priority class. Furthermore, relative
services may guarantee that the service is better by a given factor, e.g. propor-
tional to the weight. Assured services, on the other hand, aim at guaranteeing

23

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

either statistically or quantitatively, some minimum level of service, while the
leftover capacity is then divided equally or in some other way among the flows.

Per flow state and IntServ have better tools in realizing assured services especially
if the core network is the bottleneck. With the use of aggregate scheduling instead
of per flow scheduling, relative differentiation of aggregates is achieved, but it is
not clear how differentiation is achieved inside the aggregates. The same applies
to assured services, since if the contracted rate of a flow or aggregate cannot be
achieved, it is not clear how the capacity is then divided between the flows or
the aggregates. As the classification and conditioning of the aggregates is done
on the boundary of the DiffServ node, it is the design of those mechanisms that
strongly affects how the aggregates are formed and thus how the bandwidth inside
an aggregate is divided among the flows.

3.1 IntServ

RFC 1633 [BCS94] gives an overview of Integrated Services (IntServ) as seen in
1994. Since then the work has been refined in [Wro97b], [Wro97a] and [SPG97].
The objective of IntServ, as given in [BCS94], is to offer guaranteed and predictive
services in addition to best-effort service and thus implicitly change the Internet
best-effort service model. The new model uses controlled link sharing, imple-
mented by resource reservations and admission control. The QoS requirements of
the admitted flows are met through an explicit resource reservation setup mech-
anism, per flow state in the routers and advanced packet scheduling mechanisms.
The measures used are latency and fidelity, a measure of loss, reordering or delay
of packets.

3.1.1 Integrated services model

The service model of IntServ was created to integrate real-time services with
existing elastic services of the Internet. The service model is thus concerned
exclusively with the time of delivery of packets, i.e. the per packet delay. Quanti-
tative service commitments are given as bounds on the maximum and minimum
delays.

Intolerant applications need perfectly reliable upper bounds on delay and are
termed guaranteed services. They are designed for playback type of applications
and mission control systems with hard real-time requirements. These applications
need guaranteed bandwidth and strict and a priori information on the end-to-end
maximum delay.

Tolerant applications can sustain some late packets, but require fairly reliable
delay bounds and are named predictive or controlled load services. Predictive
services can also be termed better than best-effort services, as the objective is
to emulate a lightly loaded best-effort network. Thus statistical multiplexing
is allowed and admission control is local and implementation specific. As an

24

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

extension, predictive services can be divided into many levels of elastic services.

3.1.2 Elements of the architecture

To calculate the delay bounds and make the admission control decision, traf-
fic needs to be characterized and the service requirements need to be specified.
Reservations are then setup based on the QoS requirements and the given traf-
fic profiles and using the routing decision and the required resources given by
the admission control. The per flow packet scheduling functions ensure that the
requirements of the admitted traffic are met to the required precision. Packet
scheduling and admission control are also used for resource sharing between en-
tities of many flows.

3.1.2.1 Traffic characterization

The flow specification is the service contract of IntServ. It is a list of traffic
parameters used to characterize the traffic and a list of parameters used to specify
the service requirements. At the edge of the network, traffic can be policed to
check that the flow conforms to the traffic parameters.

The actual parameters included in the flow specification depend on the service
type required by the flow i.e. it depends on the admission control and packet
scheduling that is used to forward the flow.

The flow specification of guaranteed services is divided into the traffic descriptor
TSpec and service specification RSpec, while controlled load services only specify
the TSpec parameters.

Traffic is characterized by token bucket parameters, thus the TSpec parameters
include:

• Token bucket rate or average rate

• Peak rate

• Bucket depth or maximum burst size

• Minimum policed unit

• Maximum packet size

The RSpec parameters are

• Service rate, i.e. bandwidth requirement

• Slack term, the extra amount of sustainable delay

25

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

The flow specification is carried by the reservation setup protocol and is passed
to the admission control and if accepted, is used to parameterize the packet
scheduling mechanisms.

3.1.2.2 Traffic control for delay bounds

Once the traffic is characterized, traffic control is used to offer guarantees and
predictable bounds on performance measures. Traffic control is implemented
using admission control, a flow classifier or identifier and a packet scheduler.

Admission control makes the decision of whether a new flow can be granted the
requested QoS without impacting earlier guarantees. Admission control may also
be used for accounting, administration and authentication of resource reserva-
tions.

In order to make an admission control decision, the routers must measure the
resource usage and based on the history data, make computations using the worst
case bounds on the services, i.e. assess the impact of the new reservation. Another
option is for the admission control to calculate the required resources based on the
TSpec parameter characterization. However, how to deal with admission control
demands is a local matter and is left as an open implementation issue for routers.

The classifier maps flows to appropriate classes. Inside a class packets of a flow
receive the same treatment at the packet scheduler. A class may also be local to
a particular router. Packets are often classified as flows based on the five-tuple
or parts of it: source and destination IP address, protocol ID, and source and
destination port. Another possibility would be a virtual circuit identifier, but it
would require setup of virtual circuits as in ATM, or introducing a flow ID field
to the header. The design of the process of classifying flows always amounts to a
speed versus space tradeoff.

The router can select the route for the packet, forward or drop the packet, reorder
or hold the packet. Dropping of packets and forwarding must be coordinated.
Instead of the traditional tail-drop mechanism of dropping a packet when the
router buffer is full, it would be more efficient to pick a packet to drop. As already
mentioned, for loss tolerating real-time applications dropping may reduce delay,
while for elastic traffic using for example TCP congestion control, a packet drop
signals the source to reduce the sending rate and will require a retransmission of
the packet.

One way to control dropping is to indicate through a mark which packets of a flow
can be dropped in order to achieve the negotiated service level. The packets that
can be dropped can be marked as pre-emptiable or expendable. Pre-emptiable
packets are packets that are included in the admission control decision, but can be
dropped in order to meet the service commitments. Expendable packets, on the
other hand, are not included in the admission control decision, and are delivered
only if the network can accommodate them and meet the service commitments.

26

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

3.1.2.3 Resource reservations

For traffic control to function and for delay bounds to be met, resource reserva-
tions must be done before traffic can be transported by the network. A reservation
setup protocol RSVP (resource reservation protocol) was created for IntServ to
create and maintain the flow specific state, i.e. reservation along the path of the
flow.

3.1.2.4 Resource sharing

Fulfilment of QoS requirements is achieved per flow and through traffic control
and resource reservations. Link sharing, on the other hand, is applied to aggregate
entities.

Resource sharing has the aggregate bandwidth quantity as the primary interest.
Sharing is done to meet a set of specified shares organized in a hierarchical tree
order. The resource sharing is then implemented using packet schedulers given
that the admission control keeps the cumulative guaranteed and predictive traffic
from exceeding the assigned link share.

On the highest level there is multi-entity link-sharing. A link may be purchased
and used jointly by a group of organizations. In case of overload, the entities wish
to share the link according to predetermined shares. In the case of underload,
any of the entities can utilize the idle bandwidth.

The next level is sharing between protocol families named multi-protocol link-
sharing. During congestion, different protocol families react to congestion signals
in a different way. By sharing the bandwidth it is guaranteed that flows from a
protocol family that do not backoff during congestion do not hog the capacity from
the protocols that backoff during congestion. When the link has idle bandwidth
no predetermined sharing is needed.

Inside a protocol family multi-service sharing may be used. As an example inside
IP there are shares between service classes, so that real-time traffic does not
preempt elastic traffic.

Resource sharing is performed using packet schedulers. They determine how the
network resources are allocated to individual flows by reordering appropriately
the output queue. The FIFO scheduler used in the traditional Internet does not
give sufficient guarantees to meet the delay bounds, therefore more sophisticated
scheduling mechanisms are needed in IntServ. Fair queueing schedulers are able
to provide both end-to-end bounds and link sharing. An example of a fair queuing
scheduling mechanism is weighted fair queueing (WFQ) [PG93]. It is a generalized
processor sharing scheduler with weights for different classes.

The priority queue orders the output stream according to priority while round
robin or WFQ order according to the share of the link capacity given to the
flow or class. An even more sophisticated reordering is according to the delivery
deadline or the required output rate.

27

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

In hierarchical packet scheduling, for example, to provide controlled link sharing
by limiting overload shares on a link, both priority queuing and WFQ or just
WFQ at different levels can be used.

3.2 DiffServ

Differentiated Services is designed to achieve assured or relative service between
flows without per flow scheduling. In general, this is done through assigning only
a contracted or assured rate to the flows or aggregates. With this contracted rate
a charge may be associated.

The main elements of DiffServ are traffic classification and conditioning at the
boundary nodes and traffic forwarding through scheduling and discarding at the
DiffServ interior nodes. In addition, congestion control mechanisms designed for
the Internet, such as TCP, and active queue management algorithms, such as
RED, may be used to achieve Quality of Service in the Internet.

The traffic classification and conditioning, i.e. the division of flows into per hop be-
haviors (PHB) and drop precedences inside PHBs, is done at the boundary nodes.
After the packets of the flows have been classified, the traffic is conditioned, more
specifically, traffic is metered and packets marked into drop precedence levels.

Inside a DiffServ node all traffic handling functions are performed on aggregates
based on the given PHB. Inside each PHB, a number of precedence levels exist
based on the marking done at the boundary node. In the scheduling unit two main
elements affect the service experienced by the PHBs, the scheduling policy of the
buffers and the realization and relationship between the discarding thresholds of
the buffers.

The DiffServ proposals considered here are Expedited Forwarding (EF), Assured
Forwarding (AF) and the Simple Integrated Media Access (SIMA) proposal. Fol-
lowing our distinction of assured services and relative services, we can categorize
EF and AF to be of type assured services and SIMA offering relative services.
AF can, however, due to its broad definition, be implemented to be of relative
services type also. Relative services are easier to realize, in the sense that in over-
load situations the capacity has to be divided in shares without having to give
the contracted rates to the flows. With assured services and conditioning only at
the edge of the network, it may happen that at a core link the total capacity is
less than the sum of assured rates, and then without relative differentiation, no
differentiation may result.

EF and AF have the status of an IETF RFC and give a conceptual service model
of the PHB groups that could be implemented. SIMA has not gained RFC status,
but gives a more thorough implementation and end-to-end view on how to achieve
service differentiation. The proposals are therefore treated in different length in
the following sections.

28

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

3.2.1 EF

Expedited Forwarding (EF), as explained in RFC 2598 [JNP99], aims at providing
a point to point or virtual leased line like connection offering a low loss, low
latency, low jitter and assured bandwidth end-to-end service. Achieving such
service requires that queueing at the nodes is minimal. For the buffers to be empty
at the routers, the maximum arrival rate of an aggregate has to be conditioned
so that it is less than the minimum departure rate.

Implementing EF requires that the nodes forward packets by at least a contracted
rate. This can for example be implemented using priority queues, where EF traffic
preempts other traffic. Other traffic with higher priority than EF cannot preempt
the EF for more than a packet time at the contracted rate. On the other hand,
the EF traffic must be conditioned or policed so that the aggregate arrival rate
of packets is not more than the contracted rate and so that the EF traffic does
not starve the lower priority traffic. Scheduling could also be implemented using
WFQ with weights for EF in accordance with the contracted rate.

Amendments to RFC 2598 have been done in specifying the definition of EF.
However, as the main idea has not been changed, they are not discussed in further
detail here.

EF is of type assured services. It is an example of a very strict service, in the
sense that anything above the contracted rate is normally not admitted into the
network. Therefore traffic of EF type do not have the flexibility of sending more
traffic at lower priority in times of low load. However, this is not the main aim of
EF, as the use of EF is designed for a small set of flows requiring stringent delay
bounds.

3.2.2 AF

Assured Forwarding (AF) outlined in RFC 2597 [HBWW99] is designed to give
assured service to flows. It does not concern quantifiable delay or jitter require-
ments, but instead requires that a certain amount of forwarding resources are
allocated to AF classes.

AF is a per hop behavior (PHB) group with four forwarding classes and three drop
precedence levels. AF is designed to provide assured service to the traffic that is
in profile, i.e. does not exceed the subscribed rate. Traffic may be conditioned
to in profile or out of profile using a token bucket or leaky bucket mechanism.
AF also requires that packets belonging to the same class are not reordered, for
example, according to precedence level.

Different AF classes are used to offer different levels of assurance and each class
is allocated a certain amount of buffer space and bandwidth. Inside an AF class
packets are assigned a drop precedence, with the packets with the highest drop
precedence discarded before the packets with lower drop precedence.

29

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

Each AF class should be serviced so that at worst it achieves its contracted
rate. An AF class may receive more forwarding resources if excess resources are
available from other AF classes or PHBs. The marking into precedence levels can
be done using token buckets, e.g. a single rate three color marker [HG99a] or a
two rate three color marker [HG99b].

In order to minimize long term congestion, active queue management to drop
packets, e.g. Random Early Detection (RED), should be implemented at the
buffers. Short term congestion can be handled by queueing packets.

AF is an example of an assured service, where a flow sending above its contracted
rate may utilize the excess bandwidth of the network. However, as is the case
with all assured services, the relationship between the assured rate and the actual
received rate is not straightforward. As the flow is conditioned at the boundary,
the total amount of traffic at an interior link may overload the link even though
each flow is sending at its contracted rate. How the capacity should be divided
in such cases is therefore not a trivial problem.

3.2.3 SIMA

The Simple Integrated Media Access (SIMA) proposal [Kil97] does not aim at
assuring a certain contracted rate for each flow, but aims at assuring that the
bandwidth is divided relative to the contracted rate.

SIMA thus concentrates on mechanisms to determine how network capacity
should be divided during overload situations. The contracted rate, which in-
fluences both the charging and division of bandwidth, is named the nominal bit
rate (NBR). The priority of a flow is determined relative to the NBR, seven prior-
ity levels are proposed in SIMA. If a flow is sending at its contracted rate, it has
middle priority. If its sending rate is less than its NBR, it has higher priority, and
conversely. Ideally, this means that in cases of overload, only the highest priority
levels receive capacity in the network. Then each flow in the highest priority level
divides the capacity in proportion to the NBR, but the absolute sending rate is
only a fraction of the contracted rate.

The NBR is permanent, it has a charge associated with it, and is related to an
organization (e.g. network interface), a user (e.g. IP address), or a flow (e.g. IP
address and port number). The simplest approach is to assign an NBR to each
interface, while the most useful approach in terms of performance is to have an
NBR associated with each flow. In the following, we assume that the NBR entity
is the flow.

The user can also make a distinction in service according to application or delay
requirement by choosing to label the traffic as real-time (rt) or non-real-time
(nrt) traffic. The real-time class is designated for flows requiring low delay and
jitter. This is achieved by having small real-time buffers serviced prior to non-
real-time buffers and favoring smooth traffic with small, i.e. less than 0.1 ms,
traffic variations.

30

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

3.2.3.1 Implementation example of SIMA

Figure 3.1 depicts the functional entities of SIMA.

+'LVFDUG 'HOD\�
FODVV$FFHSW

'LVFDUG

5HDO�WLPH

1RQ�UHDO�
�WLPH

UW

UW

.

P

&RQ�
GLWLRQHU

D3/MO3/ <),(

D3/MO3/ ≥),(),(MO3/),(MO0%5

QUW

QUW

.

P

Figure 3.1: The SIMA specification

Once NBR is purchased and the delay class is chosen, the flow is sent to the
network. The conditioner at the access node assigns priorities per flow, thus a
corresponding priority level is associated with the packets sent. Note that the
priority level of SIMA and the drop precedence of AF are conceptually the same
thing, except that the highest priority corresponds to the lowest drop precedence.

The measurement of the sending rate, resulting in the momentary bit rate, is
done by averaging the traffic sent by the flow. A proposed measuring principle
is the exponential weighted moving average (EWMA), with different parameters
for the rt and nrt traffic. Non-real time applications that can have variations in
time scales of over 10 ms would not benefit from marking flows as real-time, as
the bit rate measurements for real-time class traffic is more sensitive to traffic
variations, giving thus worse priorities during peak rates.

Assuming fixed packet sizes, scaled to one, the momentary bit rate (MBR) of
flow l at time instant of the j:th packet is as given by [Kil97]

MBR(l, j) = C
ln (1− α)

ln (1− (α/ρ(l, j)))
(3.1)

ρ(l, j) = α+ ρ(l, j − 1)(1− α)N(l,j).

If N(l, j) > 10/α, then

MBR(l, j) =
C

N(l, j)
.

Here α defines the time scale of the measurement, and depends on the buffer
capacity Kn of the delay class, e.g. α = 5/Kn. Other variables are N(l, j), the
distance between the j:th and the j − 1:th packets in time slots, ρ(l, j) is the
measured load generated by the l:th flow at the instant of the j:th packet and C
is the link capacity.

With the momentary bit rate determined, the conditioner at the access node
assigns the priority level at the arrival of the j:th packet of l:th flow to

PL(l, j) = max

[
min

[⌊
4.5−

ln MBR(l,j)
NBR(l)

ln 2

⌋
, 6

]
, 0

]
, (3.2)

31

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

The above equation is derived so that when the ratio of MBR to NBR is one, the
flow is given medium priority. As the MBR of a flow doubles (halves) the priority
decreases (increases) by one unit.

Once the momentary bit rate of the flow is measured and the flow is assigned a
priority level at the access node, the packets are marked with the priority level. In
the core nodes, each packet is handled based on the DiffServ code point (DSCP)
information storing the priority level and rt/nrt classification information. The
delay class of the packet determines which of the two queues the packet is directed
to in the scheduling unit.

Before this, however, there is a packet discarding system, which determines if
the packet is admitted to the scheduling unit. The discarding is solely based
on the priority level of the packet, the delay class does not affect the decision.
The discarding system maintains an accepted level of priority, PLa, calculated
from the current buffer contents of both the scheduling unit’s queues. Some of
the possible expressions for calculating PLa based on the buffer contents mrt and
mnrt of the real time and non-real-time queues, respectively, given in the proposal
are,

PLa = a+ b ·
(mrt

Krt

+
mnrt

Knrt

)
,

PLa = a+ b ·max
(mrt

Krt

,
mnrt

Knrt

)
,

PLa = a+ b ·
√(mrt

Krt

)2

+
(mnrt

Knrt

)2

, (3.3)

where Knrt and Krt are the sizes of the non real-time and real-time buffers,
respectively, and a and b are constants to be determined by the implementors.

If the packet priority level is equal to or higher than PLa, the packet is accepted
to the scheduling unit and placed in the appropriate queue. Otherwise, the packet
is discarded. In the case of a TCP flow, the packet discarding signals the TCP
source that it should drop (halve) its sending rate, which in terms of the priority
level would mean an increase by one, thus decreasing the probability of packets
being discarded.

Note that the accepted level of priority, PLa, is not a fixed value, but varies
in time according to variations in the buffer contents and thus in response to
congestion build up. This variation also affects the TCP mechanism through the
loss probability feedback. Stability questions of the threshold mechanism have
been considered in [Sch99].

3.3 DiffServ research

The AF and EF proposals having an IETF RFC status have been studied both
analytically and through simulations. Studies on how to provide differentiated
services in other ways have also been under consideration, with such proposals

32

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

as congestion pricing [GK99] and proportional delay differentiation [DSR99] to
name but a few.

The DiffServ research reviewed below includes analytical and simulation studies
of AF and simulation and test implementations of SIMA. In reviewing the pre-
vious work, we emphasize the difference between providing assured and relative
services. In the analytical work, attention is paid to the loss process character-
ization, especially in the studies where TCP modelling is enhanced to include
differentiated services. The last section gives a short review on the problems in
providing the services and motivation for our modelling setup of SIMA and AF.

3.3.1 Analytical studies on AF

The papers by Sahu et al. [SNT+00] and Yeom and Reddy [YR01] are analytical
studies on the relationship between the contracted rate and the transmission rate
of TCP flows. The works include a model for TCP and a model for the priority
marker, under the assumption of deterministic loss rates for different priorities,
without an explicit buffer model for how the loss probabilities depend on the TCP
rates.

Other analytical studies on differentiation include the work by May et al.
[MBDM99] for assured and premium service. The model for assured service
includes a buffer model with different discarding levels for different priorities, but
does not include a TCP model nor a marking model for the traffic. The traffic
is assumed to be from a Poisson process, with given probabilities for streams to
be marked in profile or out of profile. The work thus concentrates on comparing
different dropping schemes such as hard thresholds, pushout mechanism or RIO.

May et al. also considered a model for premium service. They studied the effect
of having two buffers, where one is served with strict priority over the other. This
can be though of as a model for Expedited Forwarding (EF) PHB class. Packets
arriving with Poisson intensity are marked to priority levels, as in the simple case
of one buffer, but are then directed to a queue depending on the marking. In-
packets are serviced at a finite size M/M/1/K queue and out-packets are directed
to an M/M/1-queue. The out of profile packets receive service only when the
queue for in profile packets is empty.

Another paper by Sahu et al. [STK99] studies a model similar to the one by May
et al., with some considerations on modelling TCP flows. The papers [STK99],
[SNT+00] and [YR01] are discussed in more detail below.

3.3.1.1 Sahu et al. (2000)

The work by Sahu et al. [SNT+00] models how the token bucket marking of
flows based on their assured rate affects the received rate. As this is a DiffServ
study, the marking of the flows is performed at the edge of the network while
aggregates are forwarded inside the DiffServ node. The paper makes the following

33

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

assumptions: two priorities, given loss probabilities for the two priority aggregates
assuming that multiRED is used, and one single type of TCP flow at a time.
The sending rate is thus derived as a function of the loss probabilities, with
no explicit model of how the loss probabilities are affected by the sending rate.
Furthermore, the derivation for the TCP sending rate is done assuming over and
under subscription cases, but the equations are only derived assuming a given
assured rate. Thus the differentiation is evaluated based on the relationship
between the assured rate and the received rate. The system model does not
provide insight into how the ratio of received rates depends on the share of assured
rates of different types of TCP flows. The model and the results are therefore
applicable only in determining how assured differentiated services are achieved.

The main result of the paper is that assured rate may not be achieved. If the
assured rates are low, the link may be in under subscription state and the received
rate is larger than the assured rate. Similarly, if the assured rates are too high, the
link may be in over subscription state and less than the assured rate is received.

More specifically, the TCP process under consideration is of type Reno and is
modelled as a renewal process, where the window is either reduced to half upon
a triple duplicate ACK or to one upon a timeout. The sending rate of this TCP
flow is then determined for two cases: under subscription and over subscription.
In the under subscription case, only the lower priority traffic is discarded. In the
over subscribed case, the lower priority traffic is discarded with probability one,
and the higher priority traffic with a positive probability.

The result for the over subscribed case illustrates the problem of dividing capacity
according to assured rate. The received rate r in terms of assured rate A, bucket
size B, round trip time T and loss probability p1 is

r = min (A,
3(A+

√
2B/T)

4
,

1

T

√
3

2p1
).

The result shows that under an assured services discipline a TCP flow never re-
ceives more than its assured rate. Furthermore, when the received rate is below
the assured rate, the received rate can be that of a TCP flow under no differen-
tiation mechanism.

In the under subscription case, the result is not so easy to interpret, but if the
assured rate is small enough, the extra capacity of the link is divided equally
according to the TCP equations. Thus the TCP flow receives its assured rate
plus an equal share of the link capacity.

The reason for this kind of division is in the token bucket marking scheme and
in using two priorities. If the bottleneck link is congested enough not to be able
to provide the assured rates of the flows, the capacity is divided as if no marking
was used. More priorities give the possibility of having many assured rates, thus
introducing more leverage into the differentiation.

34

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

3.3.1.2 Yeom and Reddy

The paper by Yeom and Reddy [YR01] gives a better model for assured services.
They model the interaction of many TCP flows and have two or three priority
levels in their model, but do not study the effect of the token bucket size on the
bandwidth share.

The authors make an interesting claim saying that it is the congestion avoidance
technique in TCP that makes it difficult for flows to achieve their performance
goal. In view of the study by Sahu et al. the claim refers to the case when the
congestion avoidance in TCP reduces the sending rate below the assured rate,
as then no differentiation is achieved. They also propose, and the models are
based on, a two window TCP, where the congestion window equals the sum of
the reserved window and the excess window.

The system model is again one with token bucket marking and given loss rates
for the different priorities assuming that RED is used. The division of the model
into under and over subscription cases was first proposed by these authors.

The results are quite the same as given by Sahu et al., with the exception that the
received rate is not given in terms of token bucket size, only in terms of assured
rate. In cases of over subscription, the assured rate may not be reached and the
capacity is divided equally, with the received rate being the rate for a TCP flow
when no differentiation is present. Even in the under subscription case, those
flows with small assured rates may have a received rate almost equal to a flow
with a higher assured rate.

Under subscription case is defined as the case when only out of profile packets
are dropped from the network. However, in the case of many TCP flows with
different assured rates, the network would be over subscribed if all flows had the
highest assured rate. Then those flows with the highest assured rate are only able

to receive their assured rate up to the threshold A = 3
T

√
2

pout
, corresponding to

√
3 times the best-effort share, when no reservations are used. Below this assured

rate, the TCP flows receive their assured rate and some excess rate.

Note that, as in both the models by Sahu et al. and Yeom and Reddy, the loss
probabilities were assumed to be given, and it is not clear what mix of assured
rates results in an under subscription case, e.g. if all flows have an assured rate

of A = 3
T

√
2

pout
, they will not receive this rate, as the maximum rate is given by

the best-effort rate of r = 1
T

√
3
2p

.

3.3.1.3 Sahu et al. (1999)

In an earlier paper by Sahu et al. [STK99], the authors study both a model
related to that of May et al. [MBDM99] and a model for TCP under different
dropping probabilities for in and out of profile traffic.

35

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

In the first part of the paper threshold dropping in one buffer is compared to
priority queueing between two buffers. Thus the models also assume that traffic
is divided in predefined shares to two priority classes and these priority classes
are either serviced by one buffer with two thresholds or by two buffers with tail
dropping. The results of the paper show that priority scheduling is needed to
support delay sensitive applications.

However, the paper also gives a TCP model similar to [SNT+00] under the as-
sumption that two levels of dropping probabilities exist in the network. The
results of the paper are similar to [SNT+00].

Though the two models are presented in the same paper, the paper still lacks
combining both a TCP model and a buffer model. Thus it does not take into
account how the sending rate of TCP flows affects the dropping probabilities and
vice versa.

3.3.2 Simulation studies on AF

The analytical studies demonstrated the relationship between assured rate and
received rate of TCP flows. Simulation studies have studied the effect of having
both TCP and UDP flows in the network.

3.3.2.1 Goyal et al.

The simulation study by Goyal et al. [GDJL] study different factors related to
differentiation, namely related to AF. These include: number of priority levels,
percentage of highest priority traffic, buffer management and traffic types. The
simulations assume many TCP flows, but a fixed number of flows. The system
model is similar to the ones of assured services presented in the analytical studies.
Based on assured rates, two cascaded token bucket markers mark the packets to
three priorities: green, yellow or red.

As a result they show the importance of three priority levels in distinguishing
between congestion sensitive and insensitive flows. The marking into priorities
is done so that in the case of over subscription of the network the priorities are
redundant, and thus the case of over subscription is not studied. This is always
the case when assured services are used, as highest priority is given to a flow
conforming to assured rate. Differentiation would occur in the oversubscribed
case if middle priority would be given to a flow conforming to its assured rate.
Then a flow would reach higher priorities by dropping the rate below the assured
rate.

An interesting conclusion of the paper is to mark excess insensitive flows, e.g.
UDP traffic to lowest priority, while excess congestion sensitive flows, e.g. TCP
traffic receives middle priority. Thus UDP traffic is given less priority levels than
TCP traffic.

36

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

Elloumi et al. [ECP] give similar results, showing that TCP flows can be protected
from UDP flows by marking out of profile UDP flows to lowest priority, but out
of profile TCP flows to middle priority.

3.3.2.2 Pieda et al.

Pieda et al. [PSN99] study the claim made by Goyal et al. and Elloumi et al. that
TCP flows can be protected from UDP flows by marking out of profile UDP flows
to lowest priority, but out of profile TCP flows to middle priority. They divide
the study of priority levels into six scenarios. In each scenario three priority
levels are used, but packets of a flow are only marked in or out of profile. They
also compare the effect of using RED with overlapping discarding thresholds and
different dropping probabilities compared to using RED with non-overlapping
thresholds and different dropping probabilities.

As a result they show that when TCP and UDP are marked to the same AF
class, three priorities are not enough to achieve the three targets: that in an over
provisioned network both UDP and TCP target rates are achieved, that UDP
and TCP out of profile packets should have a reasonable share of excess band-
width, and that in an under provisioned network TCP and UDP flows experience
degradation in proportion to the assured rate.

The scenario where TCP in profile packets have highest priority, UDP in profile
packets have middle priority, and all out of profile packets have lowest priority is
able to guarantee assured rates, and the relative deviation from assured rate is the
smallest. However none of the scenarios is able to meet all three differentiation
targets.

3.3.3 Studies on SIMA

SIMA with TCP flows has been studied with the help of simulations in [KR98] and
using a test network in [LSLH00] and [HKL+00]. All studies show that SIMA is
able to achieve differentiation and that different flows with ascending contracted
rates (NBRs) receive different and ascending quality. The authors of [LSLH00]
and [HKL+00] also demonstrate that the discarding and measuring mechanisms
of SIMA are easy to implement.

3.3.4 Further research on SIMA and AF

The simulation and analytical studies on AF showed that when assured services
are used, it is difficult, even impossible, to guarantee division of excess or division
of limited capacity in ratio of assured rate or weight. Furthermore, Pieda et al.
concluded that the best way of protecting UDP and TCP traffic from each other
is separating them into different AF classes.

37

CHAPTER 3. QUALITY OF SERVICE: GUARANTEES AND DIFFERENTIATION

In the SIMA proposal, two delay classes are proposed and the assured or nominal
bit rate is specified so that relative services could be achieved. Given the results
of the earlier SIMA research it is thus valid to develop an analytical model of
SIMA to compare the results on AF studies in achieving assured services to the
SIMA proposal aiming at guaranteeing relative services.

Furthermore, the analytical models for AF lacked combining a TCP model and
a packet buffer model to explicitly model the loss process and its effect on TCP
and differentiation. Thus a more comprehensive model of the interaction between
differentiation mechanisms and TCP is needed.

The analytical and simulation studies presented in the following chapters will
quantify how the received quality depends on the contracted rate and compare
the SIMA differentiation to the one achieved by AF.

38

Chapter 4

Underlying mechanisms in
differentiating traffic

The purpose of the subsequent chapters is to identify how delay and priority
aggregates can be used to achieve relative differentiation of flows. To this end
we formulate a generic DiffServ architecture based on the proposals considered in
the previous chapter, i.e. EF, AF, and SIMA. From these proposals, we identify
the main QoS mechanisms used to achieve differentiation.

All the mechanisms are based on assigning a contracted or assured rate to the
flows. With this contracted rate a charge may be associated. Based on the assured
rate of the flow it is marked to a priority level. If the service model is of type
assured services, then as long as the flow sends at a rate less than the assured
rate, the flow is marked in profile and thus only two or three priority levels are
needed. If the service model is of type relative services, then the priority can be
determined based on the ratio of the sending rate to the assured rate. As will be
shown later, it is reasonable to have many priorities. The more priority levels,
the more flexible the marking is in terms of covering a wider range of sending
rates. The main difference between these service concepts is the division of excess
capacity and the division of capacity in overload situations.

We divide the DiffServ mechanisms into two categories: classification and condi-
tioning of flows at the boundary node and forwarding of flow aggregates through
packet level mechanisms inside the DiffServ node.

Our aim is to model both the TCP sources and the network buffers to study how
the sending rate of TCP flows affect the dropping probabilities of the network and
vice versa. Our models also include the effect of UDP flows in the network. We
then evaluate the differentiation mechanisms based on the relationship between
the contracted rate, which will be called the weight, of the flow and the share of
bandwidth achieved by the flow belonging to a specific aggregate.

Figure 4.1 summarizes the components, each discussed separately below.

39

CHAPTER 4. UNDERLYING MECHANISMS IN DIFFERENTIATING TRAFFIC

aggregates Accept
Discard Delay

class

Discard

Real-time

Non-

real-

time

MarkerMeter

Conditioner

Scheduling unit

Boundary node

Interior node

flows

w
2

w
2

w
1

w
1

Figure 4.1: Components of a DiffServ network

4.1 Network model

Consider a DiffServ network with a single bottleneck link, which is loaded by
a fixed number of flows. Assume two delay classes, d = 1, 2, and I priority
levels, i = 1, . . . , I. Level I refers to the highest priority, i.e. flows at that level
encounter the smallest packet loss probability, and level 1 to the lowest priority.
Note that this is just opposite to, e.g., the definition of precedence level given in
[HBWW99]. Therefore, we rather use the term priority level here. Each flow is
given a weight φ that reflects the value of the flow or the contracted rate of the
flow.

Assume that the flows are grouped according to the weight φ. There are L1

different groups of flows of delay class 1, each group l with a characteristic packet
sending rate ν(l) and weight φ(l). Let L1 denote the set of such flow groups.
Furthermore, assume that there are L2 different groups of flows of delay class 2,
each group l with a characteristic packet sending rate ν(l) and weight φ(l). Let
L2 denote the set of such flow groups. Finally, let n(l) denote the number of flows
in any group l.

Note that we have chosen to make the restrictive assumption of a single bottleneck
link and a fixed number of flows at this point, although the mechanisms and
their models presented in this chapter can be generalized to any network with an
arbitrary number of flows. However, as solving the models, which will be done in
the chapters to follow, require these assumptions, we have chosen to state them
already in this chapter. The extension of the models for general topologies and
number of flows is left for further research.

4.2 Flow level mechanisms at the boundary

nodes

At the conditioner, the packets of a flow are marked and aggregated to priority
levels. We adopt the proposal in [Kil97], where the priority level pr of the flow

40

CHAPTER 4. UNDERLYING MECHANISMS IN DIFFERENTIATING TRAFFIC

depends on ν and φ as follows:

pr = max

[
min

[⌊
I/2 + 0.5− log2

ν

φ

⌋
, I

]
, 1

]
. (4.1)

Thus, the priority level is decreased by one as the traffic rate doubles. Note also
that we adopt here the relative services approach by defining that a flow sending
at its contracted rate receives the middle priority and not the highest priority.

4.2.1 Metering and marking mechanisms

Consider two metering and marking alternatives to mark flows to priority
levels :

• Token bucket : Packets are marked in-profile if the bucket holds enough
tokens upon arrival and out-of-profile otherwise.

• Exponential weighted moving average: The measured bit rate of previous
time instants are exponentially dampened according to a time parameter α
and the time interval that has passed since the measurement was done.

The token bucket or leaky bucket principle is a popular metering principle, re-
ferred to, e.g. in the AF specification [HG99a] and [HG99b]. Arriving packets
use up the tokens in the token bucket, which has capacity c and is filled with
tokens at a constant rate of r. If the bucket holds enough tokens to match the
bit size of the arriving packet the packet is marked to the highest priority level,
otherwise the packet has low priority.

For three priority levels the metering and marking may be performed with two
token buckets for each group l, with rates r(l, 1) > r(l, 2) and capacities c, as
shown in figure 4.2. If the first bucket does not have enough tokens at the arrival
of a packet, the packet is out-of-profile and is marked to the lowest priority level;
in other cases the state of the second bucket determines the priority level. If
the second bucket does not have enough tokens at the arrival of the packet, the
packet is out-of-profile and is marked to middle priority, and if there are enough
tokens both in the first and second bucket, i.e. the packet is in-profile for both
buckets, the packet is marked to the highest priority level. Note that a packet
uses up the tokens in all the buckets where it is in-profile.

Exponential weighted moving average (EWMA) is another traditional metering
principle. Its use for metering flow arrival rates was proposed, for example, in the
SIMA specification. The measurement results of previous time instants are taken
into account, but exponentially dampened according to a time parameter α and
the time interval that has elapsed since the measurement was done. The mark-
ing is then performed based on predefined thresholds on the resulting measured
arrival rate. Parameter α describes the time scale of the bit rate measurement.

41

CHAPTER 4. UNDERLYING MECHANISMS IN DIFFERENTIATING TRAFFIC

r (l ,1), c

r (l ,2), c

packets out, i = 1

in
out, i = 2

in, i = 3

Figure 4.2: Token bucket scheme for marking packets to three priority levels

In [Kil97], a discrete version of EWMA is used. The measured bit rate of a flow
k at the moment of transmission of the j:th packet is

mbr(k, j) = C
ln (1− α)

ln (1− (α/ρ(k, j)))
, (4.2)

ρ(k, j) = α+ ρ(l, j − 1)(1− α)N(k,j). (4.3)

If N(k, j) > 10/α, then

mbr(k, j) =
C

N(k, j)
,

where Nk,j is the distance between the j:th and j − 1:th packet in time slots and
C is the capacity of the link.

Note that this result can be derived from the traditional discrete EWMA updated
at fixed intervals of length 1/δ time slots, with time scale α/δ and assuming that
C = 1,

ρ(k, j) = α/δ + ρ(k, j − 1)(1− α/δ).
When the update is done only each time a packet arrives the discrete update
becomes

ρ(k, j) = α/δ + ρ(k, j − 1)(1− α/δ)δN(k,j).

Thus the rate per intervals of length 1 is

ρδ(k, j) = α+ ρδ(k, j − 1)(1− α/δ)δN(k,j).

Which gives the continuous update as δ →∞

ρ(k, j) = α+ ρ(k, j − 1)e−αN(k,j).

The first order approximation of the above is then

ρ(k, j) = α+ ρ(k, j − 1)(1− α)N(k,j).

The momentary bit rate assuming stationarity, i.e. N(k, j) = N and ρ(k, j) =
ρ(k, j − 1) = ρ, can then be solved from the above equation.

ρ = α+ ρ(1− α)N

1/N =
ln (1− α)

ln (1− (α/ρ))

mbr(k, j) =
ln (1− α)

ln (1− (α/ρ(k, j)))
.

42

CHAPTER 4. UNDERLYING MECHANISMS IN DIFFERENTIATING TRAFFIC

The priorities are determined based on thresholds. We allow the thresholds to
depend on the group l, which the flow k belongs to, as follows,

t(l, 0) = ∞,
t(l, i) = φ(l)a(i), i = 1, ..., I − 1,

t(l, I) = 0.

The function a(i) could, for example, be defined as in SIMA (equation (4.1)),

a(i) = 2I/2−i−0.5.

Note that a(i− 1)/a(i) = 2 for all i. The j:th packet of flow k ∈ l has priority i,
if

t(l, i) ≤ mbr(k, j) < t(l, i− 1).

The metering principles and their time parameters α and c have an effect on the
resulting differentiation, as both the memory or time span of the measurement
as well as the dampening of bursts affect the way traffic is divided into priority
levels. Note, furthermore that α and c may depend on the forwarding class, i.e.
the delay class of the flow.

4.2.2 Metering and marking model

Assume that a metering principle exists. The resulting traffic intensity then
determines which priority level the packets are marked to. We can model the
resulting two marking alternatives as follows:

• Per packet marking: Only those packets of a flow that exceed the marking
threshold are marked to the lower priority level.

• Per flow marking: Once the measured load of a flow exceeds a marking
threshold, all packets of the flow are marked to the same priority level.

As an example, consider the case of three priority levels and thresholds 0 =
t(l, 3) < t(l, 2) < t(l, 1). Denote by ν the bit rate of flow k ∈ l. With per packet
marking, the ratio of packets

min[ν, t(l, i− 1)]−min[ν, t(l, i)]

ν
(4.4)

have priority i. With per flow marking, all packets of the flow have the same
priority, corresponding to

pr = arg min
i

[ν ≥ t(l, i)]. (4.5)

Independent of the marking scheme we say that a flow has priority i = pr as
given by equations (4.1) and (4.5).

43

CHAPTER 4. UNDERLYING MECHANISMS IN DIFFERENTIATING TRAFFIC

per flow per packet per flow per packet per flow per packet

t(l,3) = 0

t(l,2)

t(l,1)

)2,()3,(ltlt �� �)1,()2,(ltlt �� � ��)1,(lt

�

i = 3

i = 2

i = 1

Figure 4.3: Differences in marking, for three priority levels

Figure 4.3 depicts the resulting marks given to the packets of the flow. The
token bucket mechanism can be modelled as a per packet marking method, while
EWMA results in per flow marking. This conjecture will be used in the chapters
to follow and shown to hold through simulations in chapter 7.

An intuitive proof can be given assuming a CBR stream of packets and assuming
that all the rate and threshold values are rational numbers. Packets are marked
in cycles as a CBR stream passes cascaded token buckets. Consider, for example,
a flow with reference rate φ(l) = 1/2 and sending rate ν = 1. If I = 3, then
the threshold rates are t(l, 2) = 1/4 and t(l, 1) = 1/2. Assume further that the
bucket size corresponds to the constant packet size. Then the sequence of packet
marks will be as follows: 3, 1, 2, 1, 3, 1, 2, 1, In this case, the length of the
cycle is 4, and the proportions of packets with marks i = 1, 2, 3 are

1/2 = ν − t(l, 1), 1/4 = t(l, 1)− t(l, 2), 1/4 = t(l, 2),

respectively. Cascaded token buckets split the flow into sub-streams i = pr, pr +
1, . . . , I with rates

ν(i) = min[ν, t(l, i− 1)]−min[ν, t(l, i)].

All the packets of sub-stream i have the same mark i corresponding to the ratio
given in equation (4.4).

Using EWMA marking, the measured rate will approach the constant sending
rate ν. Assuming that this convergence happens in a negligible time interval,
which corresponds to the assumption that the time constant in averaging is small
compared to the lifetime of the flow, we conclude that the measured rate equals
the sending rate ν in each measurement. All the packets of the flow have the
same mark pr given by equation (4.5).

4.3 Packet level mechanisms inside the DiffServ

nodes

If per flow queuing could be possible, bandwidth would be divided between flows
according to the weights assigned to each flow. In DiffServ the forwarding is done

44

CHAPTER 4. UNDERLYING MECHANISMS IN DIFFERENTIATING TRAFFIC

to aggregates divided, in our case, into two classes based on the delay requirements
and into I priority levels based on the weight of the flow.

Bandwidth between delay aggregates must be divided in terms of delay require-
ments, with emphasis on protecting streaming traffic from elastic traffic and vice
versa. The class that requires low delays, i.e. streaming traffic, should be given
enough capacity and short buffers in order for the queuing delays to stay low.

Bandwidth between priority aggregates must be divided in terms of packet loss
probabilities. It should result in a division according to flow weights assuming
that the relative services approach is adopted. Furthermore, this must be done
across delay classes. Low latency classes should not starve bandwidth from the
other classes and the elastic delay aggregate with high priority should not be
discarded before the low latency aggregate with lower priority. Discarding of
packets should be based on the priority levels and corresponding buffer thresholds.

4.3.1 Discarding

We have a system with two delay classes, serviced by two separate buffers, where
the buffer sizes are chosen according to the delay requirements of the delay ag-
gregates. Both buffers have I discarding thresholds, one for each priority class.

Consider two different discarding mechanisms:

• Independent discarding: Each buffer acts locally as a separate buffer, dis-
carding appropriate priority levels according to its buffer content.

• Dependent discarding: The content of both buffers determines which prior-
ity level is discarded, in both buffers.

Let md denote the number of packets in the buffer of delay class d. The inde-
pendent discarding is implemented by giving, separately for each delay class d,
thresholds Kd(i), Kd(I) = Kd . The minimum priority level accepted is then

prda = fd(
md

Kd). The dependent discarding, proposed in [Kil97], is implemented by
giving a two-dimensional monotonic function

pra = f(
m1

K1
,
m2

K2
) (4.6)

that determines the minimum priority level accepted when in state (m1,m2).

The dependent discarding, introduced in the SIMA proposal, can be implemented
using different discarding functions

pra = a+ b ·
(m1

K1
+
m2

K2

)
, (4.7)

pra = a+ b ·max
(m1

K1
,
m2

K2

)
,

pra = a+ b ·
√(m1

K1

)2

+
(m2

K2

)2

. (4.8)

45

CHAPTER 4. UNDERLYING MECHANISMS IN DIFFERENTIATING TRAFFIC

We use equation (4.8) as a basis for the discarding function. Note that equation
(4.7) is similar to the discarding in a system with only one buffer.

These two mechanisms differ most when one buffer is heavily loaded and the
other is almost empty. Independent discarding would discard traffic belonging
to different priority levels in different buffers, while dependent discarding would
discard traffic of high priority also from the buffer that is almost empty.

Figure 4.4 shows the proposed discarding functions under two possible choices of
the constants a and b. The figure on the left has

K1(i)

K1
=
K2(i)

K2
,

i.e. the mappings fixed to work identically, when either buffer is empty. The
second proposed mapping, the maximum function, would then be reasonable in
the two buffer setting. However, the first and third mapping would in this case
result in mapping over half of the area of the state space to service only the
highest priority level, resulting in under utilization of the buffers.

In figure 4.4, the figure on the right shows how the areas of priority level accep-
tance are kept approximately similar with each function by fixing the functions
to be identical in the case that both buffers are equally loaded, that is

m1

K1
=
m2

K2
.

Then the third mapping, square root of the sum of buffer contents is in terms of
threshold areas in between the linear and maximum functions.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m2

K2

m1

K1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m2

K2

m1

K1

Mappings fixed to Mappings fixed to line
K1(i)
K1 = K2(i)

K2
m1

K1 = m2

K2

Figure 4.4: Examples of discarding functions for three priority levels

4.3.2 Scheduling

The traffic that is not discarded is placed in either one of the two buffers. The
scheduling principle affects the division of the link capacity, and can thus be

46

CHAPTER 4. UNDERLYING MECHANISMS IN DIFFERENTIATING TRAFFIC

used to divide resources between delay aggregates. Furthermore where discarding
affects the packet loss of the flow, scheduling affects the delay experienced by the
flow.

We restrict our analysis of scheduling mechanisms to the different weights possible
in the Weighted Fair Queuing (WFQ) scheduling principle. Whenever one of the
buffers is empty, the other buffer has use of total link capacity. Otherwise the
capacity of the link is divided according to predetermined weights w1 and w2,
with w1 + w2 = 1.

We consider three different scheduling scenarios:

• Priority queuing: WFQ with weights (w1 = 1, w2 = 0).

• Unequal sharing: WFQ with weights (w1 = 0.75, w2 = 0.25).

• Equal sharing: WFQ, with weights (w1 = w2 = 0.5).

47

Chapter 5

Flow level differentiation model
for greedy TCP flows

Let us consider the network model introduced in section 4.1. We consider a single
link network, with the link capacity scaled to one. The network is used by greedy
TCP sources that tend to maximize the minimum bandwidth allocation. We
know from the best-effort flow level studies presented in section 2.4.2 that in such
a setting and with no priorities (I = 1) it is optimal for greedy TCP flows to
divide bandwidth equally among themselves.

Let us now study the fairness of such greedy TCP flows when a priority mechanism
based on relative services is added to the network. A flow with weight φ is
classified to priority level i ∈ I = {1, ..., I}. A natural objective of any traffic
control algorithm is to allocate bandwidth as fairly as possible. Here fairness
refers to weighted fairness or, equivalently, to relative services in a single link, i.e.
achieved bit rate β of any flow should be proportional to its weight φ. Our goal
is to study what kind of weighted fairness is achieved in our example network
between TCP flows.

5.1 Marking model for TCP flows

Assume that the flows are divided to the priority levels based on the metering
and marking mechanism presented in section 4.2.1, i.e. flows are conditioned to
priority levels depending on the ratio of their sending rate to their weight φ. The
more traffic a flow sends, the worse the overall priority.

Assume only one delay class, and set d = 2 for elastic TCP flows. We have n
flows divided into groups l ∈ L2 = {1, ..., L2} according to the weight φ(l). Each
group consists of n(l) identical flows. Flows are classified to priority levels using
either per packet or per flow marking. Denote here the actual bit rate of a flow
in group l by β(l).

In such a setting the TCP flows tend to maximize the sending rate, but the condi-

49

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

tioner may penalize an increase in sending rate by a drop in priority level. Flows
in lower priorities may then have a small share of bandwidth compared to their
high sending rate. The TCP mechanism would then react and lower the sending
rate until equilibrium rate β is reached. Thus the interaction between TCP and
DiffServ traffic conditioning makes the flows to maximize their bandwidth share
individually.

We aim at studying to what magnitude the weight of flows, determining the
priority level, affect the bandwidth allocation of greedy TCP sources under this
individual optimization principle.

Following the ideal TCP model, we assume that in the same priority level band-
width is divided equally between flows. In addition, we model priority as strict
priority, where a higher priority level has strict priority over the lower class. Note
that this does not cause a flow of the higher class to use up all the bandwidth
and starve the flows of the lower class, as the assignment to priority level depends
both on the contracted rate φ(l) and the bit rate β(l) of the flow l.

The evaluation of fairness is made based on the resulting bandwidth allocation
and division into priority levels. Note that, we consider differentiation as a func-
tion of the number of flows, opposed to as the function of the load of the network.
This is due to the fact that we are considering elastic sources that adjust their
sending rate, and thus adjust the load, according to the congestion of the network.

Consider two flow groups, L2 = 2 that have a choice between I priority levels.
Group 2 flows have k times more weight than group 1 flows

φ(2) = k · φ(1).

In section 4.2.1 we defined the common thresholds of the marking schemes for
the priority levels as

t(l, i) = φ(l) · a(i), i = 1, ..., I − 1, (5.1)

with t(l, 0) =∞ and t(l, I) = 0 and

a(i) = 2(−i+I/2−0.5).

The flows in group l = 2 are allowed to send k times more traffic until classified
to the same priority level as the flows in group l = 1, since the boundary rate for
them is

t(2, i) = φ(2) · a(i) = k · φ(1) · a(i) = k · t(1, i).

The resulting optimal bandwidth allocation depends on the marking scheme used,
as the marking scheme determines the overall priority of a flow.

50

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

5.1.1 Per flow marking

In per flow marking, all packets of a flow are marked to lower priority, once the
corresponding threshold is exceeded. Flows in group l are in priority level i if

t(l, i) < β(l) ≤ t(l, i− 1).

Given that t(1, 1) = b, we have t(2, 1) = kb, and the resulting priority levels for
the two flow groups, when I = 2, are given in table 5.1.

l = 1 l = 2

i = 1 β(1) ≥ b β(2) ≥ kb

i = 2 β(1) < b β(2) < kb

Table 5.1: Priority level assignment conditions for I = 2

As a result of the above relation, if a flow in the higher priority level increases
its bit rate above the boundary b or kb, it falls to the lower priority level, and
divides the remaining capacity equally with the other flows in the lower class. The
coupling of sending rate and assignment of priority level thus prevents starvation
of bandwidth typical to normal priority mechanisms. The weight of the flow, on
the other hand, gives the flows the right to control the boundary at which point
the priority level changes.

5.1.1.1 Bandwidth allocation model

Let us look closer at the resulting bandwidth shares of the flows. Under per flow
marking, flows from the two groups, l = 1 or l = 2, may be in the same priority
level or they may be in different priority levels.

Define β(l, i) as the actual bit rate of a flow in group l and in priority level i and
n(l, i) as the number of flows in the corresponding state, with

ni =
∑
L
n(l, i), i ∈ I.

In general the strict priority means that flows in the highest priority level divide
the bandwidth equally, but only up to their boundary rate t(l, I−1). Flows in the
next priority level divide equally, among themselves, the remaining bandwidth up
to their boundary rate t(l, I − 2), and as long there is bandwidth left subsequent
priority levels divide the bandwidth left over from higher priority levels, with the
maximum share determined by the threshold t(l, i− 1).

51

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

However, as the flows have different boundary rates, the bandwidth share for
flows in group 1 in priority I is

β(1, I) = min
(1

nI
, t(1, I − 1)

)
,

while the bandwidth share for flows in group 2 is

β(2, I) = min
(

max
(1

nI
,
1− n(1, I)t(1, I − 1)

n(2, I)

)
, t(2, I − 1)

)
.

The remaining capacity is then

CI−1 = max
(

0, 1− n(1, I)t(1, I − 1)− n(2, I)t(2, I − 1)
)
.

Thus, if after the higher priority flows have reached their bandwidth thresholds
there is still capacity left, the subsequent priority levels divide the capacity in the
same fashion:

β(1, i) = min
(Ci
ni
, t(1, i− 1)

)
(5.2)

β(2, i) = min
(

max
(Ci
ni
,
Ci − n(1, i)t(1, i− 1)

n(2, i)

)
, t(2, i− 1)

)
. (5.3)

The capacity remaining for priority level i is

Ci = max
(

0, Ci+1 − n(1, i+ 1)t(1, i)− n(2, i+ 1)t(2, i)
)
,

assuming that CI = 1.

All flows in the lowest priority receive the same share

β(1, 1) = β(2, 1) =
C1

n(1)
,

as t(l, 0) =∞. Thus at the lowest priority level no differentiation occurs.

5.1.1.2 Optimal bandwidth allocations I = 2

Assume now that I = 2 and that all the flows inside a flow group behave in
the same manner, i.e. inside a group all flows belong to the same priority level.
Therefore we have n(l, i) = n(l) when the flows are in priority level i and zero
otherwise. From this it follows that the system may be in exactly four different
states.

The optimal allocations follow then directly from the equations (5.2) and (5.3)
under the condition that all flows of a group are in the same priority level. For
the four different states possible for the link, the actual bit rates β(l) received by
the flows in group l are shown in table 5.2.

52

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

l = 1

l = 2 i = 1 i = 2

i = 1 β(1) = 1
n(1)+n(2)

β(1) = min(1
n(1)

, b)

β(2) = 1
n(1)+n(2)

β(2) = max(1−n(1)b
n(2)

, 0)

i = 2 β(1) = max(1−n(2)kb
n(1)

, 0) β(1) = min(1
n(1)+n(2)

, b)

β(2) = min(1
n(2)

, kb) β(2) = min(max(1
n(1)+n(2)

, 1−n(1)b
n(2)

), kb)

Table 5.2: Bandwidth allocation in the four possible network states, per flow
marking, I = 2

Assume now that the individual optimization principle of TCP flows holds, i.e.
the flows optimize the bandwidth share measured by actual bit rate β of the flow
and not the sending rate. The following scenarios can be observed as a function
of the number of flows n(1) and n(2).

1. In times of low load, when the following condition holds

n(1)kb+ n(2)kb < 1,

there is no advantage in being in the higher priority level, where the bit
rate would be limited. For both groups, the bit rate achieved in the lower
priority level, β(l) > kb for all l. This is more than the bit rate in the higher
priority level. Thus all flows are in the lowest priority level sharing equally
the bandwidth of the link.

2. As the number of flows increases the low load condition does not hold

n(1)kb+ n(2)kb > 1,

and there is not enough bandwidth for all flows to send at rate kb. If,
however, the condition

n(1)b+ n(2)kb < 1

holds, then it follows that 1/n(2) > kb. Thus flows in group l = 2 move up
to priority level i = 2, as there they always get the boundary rate kb, which
is more than if they stayed in the lower priority level. As a result flows in
group l = 1 stay in priority level i = 1, as they can continue sending at
rate higher than their boundary rate b. Moving up a priority level would
require them to reduce their sending rate to or below b.

3. As the number of flows continues to increase and the link is further con-
gested the previous condition does not hold, and

n(1)b+ n(2)kb > 1.

53

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

However, when the load is still such that

n(1)b+ n(2)b < 1,

flows in group 1 move up to priority i = 2. Otherwise their sending rate
would be reduced to less than b. The flows in group 2 are, however, still
sending more than b, as there is still enough bandwidth in the link. There-
fore, though the two groups of flows are in the same priority level, the
bandwidth is not divided equally between the two classes.

4. As the congestion deepens, and more flows are introduced to the link, the
flows in group 2 have to also reduce their sending rate, and when condition

n(1)b+ n(2)b > 1

holds, all flows are in the highest priority level with equal bit rates of less
than b units.

The actual bit rates of each flow as a function of the number of flows is therefore
equal when

n(1)kb+ n(2)kb < 1 or n(1)b+ n(2)b > 1.

These correspond to times of low load, when there is no need to differentiate
between flows, as there is enough bandwidth for everyone, and times of very
high load, which as a condition should be very rare. In all other cases there is
a difference in the bandwidth received by the flows in group l = 1 and flows in
group l = 2, the ratio of bandwidth being at most equal to the nominal bit rate
ratio k. The differences occur in the middle area, in cases of moderate congestion.

Figure 5.1 summarizes the areas described. We note from the picture that the area
of differentiation is increased by decreasing b and increasing k. As b = φ(1)a(1),

this means decreasing φ(1) or increasing the ratio a(i−1)
a(i)

. Therefore, assuming

that a(i−1)
a(i)

= 2, we have a large differentiation if we increase k.

5.1.1.3 Optimal bandwidth allocations I > 2

Let us next study the effect of increasing the number of priority levels. The
previous section showed that at some point when all flows are in the highest
priority level, the bandwidth is divided equally. Differentiation is achieved, when
the user group with more weight is able to move up in priority. We can thus
increase the area of differentiation by increasing the number of priority levels I.
Table 5.3 shows the resulting thresholds for the case I = 3, assuming again that
t(1, 1) = b.

Again if each group of flows individually optimizes its actual bit rate β, the
following scenarios can be observed as a function of the number of flows n(1) and
n(2) when three priorities are given.

54

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

11 12

22

n(1)

n(2)

1
kb

1
kb

1
b

1
b

white: ratio = k
gray: 1 <ratio< k
black: ratio = 1

Figure 5.1: The optimal areas for two elastic flow groups competing for bandwidth
under per flow marking, I = 2.

l = 1 l = 2

i = 1 β(1) ≥ b β(2) ≥ kb

i = 2 b/2 ≤ β(1) < b kb/2 ≤ β(2) < kb

i = 3 β(1) < b/2 β(2) < kb/2

Table 5.3: Priority level assignment conditions for I = 3

1. As was the case with I = 2, in times of low load, when the following
condition holds

n(1)kb+ n(2)kb < 1,

there is no advantage in being in a higher priority level, where the bit
rate would be limited. For both groups, the bit rate achieved in the lower
priority level, β(l) > kb for all l. This is more than the bit rate in a higher
priority level. Thus all flows are in the lowest priority level sharing equally
the bandwidth of the link.

2. As the number of flows increases the low load condition does not hold

n(1)kb+ n(2)kb > 1,

and there is not enough bandwidth for all flows to send at rate kb. If,
however, the condition

n(1)b+ n(2)kb < 1

holds, then it follows that 1/n(2) > kb. Thus flows in group l = 2 move up
to priority level i = 2, as there they always get the boundary rate kb, which
is more than if they stayed in the lower priority level. As a result flows in
group l = 1 stay in priority level i = 1, as they can continue sending at
rate higher than their boundary rate b. Moving up a priority level would
require them to reduce their sending rate to or below b.

55

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

3. As the number of flows continues to increase and the link is further con-
gested the previous condition does not hold,

n(1)b+ n(2)kb > 1.

However, when the load is still such that

n(1)b+ n(2)b < 1,

flows in group 1 move up to priority i = 2. Otherwise their sending rate
would be reduced to less than b. The flows in group 2 are, however, still
sending more than b, as there is still enough bandwidth in the link. There-
fore, though the two groups of flows are in the same priority level, the
bandwidth is not divided equally between the two classes.

4. Now assume that k < 2.

• When the previous condition does not hold,

n(1)b+ n(2)b > 1,

but we still have such a load that

n(1)
kb

2
+ n(2)

kb

2
< 1,

both flow groups are in the middle priority i = 2 and divide the band-
width equally.

• When the condition

n(1)
kb

2
+ n(2)

kb

2
> 1

holds, there is not enough bandwidth for all flows to send at rate kb/2.
If, however, the condition

n(1)
b

2
+ n(2)

kb

2
< 1

holds, then it follows that 1/n(2) > kb/2. Thus flows in group l = 2
move up to priority level i = 3, as there they always get the boundary
rate kb/2, which is more than if they stayed in the lower priority level.
As a result flows in group l = 1 stay in priority level i = 2, as they can
continue sending at rate higher than their boundary rate b/2. Moving
up a priority level would require them to reduce their sending rate to
or below b/2.

• As the number of flows continues to increase and the link is further
congested the previous condition does not hold,

n(1)
b

2
+ n(2)

kb

2
> 1.

However, when the load is still such that

n(1)
b

2
+ n(2)

b

2
< 1,

56

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

flows in group 1 move up to priority i = 3. Otherwise their sending rate
would be reduced to less than b/2. The flows in group 2 are, however,
still sending more than b/2, as there is still enough bandwidth in the
link. Therefore, though the two groups of flows are in the same priority
level, the bandwidth is not divided equally between the two classes.

5. Now assume that k ≥ 2.

• When the condition
n(1)b+ n(2)b < 1

still holds, but

n(1)b+ n(2)
kb

2
> 1,

there is not enough bandwidth for all flows to send at rate kb/2 ≥ b.
If, however, the condition

n(1)
b

2
+ n(2)

kb

2
< 1

holds, then it follows that 1/n(2) > kb/2. Thus flows in group l = 2
move up to priority level i = 3, as there they always get the boundary
rate kb/2, which is more than if they stayed in the lower priority level.
As a result flows in group l = 1 stay in priority level i = 2, as they can
continue sending at rate higher than their boundary rate b/2. Moving
up a priority level would require them to reduce their sending rate to
or below b/2.

• As the number of flows continues to increase and the link is further
congested the previous condition does not hold,

n(1)b+ n(2)
kb

2
> 1.

However, when the load is still such that

n(1)
b

2
+ n(2)

b

2
< 1,

flows in group 1 move up to priority i = 3. Otherwise their sending rate
would be reduced to less than b/2. The flows in group 2 are, however,
still sending more than b/2, as there is still enough bandwidth in the
link. Therefore, though the two groups of flows are in the same priority
level, the bandwidth is not divided equally between the two classes.

6. As the congestion deepens, and more flows are introduced to the link, the
flows in group 2 have to also reduce their sending rate, and when condition

n(1)
b

2
+ n(2)

b

2
> 1

holds, all flows are in the highest priority level with equal bit rates of less
than b/2 units.

57

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

The actual bit rates of each flow as a function of the number of flows is therefore
equal when

n(1)kb+ n(2)kb < 1 or n(1)
b

2
+ n(2)

b

2
> 1.

In addition when k < 2, the actual bit rates equal in the middle area, where

n(1)
kb

2
+ n(2)

kb

2
< 1 and n(1)b+ n(2)b > 1.

With three priorities, the resulting optimal allocation can be divided into the
areas summarized in figure 5.2. Note that, with more than two priorities, there
is a difference between k < 2 and k ≥ 2.

k < 2

n(1)

11 12

33

22

23

n(2)

1
kb

1
kb

1
b

1
b

2
kb

2
kb

2
b

2
b

white: ratio = k
gray: 1 <ratio< k
black: ratio = 1

k ≥ 2

11 12

33

22

23

n(2)

n(1)1
kb

1
kb

2
kb

2
kb

1
b

1
b

2
b

2
b

Figure 5.2: The optimal areas for two elastic flow groups competing for bandwidth
under per flow marking and three priorities

5.1.2 Per packet marking

When flows are marked to priorities per packet, all packets of a flow do not
necessarily have the same priority. When a flow in group l exceeds the threshold
t(l, i) only the packets above the threshold are assigned to priority pr(l) = i while
the rest of the packets have pr(l) > i. This changes the equations presented
earlier.

5.1.2.1 Bandwidth allocation model

With per packet marking, part of the flows packets are always marked to the high-
est priority pr(l) = I. Therefore, all flows have sub-streams in the highest priority

58

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

level I. In general, these sub-streams each receive equal amount of bandwidth
and the sub-streams of flows in the lower priority level divide equally, among
themselves, the remaining bandwidth. Again the rate received by a sub-stream
in a priority level cannot exceed the boundary rate.

In the highest priority level where all the n flows have a sub-stream whose rate is
bounded by t(l, I − 1), the bandwidth share for flows in group 1 in priority level
I is

β(1, I) = min
(1

n
, t(1, I − 1)

)
while the bandwidth share for flows in group 2 is

β(2, I) = min
(

max
(1

n
,
1− n(1)t(1, I − 1)

n(2)

)
, t(2, I − 1)

)
.

The remaining capacity is then

CI−1 = max
(

0, 1− n(1)t(1, I − 1)− n(2)t(2, I − 1)
)
.

Thus if there is still capacity left after the higher priority flows have reached their
bandwidth thresholds, the sub-streams in the subsequent priority levels divide
the remaining capacity.

Define s(l, i) as the number of flows whose priority level is less than or equal to
i. Define also δ(l, i) = t(l, i− 1)− t(l, i). Then the share of bandwidth for a flow
with priority i is

β(1, i) = min
(
β(1, i+ 1) +

Ci
si
, t(1, i− 1)

)
, (5.4)

β(2, i) = min
(
β(2, i+ 1) + max

(Ci
si
,
Ci − s(1, i)δ(1, i)

s(2, i)

)
, t(2, i− 1)

)
.(5.5)

The capacity remaining for priority level i is

Ci = max
(

0, Ci+1 − s(1, i+ 1)δ(1, i+ 1)− s(2, i+ 1)δ(2, i+ 1)
)
,

assuming that β(l, I + 1) = 0 and C(I) = 1.

The lowest priority traffic then receive the share

β(1, 1) = β(1, 2) +
C1

n1

,

β(2, 1) = β(2, 2) +
C1

n1

,

as t(l, 0) = ∞. Thus with per packet marking differentiation does occur at the
lowest priority level, due to the fact that some of the sub-streams of the flow are
in the higher priority levels.

59

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

5.1.2.2 Optimal bandwidth allocations I = 2

We assume that I = 2 and that flows inside a group behave in the same manner
and that inside a group the flows have the same ratio of sub-streams in the priority
classes. We can again divide our model into four different possibilities of actual
bit rates β(l) presented in table 5.4.

l = 1

l = 2 i = 1 i = 2

i = 1 β(1) = b+ max(1−n(1)b−n(2)kb
n(11)+n(21)

, 0) β(1) = min(1
n(1)+n(2)

, b)

β(2) = kb+ max(1−n(1)b−n(2)kb
n(11)+n(21)

, 0) β(2) = kb+ max(1−n(1)b−n(2)kb
n(21)

, 0)

i = 2 β(1) = b+ max(1−n(1)b−n(2)kb
n(11)

, 0) β(1) = min(1
n(1)+n(2)

, b)

β(2) = min(max(1
n(1)+n(2)

, 1−n(1)b
n(2)

), kb) β(2) = min(max(1
n(1)+n(2)

, 1−n(1)b
n(2)

), kb)

Table 5.4: Bandwidth allocation in the four possible network states, per packet
marking, I = 2

If each group of flows individually optimizes its actual bit rate β, the following
scenarios can be observed as a function of the number of flows n(1) and n(2).

1. In times of very low load, when the following condition holds

(n(1), n(2))→ 0,

the flows divide the bandwidth equally. As the number of flows increases,
the flows reduce their sending rate, and the portion of flows which receive
bandwidth β(l) = t(l, 1) become dominant.

2. When
n(1)b+ n(2)kb = 1,

both flows are sending exactly at their thresholds β(l) = t(l, 1) and band-
width is divided in ratio of k.

3. As the congestion deepens, and more flows are introduced to the link, the
flows in group 2 have to reduce their sending rate, and when condition

n(1)b+ n(2)kb > 1

holds, but
n(1)b+ n(2)b < 1,

all flows are in the highest priority class with β(1) = b and b < β(2) < kb,
as was the case with per flow marking.

60

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

4. As with per flow marking, when condition

n(1)b+ n(2)b > 1

holds, all flows are in the highest priority class with equal bit rates of less
than b units.

The actual bit rates of each flow as a function of the number of flows is therefore
equal when

(n(1), n(2)) → 0, or (5.6)

n(1)b+ n(2)b > 1. (5.7)

These correspond to times of very low load, when there is no need to differentiate
between flows, as there is enough bandwidth for everyone, and times of very
high load, which as a condition should be very rare. In all other cases there is
a difference in the bandwidth received by the flows in group l = 1 and flows in
group l = 2, the ratio of bandwidth being at most equal to the nominal bit rate
ratio k. The differences occur in the middle area, in cases of moderate congestion.
Note, that in per packet marking the differentiation area is upper bounded by the
same line, equation (5.7), as in per flow marking, but the area of differentiation
is larger, as the lower bound equation (5.6) is lower then in per flow marking.

Figure 5.3 summarizes the areas described. We note from the picture that the
area of differentiation is again increased by increasing k and decreasing b.

11

22

n(1)

n(2)

1
kb

1
b

1
b

white: ratio = k
gray: 1 <ratio< k
black: ratio = 1

Figure 5.3: The optimal areas for two elastic flow groups competing for bandwidth
under per packet marking, I = 2

5.1.2.3 Optimal bandwidth allocations I > 2

The results for packet marking when I > 2 can be obtained analogous to the case
I = 2 and are similar to the corresponding results I > 2 for per flow marking.
We will thus not go through the resulting scenarios. They will be presented in
terms of numerical examples in the next section.

61

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

5.2 Numerical results

To illustrate the optimization described earlier, let us consider few scenarios. We
have flows with (φ(1), φ(2)) = (0.04, 0.08) and (φ(1), φ(2)) = (0.02, 0.08), i.e.
ratio k = 2 and k = 4, respectively. We have

b = φ(1) · a(1) = φ(1) · 2I/2−1.5.

Table 5.5 shows the different values for b under the various scenarios.

I b

2 φ(1)/
√

(2)

3 φ(1)

Table 5.5: Different values for b in the numerical examples

5.2.1 Per flow marking

Figure 5.4 shows the numerical results of the optimization for I = 2 and per
flow marking. The number of flows of group 1 and 2 are on the x- and y-
axis respectively. The black areas correspond to equal bandwidth allocation, the
white areas correspond to bandwidth allocation equal to k and the grey areas to
bandwidth allocation between 1 and k. The figure clearly shows that the middle
area, where differentiation is achieved, increases as k increases.

n(1)

0 10 20 30 40 50
0

10

20

30

40

50n(2)
k = 2

0 20 40 60 80 100
0

10

20

30

40

50n(2)

n(1)

k = 4

max(β(2)/β(1)) = 1.97875 max(β(2)/β(1)) = 3.98277

Figure 5.4: Bandwidth allocation β(2)/β(1) for flows with per flow marking,
I = 2 as a function of number of flows, n(1) (x-axis) and n(2) (y-axis).

We have also studied the model for three priority classes. As the number of
priority classes, i.e. differentiation classes is increased the middle area becomes

62

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

n(1)

0 10 20 30 40 50
0

10

20

30

40

50n(2)
k = 2

0 20 40 60 80 100
0

10

20

30

40

50n(2)

n(1)

k = 4

max(β(2)/β(1)) = 1.99995 max(β(2)/β(1)) = 3.99979

Figure 5.5: Bandwidth allocation β(2)/β(1) for flows with per flow marking,
I = 3 as a function of number of flows, n(1) (x-axis) and n(2) (y-axis).

larger and only rarely do all flows receive the same bandwidth. The middle area
grows also as the ratio of weights, k, grows. Thus with many priority classes and
large differences in weights, differentiation is at its best, as shown in figure 5.5.

5.2.2 Per packet marking

The effect that changing the marking scheme has on the optimal bandwidth
allocations is illustrated in figures 5.6 and 5.7. The effect of increasing priority
levels is the same as with per flow marking. The difference between the marking
schemes, is that with per packet marking differentiation is also achieved in the
lightly loaded area and with more than two priority levels the bandwidth share
of flows is also greater than one in the middle areas of the graphs.

n(1)

0 10 20 30 40 50
0

10

20

30

40

50n(2)
k = 2

0 20 40 60 80 100
0

10

20

30

40

50n(2)

n(1)

k = 4

max(β(2)/β(1)) = 1.98968 max(β(2)/β(1)) = 3.98277

Figure 5.6: Bandwidth allocation β(2)/β(1) for flows with per packet marking,
I = 2 as a function of number of flows, n(1) (x-axis) and n(2) (y-axis).

63

CHAPTER 5. FLOW LEVEL DIFFERENTIATION MODEL FOR GREEDY TCP FLOWS

n(1)

0 10 20 30 40 50
0

10

20

30

40

50
n(2)

k = 2

0 20 40 60 80 100
0

10

20

30

40

50
n(2)

n(1)

k = 4

max(β(2)/β(1)) = 1.99995 max(β(2)/β(1)) = 3.99979

Figure 5.7: Bandwidth allocation β(2)/β(1) for flows with per packet marking,
I = 3 as a function of number of flows, n(1) (x-axis) and n(2) (y-axis).

5.3 Effect of marking

We have demonstrated the type of differentiation that results from marking pack-
ets to priorities according to thresholds based on price paid by or weight of greedy
TCP flows.

In a single link network, the bandwidth share received by competing TCP flows
depends on the weight purchased by the flows. We assumed a fixed number of
flows and studied how the weighted bandwidth allocation depends on the conges-
tion of the link. Using per packet marking results in a larger area of differentiation,
but the difference compared to per flow marking occurs only when the network
has a low load. The main drawback of the resulting division of bandwidth is the
lack of differentiation when all flows are in the highest priority. The only way to
guarantee differentiation, is to have many or even an infinite number of priority
classes, so that the network offers an incentive for the flows to halve their sending
rate.

Neither per flow marking nor per packet marking allocates bandwidth in propor-
tion to fixed weights, rather the weights depends on the state of the network. The
share of bandwidth is, however, at least equal and at most in proportion to the
fixed weights. From the results, one can deduce that as the number of priority
levels is increased the differentiation approaches that of relative services.

In the same way as was proposed in section 3.3.2 in the AF simulation studies,
flows can also be differentiated in the highly loaded areas by allowing some flows
the choice of more priorities than other flows. Then differentiation is always
achieved, as flows are in different priority levels.

64

Chapter 6

Packet level differentiation model

The previous chapter showed the resulting bandwidth allocation of greedy TCP
sources optimizing their share of bandwidth subject to conditioning at the flow
level. In this chapter, we model more closely the mechanisms inside the DiffServ
node to see how bandwidth is divided among the flows. As the mechanisms inside
the nodes are on the packet level, we need to develop appropriate metering and
marking models, TCP models, and buffer models, in order to study the resulting
end-to-end differentiation. Furthermore, we also include non-elastic, i.e. non-
TCP, traffic into our models.

Let us consider the same single link network as in the previous chapter, with
the link capacity scaled to one. We have a scheduling unit consisting of at most
two buffers. The buffers, one for each delay class d, use the WFQ principle with
weights wd, d = 1, 2. The buffer space is divided by I discarding thresholds Kd(i).

The network is loaded by a fixed number, n, of flows. Now flows can be greedy
elastic flows or unelastic real-time flows. The flows choose a weight φ as a reference
level, i.e. a flow sending at most its weight has its packets marked at least to
middle priority. The user model is the same as in the previous chapters. The
set of all flows is denoted by L. It can be divided according to type of flow
L = LUDP ∪ LTCP or according to delay class L = Lrt ∪ Lnrt. For the delay
class we will use the shorthand notation Ld, where d = 1 corresponds to the
real-time and d = 2 to the non-real time delay class. The flows are divided into
groups based on type or delay class and weight φ of the flow. Each group then
consists of n(l) identical flows. Packets of a flow are marked to priority levels
i ∈ I = {1, ..., I} by one of the two marking mechanisms of chapter 4. Marking
is done according to the measured bit rate compared to the weight φ(l) of the
flow.

We first show the main framework of our model, depicted in figure 6.1, by as-
suming that only non-TCP traffic is present. We then demonstrate how the TCP
equilibrium sending rate of our system can be solved through parameterization of
the system equations. Finally we present our system model for a general traffic
mix and corresponding numerical examples.

65

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

pd(i)

ld(i)
n(l)

q(l)

non-TCP
n(l)

TCP
feedback

Buffer
modelConditioner

pr(l)

pr(l)

Group l

Priority i

non-TCP q(l)

Figure 6.1: The modelling approach used on the packet level.

6.1 Non-TCP flows

Let us first look at unresponsive flows, which we interchangeably call non-TCP
or UDP flows. These flows have a fixed sending rate, which from the perspective
of our system can also be called packet arrival intensity, denoted by ν(l). At
this point we do not need to make a distinction between delay classes. The flows
inside one delay class could be elastic flows, non-elastic flows or a mixture of the
two.

6.1.1 Packet arrival model

The marking mechanism determines how the packets of a flow are distributed
among the possible priority levels. We study the marking options described ear-
lier, per flow and per packet marking.

The metering result gives the packet arrival intensity ν(l) corresponding to a long
term average of the bit rates of individual flows belonging to group l. The flows
of group l are then assigned priority pr(l)

pr(l) = max

[
min

[⌊
I/2 + 0.5− log2

ν(l)

φ(l)

⌋
, I

]
, 1

]
, (6.1)

with the corresponding thresholds

t(l, 0) = ∞,
t(l, i) = φ(l) · 2−i+I/2−0.5, i = 1, ..., I − 1, (6.2)

t(l, I) = 0.

Now the marking scheme used determines how the flows are grouped into priority
aggregates. However, we can assume independent of the marking scheme that
the resulting aggregates constitute a Poisson process with arrival intensity λ(i)
of priority level i. This stems from the assumption that the priority aggregate is
composed of many flows.

66

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

6.1.1.1 Per flow marking

Marking all packets of a flow to the same priority level gives the aggregate arrival
intensity λ(i) of priority level i as

λd(i) =
∑

l∈Ld:pr(l)=i

n(l)ν(l), (6.3)

for all i = 1, . . . , I.

6.1.1.2 Per packet marking

Marking only overflow packets to the lower priority level gives the aggregate
arrival intensity λ(i) of priority level i as

λd(i) =
∑

l∈Ld:pr(l)≤i

n(l)(min [ν(l), t(l, i− 1)]−min [ν(l), t(l, i)]),

for all i = 1, . . . , I.

6.1.2 Buffer models

By modelling the scheduling unit, we are able to determine the loss probability
and delay for each flow aggregate in terms of the packet arrival intensity to the
scheduling unit. We consider two cases: one queue servicing only traffic of one
delay class and two queues with one for each delay class.

6.1.2.1 Buffer model for one delay class

We first present the analytical model for the one buffer system servicing only one
delay class. A similar model has been discussed in [MBDM99] and [STK99], but
only for the special case of two priority levels.

Denote the discarding threshold of priority level i by K(i), i ∈ I, with K(I) = K,
the size of the buffer and define K(0) = 0. The packet transmission time with
full link rate is assumed to be exponentially distributed with mean 1/µ time
units, and let λ(i) denote the arrival rate of packets in priority level i. Define
the cumulative sum of arrival intensities of those priority levels accepted into the
system as λi =

∑I
k=i λ(k). The corresponding load is ρi = λi

µ
. The buffer can

then be modelled as an M/M/1/K queue with state dependent arrival intensities
as depicted in figure 6.2.

The stationary distribution of the system is

πm = ρm1 π0,

67

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

1
�

� ��

K(1) = 1

2
�

� ��

K(2) = 4

2
�

2
�

3
�

3
�

0 1 2 3 4 5
�

3
�

K
�

K(3) = K

Figure 6.2: State transition diagram for one buffer modelled as an M/M/1/K
queue, when I = 3.

for m = 1, ..., K(1)− 1. Correspondingly,

πK(i)+m =

(
i∏

j=1

ρ
K(j)−K(j−1)
j

)
· ρmi+1π0,

for i = 1, ..., I − 1 and m = 0, ..., K(i + 1) − K(i) − 1. Finally, the probability
that the buffer is full is

πK =
I∏
j=1

ρ
K(j)−K(j−1)
j π0.

The probability that the buffer is empty π0 is determined from the normalization
condition

∑K
i=0 πi = 1.

Using the shorthand notation b(0) = 1 and

b(i) = ρ
K(i)−K(i−1)
i ,

for i ∈ I, the stationary probability is

πK(i)+m =

(
i∏

j=1

b(j)

)
· ρmi+1π0, (6.4)

for i = 0, ..., I − 1 and m = 1, ..., K(i+ 1)−K(i).

Now, the probability p(i) that packets belonging to priority level i will be lost is
simply

p(i) =
K∑

j=K(i)

πj = p(i+ 1) +
K(i+1)−K(i)−1∑

m=0

πK(i)+m,

for i = 1, ..., I−1, with πK(i)+m defined in equation (6.4). For the highest priority
level, the loss probability is

p(I) = πK . (6.5)

Using again a shorthand notation,

a(i) =

K(i)−K(i−1)−1∑
m=0

ρmi

=
1− ρK(i)−K(i−1)

i

1− ρi
,

68

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

the loss probability is

p(i) = (
I∑

j=i+1

a(j)

j−1∏
h=1

b(h) +
I∏

h=1

b(h))π0, (6.6)

where

π−1
0 =

I∑
j=1

a(j) ·
j−1∏
h=0

b(h) +
I∏

h=1

b(h).

The throughput of each priority level is defined as the net rate at which packets
leave the system, i.e.

λeff(i) = λ(i)(1− p(i)).

The expected delay seen by the packet belonging to priority level i is

D̄(i) =

K(i)−1∑
m=0

(m+ 1)πm

µ

K(i)−1∑
m=0

πm

.

Introducing a third shorthand notation

ã(i) =

K(i)−K(i−1)−1∑
m=0

(K(i− 1) +m+ 1)ρmi ,

gives the expected delay as

D(i) =

i∑
j=1

ã(j) ·
j−1∏
h=1

b(h)

µ
i∑

j=1

a(j) ·
j−1∏
h=1

b(h)

. (6.7)

6.1.2.2 Buffer model for two delay classes

Now assume that our system has two delay classes. This can be modelled as two
dependent M/M/1/K queues with state dependent arrival intensities. The packet
transmission time is assumed to be exponentially distributed with mean 1/µ time
units. Thus, if both buffers are non-empty, packet service rates are wdµ = µd,
for d = 1 and d = 2, i.e. for real time and non-real time traffic, respectively. The
arrival intensities are state dependent, according to the discard threshold function
used. Let λ1(i) and λ2(i) denote the arrival rate of packets of priority level i for rt
and nrt delay classes respectively. Define the cumulative sum of arrival intensities
of those priority levels accepted to the system as λdi =

∑I
k=i λ

d(k).

69

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

The state transition diagram is illustrated in figure 6.3. The figure on the left
depicts the transition diagram in the case of independent discarding and the
figure on the right in the case of dependent discarding. The resulting stationary
distribution and loss probabilities pd(i) can only be solved numerically.

1

1
�

1

1
�

1

2
�

1

2
�

1

2
�

1

2
�

1

2
�

1

2
�

1

1
�

2

1
�

2

1
�

2

1
�

2

2
�

2

2
�

2

2
�

2

2
�

2

2
�

2

2
�

� � �

�

�

�

1
�

1
�

1
�

1
�

1
�

2
�

2
�

2
�

2
�

2
�

2
�

1
�

0

2

1

2

0

0

1

0

1

1

0

1

2

2

2

0

2

1

1

1
�

1

2
�

1

2
�

1

2
�

1

2
�

1

2
�

1

2
�

1

1
�

2

1
�

2

1
�

2

2
�

2

2
�

2

2
�

2

2
�

2

2
�

2

2
�

� � �

�

�

�

1
�

1
�

1
�

1
�

1
�

2
�

2
�

2
�

2
�

2
�

2
�

1
�

0

2

1

2

0

0

1

0

1

1

0

1

2

2

2

0

2

1

1

2
�

2

2
�

Independent discarding Dependent discarding

Figure 6.3: State transition diagrams for a two buffer scheduling unit.

6.1.3 Flow group loss probability

From the buffer model of section 6.1.2.2 we have the loss probabilities pd(i) in
terms of priority levels. We are however mainly interested in the loss probability
of flow groups as opposed to loss probability of priority levels.

We define the throughput of a flow as

θ(l) = ν(l) · (1− q(l)),

where q(l) refers to the loss probability of flow group l given by equation (6.8) or
(6.9) below.

6.1.3.1 Per flow marking

Under the per flow marking mechanism, the packet loss probability, q(l), for a
flow belonging to group l and for d = 1, 2, is

q(l) = pd(pr(l)), l ∈ Ld. (6.8)

70

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

6.1.3.2 Per packet marking

Under the per packet marking scheme, the packet loss probability, q(l), for a flow
belonging to group l and for d = 1, 2, is

q(l) =
I∑
j=1

pd(j)
min [ν(l), t(l, j − 1)]−min [ν(l), t(l, j)]

ν(l)
, l ∈ Ld (6.9)

6.2 TCP flows

Let us next look at the system where some of the flows are TCP flows. Assume
that the UDP flows behave as given above and that they are affected by the
presence of TCP flows only through the buffer model presented earlier. The TCP
flows on the other hand respond to the congestion in the network by adjusting
their sending rate. Here we use the loss probability as the feedback signal to
determine the equilibrium sending rate. For the UDP flows the sending rate was
constant. The TCP flows are characterized by their round-trip time. Let RTT (l)
denote the round-trip time of flows in group l ∈ LTCP.

We first introduce the TCP model employed. We then show the method used
to parameterize the packet model equations. Parameterization is needed to solve
the equilibrium sending rate of TCP flows under per flow marking, but will also
be used when per packet marking is employed.

6.2.1 Flow behavior

The models presented in section 2.3 give a closed form expression for TCP sending
rate, as a function of packet loss probability. In our model setup depicted in figure
6.1, we have the packet loss probability q(l) for each flow group l. Furthermore,
assuming that the dynamics of the buffer is faster than that of TCP we can use
the steady state TCP throughput expression of, e.g. Kelly. We thus have the
expression

ν(l) =
1

RTT (l)

√
2

1− q(l)
q(l)

, l ∈ LTCP. (6.10)

Note that if the queueing delay is not negligible compared to the RTT, the equa-
tion is then of form

ν(l) =
1

RTT (l) + Ē(l)

√
2

1− q(l)
q(l)

, l ∈ LTCP,

where Ē(l) would be calculated from D̄(i) in the same fashion as q(l) is calculated
from p(i).

71

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

6.2.2 Flow aggregates

The priority levels have discrete values. Therefore, the flow priorities form a
step function of ν(l). From equation (6.3) we see that as the priority levels are
discrete, under per flow marking, the resulting aggregate arrival intensity λ(i) is
also a discontinuous function. The discontinuity due to discrete priority levels
(I = 3) is illustrated in figures 6.4 and 6.5. In figure 6.5 it is assumed that the
system has only one flow. In addition, per flow marking in assumed in the figures.

3

2

1

t(l,2) t(l,1)t(l,3)=0 ν(l)

pr(l)

Figure 6.4: Priority level pr(l) as a function of sending rate ν(l) and when I = 3

t(l,2)

t(l,1)

t(l,2) t(l,1)t(l,3)=0 ν(l)

λ(3)

t(l,2)

t(l,1)

t(l,2) t(l,1)t(l,3)=0 ν(l)

λ(2)

t(l,2)

t(l,1)

t(l,2) t(l,1)t(l,3)=0 ν(l)

λ(1)

Figure 6.5: Arrival intensities of priority levels of one flow and I = 3 under per
flow marking

6.2.2.1 Parameterization

In order to solve the TCP equilibrium sending rate, we need to make the aggregate
arrival intensity piecewise continuous. This is achieved through parameterization
of ν(l) and by introducing a linear function between adjacent priorities.

Assume now that the packet arrival intensity of flow group l is given as a function
of an auxiliary variable xl. Define x = {xl | l ∈ L}. The arrival intensity vector
is then ν(x) = {ν(l, xl) | l ∈ L}, where ν(l, xl) is chosen to be the following
piecewise continuous function. In the range 0 ≤ xl ≤ 1, ν(l, xl) = 0, and in
the range 1 ≤ xl ≤ 2, ν(l, xl) = t(l, I − 1)xl − t(l, I − 1). From there on the
parameterized form is

ν(l, xl) =

{
t(l, I − i) 2i ≤ xl ≤ 2i+ 1, i = 1, . . . , I − 1
t(l, I − i)xl − 2i · t(l, I − i) 2i+ 1 ≤ xl ≤ 2i+ 2, i = 1, . . . , I − 2.

For xl ≥ 2I − 1, the function grows linearly towards infinity.

72

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

In the same fashion we have the priority vector pr(x) = {pr(l, xl) | l ∈ L}, where
pr(l, xl) is a piecewise continuous function. In the range 0 ≤ xl ≤ 2, pr(l, xl) = I,
and from there on the parameterized form is

pr(l, xl) =

{
−xl + I + 1 + i 2i ≤ xl ≤ 2i+ 1, i = 1, . . . , I − 1
I − i 2i+ 1 ≤ xl ≤ 2i+ 2, i = 1, . . . , I − 2.

For xl ≥ 2I−1, pr(l, xl) = 1. Figure 6.6 shows the functions in the parameterized
form.

420

t(l,1)

t(l,2)

xl

ν(l,xl)

1 3 5 420

3

2

1

xl

pr(l,xl)

1 3 5

Figure 6.6: Parameterized sending rate ν(l, xl) and priority pr(l, xl), when I = 3

As before the marking scheme used determines how the flows are grouped into
priority aggregates. We have, in vector form,

λd(x) = {λd(i,x) | i = 1, . . . I},
where λd(i,x) is defined by either equation (6.11) or (6.12) given below.

6.2.2.2 Per flow marking

Marking all packets of a flow to the same priority level gives the aggregate arrival
intensities in parameterized form as

λd(i,x) =
∑

l∈Ld:|pr(l,xl)−i|<1

n(l)ν(l, xl)(1− | pr(l, xl)− i |). (6.11)

Note that with per flow marking the priority levels have discrete values. Then,
the parameterization has to be done so that the functions λd(i,x) become smooth.
This is achieved by making the priority function piecewise continuous by intro-
ducing a linear function between adjacent priority levels. As an example, when
dpr(l)e > pr(l), the fraction dpr(l)e − pr(l) of the flows traffic is in priority level
pr(l) and the rest in priority level pr(l) + 1. This is illustrated for one flow and
I = 3 in figure 6.7.

6.2.2.3 Per packet marking

Though parameterization is not needed when per packet marking is used, we
present here the parameterized form. Marking only overflow packets to the lower
priority level gives the aggregate arrival intensity in parameterized form as

λd(i,x) =
∑

l∈Ld:pr(l,xl)≤i

n(l)(min [ν(l, xl), t(l, i− 1)]−min [ν(l, xl), t(l, i)]). (6.12)

73

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

420 xl

λ(3)

1 3 5 420

t(l,1)

t(l,2)

xl

λ(2)

1 3 5 420

t(l,1)

t(l,2)

xl

λ(1)

1 3 5

Figure 6.7: Parameterized arrival intensities of priority levels of one flow and
I = 3 under per flow marking

6.2.3 Buffer models

By modelling the scheduling unit, we are able to determine the loss probability
for each flow aggregate in terms of the packet arrival intensity to the scheduling
unit. We consider the two cases presented in section 6.1.2: one queue servicing
only traffic of one delay class and two queues one for each delay class.

As a result we have the loss probability

pd(x) = {pd(i,x) | i = 1, . . . , I},

where pd(i,x) is given by equation

p(i,x) =
K∑

j=K(i)

πj(λ(x)) (6.13)

for the one buffer case, but can only be given numerically for the two buffer case.

6.2.4 Loss probability feedback signal

From the buffer model we have the loss probabilities pd(x). In order to solve the
arrival intensity per flow group we need to define the loss probability in terms of
flow groups as opposed to defining it in terms of priority levels. We have

q(x) = {q(l,x) | l ∈ Ld},

where q(l) refers to the loss probability of flow group l given by equation (6.14)
or (6.15) below.

6.2.4.1 Per flow marking

Under the per flow marking mechanism, the packet loss probability, q(l,x), for a
flow belonging to group l is

q(l,x) = pd(bpr(l, xl)c,x)(bpr(l, xl)c+ 1− pr(l, xl)) (6.14)

+ pd(bpr(l, xl)c+ 1,x)(pr(l, xl)− bpr(l, xl)c), l ∈ Ld.

74

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

6.2.4.2 Per packet marking

Under the per packet marking scheme, the packet loss probability, q(l,x), for a
flow belonging to group l is then

q(l,x) =
I∑
j=1

pd(j,x)
min [ν(l, xl), t(l, j − 1)]−min [ν(l, xl), t(l, j)]

ν(l, xl)
, l ∈ Ld.

(6.15)

6.2.5 Fixed point equation

Finally, solving the equilibrium throughput ν(x) amounts to solving the fixed
point equation

ν(l, xl) =
1

RTT (l)

√
2

1− q(l,x)

q(l,x)
, l ∈ LTCP. (6.16)

Or in terms of a scalar product of vectors,

ν(x)T · ν(x) =
2

RTT (l)2
(e− q(x)) · q−1(x),

where e is a vector of ones with length LTCP and q−1(x) = {1/q(l,x) | l ∈ LTCP}.

6.2.6 Example solution, one flow

6.2.6.1 One priority level

To illustrate the above fixed point equation and the uniqueness of its solution, let
us consider the most simplified scenario. We have one TCP flow, L = LTCP = 1,
one buffer and one priority I = 1. We thus have ν(l) = λ(1) = λ and

q(l) = p(1) =
λK(1− λ)

1− λK+1
,

where p(1) is the probability of being in state K in a M/M/1/K queue. The
fixed point equation is thus

λ =
1

RTT

√
2

1− λK
λK(1− λ)

.

The equation has a unique real solution, illustrated by figure 6.8. For consistency,
the pictures are drawn in the parameterized form, i.e. λ = ν(l, xl).

75

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

xl

0.95 1 1.05 1.1

1

2

3

4

5λ

xl

0.95 1 1.05 1.1

1

2

3

4

5λ

xl

0.95 1 1.05 1.1

1

2

3

4

5λ

K = 39 K = 33 K = 22
λ = 0.751163 λ = 0.712244 λ = 0.601435

Figure 6.8: Solution to the fixed point equation, in a system with one M/M/1/K
buffer and L = 1 and I = 1

6.2.6.2 Many priority levels

Now consider still only one flow, but many priorities. Assume further, for illus-
trative purposes only, that we are using per flow marking. Then with one flow in
the system, if we choose the weight φ(1) large enough, the resulting equilibrium
sending rate will be in the highest priority and this solution will correspond to
the solution in the case of one priority level. This already gives us a proof of the
conjecture made later on in this chapter that the more priority levels there are
the better the differentiation.

Consider now a system with I = 3 priorities and the buffer partitioned into
discarding areas in the following manner: K(3) = 39, K(2) = 33 and K(1) = 22.
Then in a system with only one flow, the equilibrium sending rate corresponds
to the fixed point equation solution of I = 1 and K = K(pr), where pr is the
priority of the flow. This is shown in figure 6.9.

xl

1.4 1.6 1.8 2 2.2 2.4

1

2

3

4

5

ν(l, xl)

xl

3 3.5 4 4.5 5 5.5

1

2

3

4

5

ν(l, xl)

xl

4.6 4.8 5 5.2 5.4

1

2

3

4

5

ν(l, xl)

φ = 3, pr = 3 φ = 0.75, pr = 2 φ = 0.375, pr = 1
λ = 0.751163 λ = 0.712244 λ = 0.601435

Figure 6.9: Solution to the fixed point equation, in a system with one M/M/1/K
buffer and L = 1 and I = 3

From the pictures in figure 6.9 we also notice that the function

1

RTT (l)

√
2

1− q(l,x)

q(l,x)

is piecewise continuous as a result of the parameterization.

76

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

6.3 Numerical results

In order to study the relative services achievable by the given mechanisms we have
the following basic scenario: two flow groups, L = 2, three priority levels, I = 3,
µ = 1, RTT = 1000/µ and K = 39. Define k = φ(1)/φ(2) and r = ν(1)/ν(2).
We will consider three cases: one delay class with TCP traffic, one delay class
with TCP and non-TCP traffic and finally TCP and non-TCP traffic separated
into two delay classes.

6.3.1 One buffer with only TCP traffic

Figure 6.10 shows the ratio, r = ν(1)/ν(2), of bandwidth allocations for flows
with (φ(1), φ(2)) = (0.08, 0.02), i.e. k = 4, as a function of number of flows n(1)
and n(2). The black areas correspond to equal bandwidth allocation, while the
white areas correspond to bandwidth allocation ratio equal to k. On the left the
marking is per flow, while on the right the marking is per packet.

n(2)

20 40 60 80 100

10

20

30

40

50n(1)

n(2)

20 40 60 80 100

10

20

30

40

50n(1)

Per flow marking Per packet marking
min(r) = 1, max(r) = 4 min(r) = 1, max(r) = 3.46

Figure 6.10: Relative bandwidth allocation ν(1)/ν(2) for flows with k = 4 as a
function of the number of flows. White:r ≥ k, black: r ≤ 1, grey:1 < r < k.

Figure 6.11 shows the same effect of marking for (φ(1), φ(2)) = (0.08, 0.04), i.e.
k = 2. These figures 6.10 and 6.11 can be compared to figures 5.5 and 5.7 of
chapter 5. In chapter 5 the ordering is according to marking while here the
ordering is according to ratio k. However, the figures depict the bandwidth
allocation ratio in the same way and give similar results.

Figure 6.12 shows the two-dimensional cross-section of the diagonals in figure 6.11,
i.e. bandwidth allocation at points where both flow groups have the same number
of flows. The trajectories of ν(1) and ν(2) are grey and black, respectively. The
total number of flows is on the x-axis.

Figure 6.13 shows the effect of increasing the number of priority levels from I = 3
to I = 6, with K = 78 and k = 2. Here again we depict the cross section

77

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

n(2)

10 20 30 40 50

10

20

30

40

50
n(1)

n(2)

10 20 30 40 50

10

20

30

40

50
n(1)

Per flow marking Per packet marking
min(r) = 1, max(r) = 2 min(r) = 1, max(r) = 1.87

Figure 6.11: Relative bandwidth allocation ν(1)/ν(2) for flows with k = 2 as a
function of number of flows. White:r ≥ k, black: r ≤ 1, grey:1 < r < k.

n(l) + n(2)

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14ν(l)

n(1) + n(2)

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14ν(l)

Per flow marking Per packet marking

Figure 6.12: Absolute bandwidth allocation for flows when k = 2 as a function
of the total number of flows. ν(1) gray, ν(2) black.

giving the absolute bandwidth allocations ν(1) and ν(2) as a function of the total
number of flows n(1) + n(2) under the assumption that n(1) = n(2).

Figure 6.13 demonstrates that once the link is congested enough, the TCP mech-
anism forces the flows to drop their rate low enough to attain the highest priority
level and divide bandwidth equally. Under severe congestion there is hence no
difference in the marking schemes. By doubling the number of priority levels to
I = 6, the area where the highest priority level is attained is pushed further on.
Thus with enough priority levels, bandwidth is practically never divided equally
among flows with different weights in times of high congestion.

From the figures, we notice that under high load conditions the marking schemes
are the same. Elsewhere two main differences occur. When the link has low load,
the per flow marking scheme marks all the packets to the lowest priority level and
they share the bandwidth in equal proportions. The per packet marking scheme,
on the other hand, marks only the overflow packets to the lowest priority level,

78

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

meaning that the rest of the packets have the highest or the middle priority.

I = 3
Per flow marking Per packet marking

n(1) + n(2)

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14ν(l)

n(1) + n(2)

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14ν(l)

Absolute sending rate

n(1) + n(2)

20 40 60 80 100

1.2

1.4

1.6

1.8

2ν(1)
ν(2)

n(1) + n(2)

20 40 60 80 100

1.2

1.4

1.6

1.8

2ν(2)
ν(1)

Ratio of sending rate

I = 6
Per flow marking Per packet marking

n(1) + n(2)

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14ν(l)

n(1) + n(2)

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14ν(l)

Absolute sending rate

n(1) + n(2)

20 40 60 80 100

1.2

1.4

1.6

1.8

2
ν(1)
ν(2)

n(1) + n(2)

20 40 60 80 100

1.2

1.4

1.6

1.8

2ν(1)
ν(2)

Ratio of sending rate

Figure 6.13: Absolute and relative bandwidth allocation for flows when k = 2 as
a function of the total number of flows under the assumption n(1) = n(2). ν(1)
gray, ν(2) black.

79

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

When the link is medially loaded, the per flow marking scheme produces larger
difference in bandwidth allocation, at times reaching allocation in proportion to
k. The per packet marking on the other hand is not able to attain differentiation
by a factor of k, depicted in figure 6.10 by the grayer areas of the picture on
the right. The difference stems from the fact that some packets are always also
marked to the highest priority. These observations coincide with those made in
chapter 5.

However, opposed to the flow level model results of chapter 5, from figure 6.12 we
see that though the per packet scheme does not attain a maximum differentiation
of k, its minimum differentiation is always larger than that of the per flow marking
as long as enough priority levels are employed.

Based on the results it is not clear which marking scheme is fairer in dividing
bandwidth among elastic flows. It would seem that though per packet marking
is not able to divide bandwidth at any time in proportion to the weights φ(l),
it is fairer in the sense that it does not give equal proportions of bandwidth to
flows, except when all flows are marked to the highest priority. In order to assess
between the marking schemes, we need to model the case of elastic and streaming
traffic sharing the link, done in the following two sections.

6.3.2 One buffer with TCP and UDP traffic

In the previous section we had TCP traffic scheduled by one buffer for which we
solved the fixed point equation (6.16). Now consider still one delay class and
one buffer, but assume that the flows in group l = 1 are non-TCP flows. The
difference is that they have a constant sending rate ν(1), and the fixed point
equation is only solved for flows in group l = 2.

We set up the above scenario to demonstrate the relationship between flow prior-
ity and achieved throughput. Those flows with a constant sending rate will have
constant priority, while the TCP flows that adjust their sending rate according
to congestion also adjust their priority.

We study the achieved throughputs θ(l) = ν(l)(1 − q(l)) under three constant
sending rates ν(1), chosen so that under per flow marking, the flows are in the
highest, middle, and lowest priority ν(1) = 0.039, ν(1) = 0.079, and ν(1) = 0.16,
respectively.

Using our basic scenario for three priority levels: I = 3, µ = 1, RTT = 1000/µ,
K = 39 and (φ(1), φ(2)) = (0.08, 0.04), i.e. k = 2, we can compare the effect
of constant priority of some flows to the results for elastic flows of the previous
section.

Figure 6.14 illustrates many features of differentiation by priorities and marking.
We notice first of all, the difference between per flow marking and per packet
marking.

80

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

Per flow marking Per packet marking

pr(1) = 3

n(1) + n(2)20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θ(l)

n(1) + n(2)20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θ(l)

Absolute throughput

n(1) + n(2)20 40 60 80 100

5

10

15

20

25θ(1)
θ(2)

n(1) + n(2)20 40 60 80 100

5

10

15

20

25θ(1)
θ(2)

Ratio of throughput

pr(1) = 2

n(1) + n(2)20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θ(l)

n(1) + n(2)20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θ(l)

Absolute throughput

n(1) + n(2)20 40 60 80 100

1

2

3

θ(1)
θ(2)

n(1) + n(2)20 40 60 80 100

5

10

15

20

25

30θ(1)
θ(2)

Ratio of throughput

pr(1) = 1

n(1) + n(2)20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θ(l)

n(1) + n(2)20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θ(l)

Absolute throughput

n(1) + n(2)20 40 60 80 100

0.5
1

1.5
2

2.5
3

3.5
4θ(1)

θ(2)

n(1) + n(2)20 40 60 80 100

5

10

15

20

25

30θ(1)
θ(2)

Ratio of throughput

Figure 6.14: One buffer with TCP and non-TCP traffic. Absolute and relative
bandwidth allocation for flows when k = 2 as a function of the total number of
flows under the assumption n(1) = n(2), I = 3. θ(1) gray, θ(2) black.

81

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

When the non-TCP traffic has the highest priority, there is no visible difference
between the marking schemes. Furthermore, when the aggressive flow has the
highest priority, there is no way of limiting its sending rate. This is the main
difference between TCP and non-TCP flows, as can be seen by comparing figure
6.13 and 6.14.

However, when the non-TCP flow has a priority less than I, only per flow marking
is able to constraint the bandwidth received by the aggressive flow. For per packet
marking there is no visible difference regardless of the priority of the non-TCP
flow, especially when the network is heavily congested.

The pictures for per flow marking also show that the non-TCP flows do not
always receive more bandwidth than the TCP flows. In fact, only when the fixed
priority of the non-TCP flows is optimal in relation to the load of the network,
the non-TCP flows receive more bandwidth then the TCP flows. In times of low
load it is optimal to have low priority and in times of high load to have high
priority. The TCP flow is able to adjust its priority to differ from the priority of
the aggressive flows and therefore only when the constant priority coincides with
the load level of the network, does the aggressive flow get more than the TCP
flow.

Finally, given that there are enough priority levels so that the priority of the
aggressive flow is less than I, we notice that though per flow marking is able to
constrain the bandwidth share of the aggressive flow, the maximum bandwidth
share is twice as much as the ratio of weights indicates. The explanation for this
is that the TCP flow protects itself from being starved when its priority is one
higher than that of the non-TCP flow. The TCP flow must thus halve its sending
rate and as the ratio of weights between the TCP and non-TCP is 1/k = 1/2 the
overall ratio is

r =
t(1, i)

t(2, i+ 1)
= 2

t(1, i)

t(2, i)
= 2k.

This means that though the ratio is not k, with per flow marking it is still
proportional to k.

Figure 6.15 shows the ratio of sending rate in the case of 66% TCP traffic and
33% non-TCP traffic. Here the trajectories are solid, gray, and dashed for ν(1) =
0.039, ν(1) = 0.079, and ν(1) = 0.16, respectively. Thus compared to figure 6.14
each case pr(1) = 1, pr(1) = 2 and pr(1) = 3 are depicted in the same figure. This
scenario will be replicated for the case of two delay classes in the next section.

6.3.3 Two buffers with nrt TCP traffic and rt UDP traffic

The two buffer model is used to study the combined effect of the three degrees
of freedom introduced in the text: marking, weighted capacity, and discarding
thresholds. Furthermore, we can compare the result with the one delay class, to
see if our conjecture on the difference of marking schemes holds, and how the
weighted capacity and discarding affects these results.

82

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

Per flow marking Per packet marking

n(1) + n(2)
10 20 30 40

2

4

6

8

10

12θ(1)
θ(2)

n(1) + n(2)
10 20 30 40

2

4

6

8

10

12θ(1)
θ(2)

Ratio of throughput

Figure 6.15: One buffer with 66% TCP and 33% non-TCP traffic. Relative
bandwidth allocation for flows when k = 2 as a function of the total number of
flows under the assumption n(1)/n(2) = 2, I = 3.

The elastic traffic serviced by the nrt buffer is TCP traffic modelled by the equa-
tions of section 6.2.1, while the streaming flows serviced by the rt buffer send
non-TCP traffic at a constant intensity. Thus the equilibrium sending rate ν(l)
is only solved for the elastic flows, with constant background traffic produced by
the non-TCP flows. Notice however, that the priority level of the non-TCP flows
is still determined by the marker.

We compare the effect of dividing the link capacity by using the following three
scenarios, priority queuing (w1 = 1, w2 = 0), equal sharing (w1 = w2 = 0.5)
and unequal sharing (w1 = 0.75, w2 = 0.25). Discarding can be independent or
dependent. For the dependent discarding we use the threshold function depicted
by the 7× 7 matrix of equation (6.17) derived from equation (4.8), also used in
[LSLH00],

1 1 1 1 2 2 3
1 1 1 1 2 2 3
1 1 1 2 2 2 3
1 1 2 2 2 3 3
2 2 2 2 3 3 3
2 2 2 3 3 3 3
3 3 3 3 3 3 3

. (6.17)

The square matrix is scaled to the appropriate buffer spaces so that the elements
of the matrix correspond to the lowest priority level that is accepted to the system
for each buffer system state.

We have the following scenario in terms of the free parameters: µ = 1, RTT =
1000/µ, K1 = 13, K2 = 39 and I = 3. We have two flow groups, L = 2, one
group of non-TCP flows with φ(1) = 0.08 and one group of TCP flows with
φ(2) = 0.04. The ratio between the weights is k = 2. The equilibrium sending
rate is only solved for TCP flows, l = 2. The non-TCP flows have a fixed sending
rate ν(1) of 0.039, 0.079, and 0.16 chosen so that under the per flow marking
scheme the flows, when I = 3, are assigned priorities pr(1) = 3, pr(1) = 2, and
pr(1) = 1, respectively. In the figures to follow the trajectories are solid, gray,
and dashed for ν(1) = 0.039, ν(1) = 0.079, and ν(1) = 0.16, respectively.

Each set of pictures depicted in figure 6.16 shows the ratio θ(1)
θ(2)

= ν(1)(1−q(1))
ν(2)(1−q(2))

83

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

between throughputs of flows as a function of the total number of flows, under
the condition n(1)/n(2) = 1/2. In figure 6.17, we have n(1) = n(2) and in figure
6.18, we have n(1)/n(2) = 2. From these figures, we notice that figure 6.15
depicting the same scenario for one delay class roughly corresponds to two delay
classes with dependent discarding.

When priority queuing is used to schedule traffic, only with per flow marking and
dependent discarding TCP flows can be protected from bandwidth exhaustion by
the non-TCP flows. However, due to priority queuing the streaming traffic that
is admitted to the system is serviced with low delay and jitter.

From the pictures, one notices that marking all packets of the flow to the ap-
propriate priority level encourages the TCP mechanism to optimize the sending
rate according to the state of the network. If the link is congested by streaming
traffic, the responsive flows can attain a higher priority level by dropping their
sending rate. Then due to the dependent discarding the TCP traffic is admitted
to the system as its priority level is high enough, and the non-responsive flows
sending at a rate too high compared to the congestion of the link are discarded.
Only when the non-TCP flows are sending at a rate low enough to attain highest
priority are they able to use more than their fair share of the bandwidth. By
having enough priority levels, i.e. more than three, this effect is also diminished.

From figure 6.16, we also notice that the use of dependent discarding controls
the throughput of non-responsive flows better than independent discarding. The
effect is mainly due to the fact that under the fixed threshold mechanism when
the nrt buffer is congested, packets in the rt buffer are also discarded to alleviate
the congestion.

By giving some minimum weight to the nrt buffer, the TCP traffic can be pro-
tected from bandwidth exhaustion by the non-TCP flows. However, there is no
clear dependency between the ratio of weights of the scheduler (w1/w2) and the
ratio of weights of the flow (φ(1)/φ(2)).

Furthermore, the first three identical pairs of pictures demonstrate that when
independent discarding is used only the change of scheduler weights affects the
division of bandwidth between delay classes.

The main conclusion from the figures 6.16 – 6.18 is that only when both per
flow marking and dependent discarding are used, does the share of throughput
obtained by the streaming traffic depend on the link state. The dependency
means that when there are few users on the link, it is optimal for the streaming
traffic to send ν(1) = 0.16 and have its packets marked to the lowest priority
level. As the number of users increases it would be optimal for the streaming
traffic to drop its sending rate to, e.g. ν(1) = 0.079, and as the number of users
further increases it would be optimal to send at the highest priority level, with
intensity ν(1) = 0.039. In all other cases depicted in the figure, it is always
optimal to send as much as possible, even if all or some of the packets are then
marked to the lowest priority level. This means that the other combinations of
the mechanisms are not able to force or give an incentive to the user to adjust the
sending rate according to the state of the network. The use of per flow marking

84

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

and dependent thresholds thus gives a powerful incentive for flows to be TCP
friendly [FF99].

w1 = 1, w2 = 0 w1 = .75, w2 = .25 w1 = .5, w2 = .5

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

One priority, i.e. no differentiation

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per packet marking, independent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per flow marking, independent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per packet marking, dependent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per flow marking, dependent discarding

Figure 6.16: Effect of marking and discarding when the minimum weights of the
rt buffer and nrt buffer change. 66% of the flows are TCP and 33% non-TCP.

85

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

w1 = 1, w2 = 0 w1 = .75, w2 = .25 w1 = .5, w2 = .5

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

One priority, i.e. no differentiation

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per packet marking, independent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per flow marking, independent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per packet marking, dependent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per flow marking, dependent discarding

Figure 6.17: Effect of marking and discarding when the minimum weights of the
rt buffer and nrt buffer change. 50% of the flows are TCP and 50% non-TCP.

86

CHAPTER 6. PACKET LEVEL DIFFERENTIATION MODEL

w1 = 1, w2 = 0 w1 = .75, w2 = .25 w1 = .5, w2 = .5

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

One priority, i.e. no differentiation

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per packet marking, independent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per flow marking, independent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per packet marking, dependent discarding

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

n(1) + n(2)
10 20 30 40 50 60

2

4

6

8

10

12

θ(1)
θ(2)

Three priorities, per flow marking, dependent discarding

Figure 6.18: Effect of marking and discarding when the minimum weights of the
rt buffer and nrt buffer change. 33% of the flows are TCP and 66% non-TCP.

87

Chapter 7

Simulations

We now deepen the study of the previous chapters to include simulations, with
special considerations on the effect on differentiation that the metering mecha-
nisms at the boundary nodes have. To this end, we consider the network model
of chapter 4: a single bottleneck link of a DiffServ cloud loaded by a fixed number
of elastic TCP sources in congestion avoidance mode and with a similar round
trip time (RTT). At the boundary of the DiffServ cloud, the traffic of these TCP
sources is conditioned, i.e. metered and marked, whereas inside the DiffServ node
it is forwarded or discarded by a scheduling unit that includes a single buffer with
multiple priority levels.

The two metering and marking mechanisms compared are token bucket and ex-
ponential weighted moving average (EWMA). We validate the earlier hypothesis
used in our analytical models that the metering and marking result of EWMA,
the so called momentary bit rate, can be used to mark packets per flow, while
the token bucket is a per packet metering and marking mechanism.

In EWMA, the parameter α adjusts the memory of the mechanism. Marking
is performed based on predefined thresholds of the momentary bit rate. The
token bucket mechanism is implemented as a cascaded system of many token
buckets; see [HG99b] for an example. Each bucket has the same capacity c, but
a specified rate in accordance to the marking thresholds of the EWMA system.
Using the simulation model, we study the effect that the parameter values have
on the metering and marking result and compare them to the assumptions of the
analytical model.

As a result, we give further hindsight to the effect that various DiffServ traffic-
handling mechanisms have on the fairness perceived by the user. We continue to
use the division of bandwidth and the division of packets into priority levels as
the decisive factors for our results.

89

CHAPTER 7. SIMULATIONS

7.1 Simulation setting

A single bottleneck link of a DiffServ cloud is loaded by a fixed number n of
greedy TCP sources with a similar round trip time (RTT). In the simulations,
the RTT may be fixed or random. We model the TCP flows in the congestion
avoidance phase, i.e. whenever a packet is lost, the corresponding source halves
its window size; otherwise it is linearly increased.

We have the same notation as before. All flows belong to the same delay class
and are divided into groups l ∈ L2 according to the weight φ(l). Each group
consists of n(l) identical flows. Packets of a flow are marked to priority levels
i ∈ I = {1, ..., I} according to the thresholds t(l, i).

We wish to study the effect of the metering mechanisms and the time parameters
on the system. The evaluation is made based on the resulting bandwidth allo-
cation and division into priority classes. We again consider differentiation as a
function of the number of sources, as opposed to a function of the load of the net-
work. This is because we are considering elastic sources that adjust their sending
rate, and thus adjust the load, according to the congestion of the network.

The marking mechanism assigns a priority level to the flow or its packets. Then,
depending on the congestion of the link, some packets may be discarded, namely
when the priority of the packet is less than the threshold priority of the scheduler.
The TCP mechanism adjusts its window size according to the feedback signal from
the buffer system. By gathering information on how the stable sending rate and
corresponding priority level allocation depends on the number of flows, we can
study the differences between the marking schemes. Figure 7.1 summarizes the
simulation setting.

aggregates Accept

Discard
Delay
class

Discard

Real-time

Non-real-

time

Marker 1
w
1
w

2
w
2
w

Meter

Conditioner

Scheduling unit

Boundary node

Interior node

flows

TCP source

window size

packet acknowledged

packet not acknowledged

Figure 7.1: The simulation setting

7.1.1 Metering flows at the conditioner

Flows are metered at the boundary of the DiffServ cloud either using token buck-
ets or exponential weighted moving average (EWMA) of the bit rate. The time

90

CHAPTER 7. SIMULATIONS

parameters c and α must be in accordance with the round trip time RTT of the
packets.

In order to compare the two metering principles and the time parameters c and
α, we fix the rate r(i) of token bucket i to correspond to the threshold t(i). As
the thresholds are also functions of the flow group l, the rate of the token bucket
is also defined for each flow group. We thus have

r(l, i) = t(l, i) = φ(l)a(i), i = 1, ..., I − 1,

where
a(i) = 2−i+I/2−0.5.

We fix the thresholds of EWMA marking to the rates of the token buckets in order
to model the relationship between relative services and the time parameters, α
and c.

For the EWMA metering we calculate the momentary bit rate (mbr) of the flow
as given by equation (4.2), using the following definition

α =
5

KD
,

where K is the size of the buffer in the scheduling unit and D is a free time
parameter. The priorities are then determined based on the thresholds t(l, i).
The j:th packet of flow k ∈ l has priority i, if

t(l, i) ≤ mbr(k, j) < t(l, i− 1).

7.1.2 TCP model

The TCP sources are modelled in congestion avoidance mode, adjusting their
sending rate according to the feedback signal from the forwarding unit.

The round trip time is the time it takes for an acknowledgment to reach the
TCP source after the packet has been sent. We let RTT be random and from an
exponential distribution.

The window size is initialized to w = 1. It refers to the number of unacknowledged
packets that can be sent at a time. Once a packet is sent the counter unack is
incremented by one. If the packet is accepted to the scheduling unit, that is it has
a high enough priority not to be discarded, in RTT/2 time the acknowledgement
reaches the source and the unack counter is decremented by one. The window
size is updated to

inc = 1/w,

w = w + inc.

The number of new packets sent after the update is bwc − unack.

On the other hand, if the priority of the packet is too low it is discarded and not
accepted to the scheduling unit. After RTT/2 the information reaches the source

91

CHAPTER 7. SIMULATIONS

and the window size is halved and the unack counter is decremented by one. If
the counter unack is 0 after the halving of the window, a new packet is sent. The
window size is thus always at least 1.

7.1.3 Scheduling unit

The packets of the sources are forwarded inside the DiffServ node by a scheduling
unit consisting of one FIFO buffer and exponentially distributed service times.
The buffer space is divided by I discarding thresholds. Denote the discarding
threshold of priority level i ∈ I by K(i), with K(I) = K, the size of the buffer.
If the buffer state is greater than K(i) only packets with priority greater than i
are accepted to the scheduling unit, other packets are discarded.

7.2 Numerical results

The basic scenario is as follows: two flow groups, L = 2, three precedence levels,
I = 3, µ = 1 and mean RTT = 50/µ, 100/µ or 1000/µ. Set K(1) = 22,
K(2) = 33 and K = 39 packets. Define k = φ(1)/φ(2) as before.

We study the equilibrium bandwidth allocation in terms of the ratio of through-
puts and ratio of sending rate between flows in the two groups. In the simula-
tions, we consider the two metering mechanisms: token bucket and EWMA. In
the analytical model, we have the token bucket mechanism modelled as per packet
marking and EWMA modelled as per flow marking. We wish to validate the as-
sumptions of the analytical model and study the effect of the time parameters c
and α using simulations.

7.2.1 EWMA parameter α

The set of pictures depicted in figure 7.2 summarizes the relationship between
α and RTT . Note that we vary the free parameter D of α. The relationship is
shown in terms of the ratio of throughputs for flows with weights (φ(1), φ(2)) =
(0.08, 0.04), i.e. k = 2, as a function of number of flows n(1) and n(2). The
black areas correspond to equal bandwidth allocation, the white areas correspond
to bandwidth allocation at least equal to k, and the gray areas to bandwidth
allocation between 1 and k. Table 7.1 gives the corresponding numerical values
for ratios of throughput and table 7.2 the numerical values for ratios of sending
rate.

From figure 7.2 we make the following observations on the EWMA principle and
the parameter D.

1. The minimum ratio of throughputs and sending rate is always approxi-
mately 1.

92

CHAPTER 7. SIMULATIONS

RTT = 50

White: ratio � 2

Gray: 1 < ratio < 2

Black: ratio � 1

n(1)

 0 10 20 30

0

10

20

30

D�100

0 10 20 30

0

10

20

30

D�1000

0 10 20 30

0

10

20

30

D�10000

n(2)

RTT = 100

White: ratio � 2

Gray: 1 < ratio < 2

Black: ratio � 1

n(1)

0 10 20 30

0

10

20

30

D�100

0 10 20 30

0

10

20

30

D�1000

0 10 20 30

0

10

20

30

D�10000

n(2)

RTT = 1000

White: ratio � 2

Gray: 1 < ratio < 2

Black: ratio � 1

n(1)

0 10 20 30
0

10

20

30

D�100

0 10 20 30
0

10

20

30

D�1000

0 10 20 30
0

10

20

30

D�10000

n(2)

Figure 7.2: The effect of parameter D on bandwidth division under per flow
marking in the simulation setting

RTT D = 100 D = 1000 D = 10000
50 Min 0.978437 0.978525 0.988121

Max 2.31008 2.48056 2.58277
100 Min 0.982882 0.983543 0.988843

Max 1.92585 2.10297 2.16211
1000 Min 0.951966 0.95911 1.01888

Max 1.80139 1.65922 1.84981

Table 7.1: Relationship between α and RTT , when k = 2 in terms of throughput

RTT D = 100 D = 1000 D = 10000
50 Min 0.988076 0.987168 0.993539

Max 1.88536 1.98159 2.01127
100 Min 0.985907 0.986997 0.990926

Max 1.79279 1.95817 2.01054
1000 Min 0.95285 0.959991 1.01887

Max 1.79738 1.65611 1.84697

Table 7.2: Relationship between α and RTT , when k = 2 in terms of sending
rate.

93

CHAPTER 7. SIMULATIONS

2. The maximum ratio of throughputs and sending rate is always of the same
order as k. Thus we can deduce that the maximum bandwidth of a flow
inside group l is in proportion to price paid, i.e. in proportion to the weight
φ(l).

3. There is a clear dependency between the two time parameters D and RTT .
As RTT decreases, the area of differentiation widens and deepens, i.e. the
maximum ratio increases. The free parameter D is also sensitive to the
time scale of the simulation, the RTT . If we wish that the maximum dif-
ferentiation ratio is equal to the ratio k of the weights and the minimum
differentiation is not less than 1, we could then choose D = 100 when
RTT = 100. On the other hand, when RTT = 100, the loss probabilities
are not negligible and if we want the sending rate to have maximum ratio
of k, we could choose, based on Table 7.2, D = 1000 or D = 10000. Fur-
thermore, we also made simulations with D = 1 and practically no area of
differentiation resulted. Therefore, it is essential that the parameter D is
not too small compared to RTT .

4. With three precedence levels, I = 3, only one area of maximum differen-
tiation is obtained. As was shown by analytical results in chapter 6 and
will be shown in section 7.2.3, there are two areas of differentiation when
I = 3. However, by increasing the number of priority levels we are able
to obtain a larger area of differentiation and more than one area of maxi-
mum differentiation. Figure 7.3 depicts the cases I = 2, 3, 6 and 8, with
RTT = 100 and D = 100. Table 7.3 gives the corresponding values for the
minimum and maximum ratios of throughputs, and we note that for I = 6,
the minimum value of the ratio of throughputs is 1.45. Therefore, the flow
group with higher weight always receives more bandwidth than the group
with lower weight.

n(1)

0 10 20 3040 5060
0

10

20

30

40

50

60
I�2

0 1020 30 4050 60
0

10

20

30

40

50

60
I�3

0 10 20 3040 5060
0

10

20

30

40

50

60
I�6

0 10 2030 4050 60
0

10

20

30

40

50

60
I�8

n(2)

White: ratio � 2

Gray: 1 < ratio < 2

Black: ratio � 1

Figure 7.3: Effect of increasing number of priority levels I

I Min Max
2 0.992562 1.98859
3 0.982882 1.92585
6 1.45289 2.39094
8 1.41926 2.39341

Table 7.3: Minimum and maximum ratios of throughputs for varying I

94

CHAPTER 7. SIMULATIONS

7.2.2 Token bucket parameter c

The set of figures depicted in figure 7.4 summarizes the relationship between c
and RTT . As with the EWMA principle, we study the ratio of throughputs
for flows with weights (φ(1), φ(2)) = (0.08, 0.04), i.e. k = 2, as a function of
number of flows n(1) and n(2). The black areas correspond to equal bandwidth
allocation, the white areas correspond to bandwidth allocation at least equal to
k, and the gray areas to bandwidth allocation between 1 and k. Table 7.4 gives
the corresponding numerical values for ratios of throughput and table 7.5 the
numerical values for ratios of sending rate.

RTT = 50

White: ratio � 2

Gray: 1 < ratio < 2

Black: ratio � 1

n(1)

0 10 20 30

0

10

20

30

C�100

0 10 20 30

0

10

20

30

C�1000

0 10 20 30

0

10

20

30

C�10000

 n(2)

RTT = 100

White: ratio � 2

Gray: 1 < ratio < 2

Black: ratio � 1

n(1)

0 10 20 30

0

10

20

30

C�100

0 10 20 30

0

10

20

30

C�1000

0 10 20 30

0

10

20

30

C�10000

n(2)

RTT = 1000

White: ratio � 2

Gray: 1 < ratio < 2

Black: ratio � 1

n(1)

0 10 20 30
0

10

20

30

C�100

0 10 20 30
0

10

20

30

C�1000

0 10 20 30
0

10

20

30

C�10000

n(2)

Figure 7.4: The effect of parameter c under per packet marking, in the simulation
setting

From Figure 7.4 we make the following observations on the token bucket principle
and the parameter c.

1. The minimum ratio of throughputs and sending rate is approximately 1,
though not as clearly as with the EWMA principle.

2. The maximum ratio of throughputs and sending rate is clearly less than k.

95

CHAPTER 7. SIMULATIONS

RTT c = 100 c = 1000 c = 10000
50 Min 0.991143 0.990008 0.982195

Max 1.59379 1.59379 1.60033
100 Min 0.961958 0.966481 0.976683

Max 1.60769 1.61122 1.60857
1000 Min 0.926936 0.904089 0.937499

Max 1.59202 1.59522 1.82334

Table 7.4: Relationship between c and RTT , when k = 2 in terms of throughput

RTT c = 100 c = 1000 c = 10000
50 Min 0.993397 0.993311 0.988377

Max 1.47559 1.47559 1.48043
100 Min 0.967552 0.970519 0.979241

Max 1.55598 1.56103 1.55799
1000 Min 0.927288 0.904419 0.93769

Max 1.5914 1.59459 1.82228

Table 7.5: Relationship between c and RTT , when k = 2 in terms of sending rate

A flow inside group l does not receive maximum bandwidth in proportion
to price paid, i.e. in proportion to the weight φ(l), to the same extent as
with the EWMA principle.

3. There is dependency between the time parameters c and RTT . The main
difference occurs, when RTT = 1000 and c changes from 1000 to 10000.
Furthermore, simulations made with c = 5 and RTT = 100 showed that
the area of differentiation reduces as c decreases. Therefore, it is essential
that the parameter c is not too small compared to RTT .

Though corresponding figures are not included in this work, we have simulated
the token bucket principle with more than three precedence levels. As a result,
the areas of differentiation increased as I increased in the same way as in Figure
7.3.

7.2.3 Analytical results

The analytical packet level model of chapter 6 gives us the equilibrium sending
rate ν(l) and the corresponding throughput θ(l) = ν(l)(1 − q(l)) for each flow
group. Using the ratio of throughput, we can study the effect that marking has
in dividing bandwidth between elastic flows and compare the results given by
the simulations. The case RTT = 1000 was already studied in chapter 6, here
we present the results for RTT = 100 and compare the simulation results to the
results given by the packet level model.

In Figure 7.5 marking is per flow, while in Figure 7.6 marking is per packet. Both
figures show the ratio, rν = ν(1)/n(2), of sending rate and the corresponding ratio
of throughputs rθ = θ(1)/θ(2) for flows with weights (φ(1), φ(2)) = (0.08, 0.04),

96

CHAPTER 7. SIMULATIONS

i.e. k = 2, as a function of number of flows n(1) and n(2). The black areas corre-
spond to equal bandwidth allocation, the white areas correspond to bandwidth
allocation at least equal to k and the gray areas to bandwidth allocation between
1 and k.

n(2)

5 101520253035

5

10

15

20

25

30

35
n(1)

n(2)

5 101520253035

5

10

15

20

25

30

35
n(1)

Sending rate Throughput
min(rν) = 1, max(rν) = 2 min(rθ) = 1, max(rθ) = 2.66666

Figure 7.5: Per flow marking : Relative bandwidth allocation rν = ν(1)/ν(2) and
rθ = θ(1)/θ(2) for flows with k = 2 as a function of number of flows. White:
r ≥ k, black: r ≤ 1, grey: 1 < r < k.

n(2)

5 101520253035

5

10

15

20

25

30

35
n(1)

n(2)

5 101520253035

5

10

15

20

25

30

35
n(1)

Sending rate Throughput
min(rν) = 1, max(rν) = 1.74732 min(rθ) = 1, max(rθ) = 1.85529

Figure 7.6: Per packet marking : Relative bandwidth allocation rν = ν(1)/ν(2)
and rθ = θ(1)/θ(2) for flows with k = 2 as a function of number of flows. White:
r ≥ k, black: r ≤ 1, grey: 1 < r < k.

The following observations made in chapter 6 can be made on figures 7.5 and
figures 7.6 and will be reviewed here:

1. When the marking is per flow a maximum ratio of k is achieved. On the
other hand, when the marking is per packet the maximum bandwidth ratio
ν(1)/ν(2) is less than k. The difference stems from the fact that with per
packet marking some packets are always also marked to highest precedence.

97

CHAPTER 7. SIMULATIONS

2. Bandwidth is divided in equal proportions more often with the per flow
marking scheme than with the per packet marking scheme. When only
the overflow packets are marked to lower precedence levels, the rest of the
packets have highest or medium precedence and the ratio is higher than 1.

7.3 Metering mechanisms compared

The simulation and analytical results are the same qualitatively, though they
differ a bit quantitatively. The following similarities are observed:

1. Both models result in bandwidth divisions with similar minimum and max-
imum values, as long as the parameters D and c used in the simulations are
large enough compared to RTT.

2. Furthermore, simulations done using the token bucket mechanism give, in
terms of minimum and maximum bandwidth division, the same results as
the analytical study for per packet marking. The same is observed for
simulations using the EWMA principle and analytical results using per flow
marking.

3. The number of differentiation areas increases as I increases as shown by
simulations in figure 7.3 and by analytical results in earlier sections.

The following disparity is observed:

1. There are a different number of differentiation areas. For the analytical
model there are always I − 1 differentiation areas, while the simulations
resulted in only one area of differentiation for I = 3.

The results thus confirm our hypothesis that the token bucket and EWMA meth-
ods can be modelled as per packet and per flow metering and marking mecha-
nisms, respectively. Furthermore, the analytical results are qualitatively consis-
tent with the simulation outcome and can be used to understand how differenti-
ation mechanisms should be designed.

98

Chapter 8

Conclusions

Some form of differentiation is needed in networks that service traffic with differ-
ent quality requirements. We have chosen to divide flows into two delay classes:
one for elastic traffic and the other for non-elastic traffic. However, in order to
control the use of scarce resources, in this case bandwidth, we need to further
divide the traffic into priority levels based on a contracted rate, to which a price
may be associated.

If Differentiated Services (DiffServ) is the Quality of Service (QoS) architecture
used and no admission control is employed, then relative services is a better service
objective than assured services. In assured services the flow should receive a rate
at least equal to its contracted rate, while in relative services the rate of the flow
should be proportional to the contracted rate.

Previous work has already shown that assured services cannot be met without
admission control. We show that relative services can be achieved in a DiffServ
network given that enough priority levels are used.

The key differentiation mechanisms are per flow marking and dependent dis-
carding. Per flow marking is achieved using a traffic meter based on exponential
moving average of the sending rate, given that the metering time parameter is
of the same magnitude as the round trip time of the flow. Dependent discarding
means that the dropping thresholds of a scheduling unit take into account the
buffer state of all the queues in the scheduling unit.

We showed, that in the case of two delay classes, the real time traffic and elastic
traffic discarding thresholds of a priority level have to be dependent and take
into account the total traffic inside a scheduler. This prevents non-conforming
UDP traffic from exhausting the bandwidth at the expense of conforming TCP
traffic. Furthermore, using dependent discarding together with per flow marking
encourages all flows regardless of their congestion control mechanism to conform
their sending rate to the load level of the network. The weights of a WFQ
scheduler and corresponding buffer sizes are then more relevant in bounding the
delay than in dividing the throughput between delay classes.

The congruence between the flow level models, packet level models and simula-

99

CHAPTER 8. CONCLUSIONS

tions shows that each modelling approach can be used to assess the differentia-
tion mechanisms. The choice of the modelling level depends on what aspects and
mechanisms need to be evaluated.

Further research on the topic presented in the thesis include a dynamic flow
model, where the number of flows varies randomly, and including short-lived
TCP flows. In the packet level model, considering stability questions of the inter-
action between TCP congestion control and DiffServ mechanisms would require
extending the TCP model to a more detailed and dynamic traffic model. In the
flow level models, considering larger networks would be an interesting topic for
further research on TCP fairness in differentiated networks.

100

Bibliography

[AAB00] Eitan Altman, Kostya Avrachenkov, and Chadi Barakat. A stochas-
tic model of TCP/IP with stationary random losses. In Proceedings
of ACM SIGCOMM, pages 231–242, 2000.

[ADG+00] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson,
J. Heidemann, J. Touch, H. Kruse, S. Ostermann, K. Scott, and
J. Semke. Ongoing TCP Research Related to Satellites, February
2000. RFC 2760.

[AN02] Samuli Aalto and Eeva Nyberg. Flow level models of diffserv packet
level mechanisms. In P. Lassila, E. Nyberg, and J. Virtamo, editors,
Proceedings of the Sixteenth Nordic Teletraffic Seminar, NTS 16,
pages 194–205, Espoo, Finland, August 2002.

[APS99] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control,
April 1999. RFC 2581.

[Bar01] Chadi Barakat. TCP/IP modeling and validation. IEEE Network,
15(3):38–46, May 2001.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
An Architecture for Differentiated Service, December 1998. RFC
2475.

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated Services in the
Internet Architecture: an Overview, June 1994. RFC 1633.

[BF01] H. Balakrishnan and S. Floyd. Enhancing TCP’s Loss Recovery
Using Limited Transmit, January 2001. RFC 3042.

[BM01] Thomas Bonald and Laurent Massoulié. Impact of fairness on In-
ternet performance. In Proceedings of ACM SIGMETRICS, pages
82–91, 2001.

[DSR99] Constantinos Dovrolis, Dimitrios Stiliadis, and Parameswaran Ra-
manathan. Proportional differentiated services: Delay differentiation
and packet scheduling. In Proceedings of ACM SIGCOMM, pages
109–120, 1999.

[dVLK01] G. de Veciana, T.-J. Lee, and T. Kontantopoulos. Stability
and performance analysis of networks supporting elastic services.
IEEE/ACM Transactions on Networking, 9(1):2–14, February 2001.

101

BIBLIOGRAPHY

[ECP] O. Elloumi, S. De Cnodder, and K. Pauwels. Usefulness of three
drop precedences in Assured Forwarding service. IETF Draft July
1999.

[FBAPR01] S. Ben Fredj, T. Bonald, G. Régnié A Proutiere, and J.W. Roberts.
Statistical bandwdith sharing: A study of congestion at flow level.
In Proceedings of ACM SIGCOMM, pages 111–122, August 2001.

[FF99] S. Floyd and K. Fall. Promoting the use of end-to-end congestion
control in the Internet. IEEE/ACM Transactions on Networking,
7(4):458–472, August 1999.

[FH99] S. Floyd and T. Henderson. The NewReno Modification to TCP’s
Fast Recovery Algorithm, April 1999. RFC 2582.

[Flo91] S. Floyd. Connections with multiple congested gateways in packet-
switched networks part 1: One-way traffic. Computer Communica-
tion Review, 21(5):30–47, October 1991.

[Flo01] Sally Floyd. A report on recent developments in TCP congestion
control. IEEE Communications Magazine, 39(4):84–90, April 2001.

[FMMP00] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to
the Selective Acknowledgement (SACK) Option for TCP, July 2000.
RFC 2883.

[GDJL] M. Goyal, A. Durresi, R. Jain, and C. Liu. Performance analysis of
Assured Forwarding. IETF Draft October 1999.

[GK99] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution
of congestion control. Automatica, 35:1969–1985, 1999.

[HBWW99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured For-
warding PHB Group, June 1999. RFC 2597.

[HG99a] J. Heinanen and R. Guerin. A Single Rate Three Color Marker,
September 1999. RFC 2697.

[HG99b] J. Heinanen and R. Guerin. A Two Rate Three Color Marker,
September 1999. RFC 2698.

[HKL+00] J. Harju, Y. Koucheryavy, J. Laine, S. Saaristo, K. Kilkki, J. Ruutu,
H. Waris, J. Forsten, and J. Oinonen. Performance measurements
and analysis of TCP flows in a differentiated services WAN. In
Proceedings of the Local Computer Networks conference (LCN 2000),
Tampa, Florida, USA, pages 1 – 10, November 2000.

[JNP99] V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding
PHB, June 1999. RFC 2598.

[Kel97] F. Kelly. Charging and rate control for elastic traffic. Eur. Trans.
Telecommun, 8:33–37, 1997.

102

BIBLIOGRAPHY

[Kel99] F. Kelly. Mathematical modelling of the Internet. In Proc. of
Fourth International Congress on Industrial and Applied Mathemat-
ics, pages 105–116, 1999.

[Kil97] K. Kilkki. Simple Integrated Media Access. Available at
http://www-nrc.nokia.com/sima, 1997.

[KMT98] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: Shadow prices, proportional fairness and stability. Journal
of the Operational Research Society, 15(49):237–255, 1998.

[KP91] P. Karn and C. Partridge. Improving round-trip time estimates in
reliable transport protocols. ACM Transactions on Computer Sys-
tems, 9(4):364–373, November 1991.

[KR98] K. Kilkki and J. Ruutu. Simple Integrated Media Access (SIMA)
with TCP. In the 4th INFORMS Telecommunications conference
Boca Raton, FL, USA, March 1998.

[LSLH00] J. Laine, S. Saaristo, J. Lemponen, and J. Harju. Implementation
and measurements of simple integrated media access (SIMA) net-
work nodes. In Proceedings for IEEE ICC 2000, pages 796–800,
June 2000.

[MBDM99] M. May, J. Bolot, C. Diot, and A. Jean Marie. Simple performance
models for Differentiated Services schemes for the Internet. In Pro-
ceedings of IEEE INFOCOM, pages 1385–1394, March 1999.

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgement Options, October 1996. RFC 2018.

[MR99] L. Massoulié and J. Roberts. Bandwidth sharing: Objectives and
algorithms. In Proceedings of IEEE INFOCOM, pages 1395–1403,
1999.

[MSMO97] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic
behavior of the TCP congestion avoidance algorithm. Computer
Communications Review, 27(3), July 1997.

[MW00] Jeonghoon Mo and Jean Walrand. Fair end-to-end window-
based congestion control. IEEE/ACM Transactions on Networking,
8(5):556–567, 2000.

[NA02] Eeva Nyberg and Samuli Aalto. How to achieve fair differentia-
tion. In Networking 2002, pages 1178–1183, Pisa, Italy, May 2002.
Springer-Verlag.

[NAS02] Eeva Nyberg, Samuli Aalto, and Riikka Susitaival. A simulation
study on the relation of DiffServ packet level mechanisms and flow
level QoS requirements. In International Seminar, Telecommunica-
tion Networks and Teletraffic Theory, St. Petersburg, Russia, Jan-
uary 2002.

103

BIBLIOGRAPHY

[NAV01] Eeva Nyberg, Samuli Aalto, and Jorma Virtamo. Relating flow level
requirements to DiffServ packet level mechanisms. Technical Report
TD(01)04, COST279, October 2001.

[PFTK98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: a simple model and its empirical validation. In Pro-
ceedings of ACM SIGCOMM, pages 303–314, 1998.

[PG93] Abhay K. Parekh and Robert G. Gallagher. A generalized pro-
cessor sharing approach to flow control in integrated services net-
works: The single-node case. IEEE/ACM Transactions on Network-
ing, 1(3):344–357, 1993.

[Pos81] J. Postel. Transmission Control Protocol, September 1981. RFC
793.

[PSN99] P. Pieda, N. Seddigh, and B. Nandy. The dynamics of TCP and
UDP interaction in IP-QoS Differentiated Service networks. In 3rd
Canadian Conference on Broadband Research (CCBR), November
1999.

[RF99] K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Conges-
tion Notification (ECN) to IP, January 1999. RFC 2481.

[Sch99] G. Schultz. A simulation study if the SIMA priority scheme. Un-
published, 1999.

[SNT+00] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Firoiu. On achiev-
able service differentiation with token bucket marking for TCP. In
Proceedings ACM SIGMETRICS’00, pages 23–33, June 2000.

[SPG97] S. Shenker, C. Partridge, and R. Guerin. Specification of Guaranteed
Quality of Service, September 1997. RFC 2212.

[STK99] S. Sahu, D. Towsley, and J. Kurose. A quantitative study of differ-
entiated services for the Internet. In Proc. IEEE Global Internet’99,
pages 1808–1817, December 1999.

[V.88] Jacobson V. Congestion avoidance and control. In Proceedings of
the SIGCOMM ’88 Symposium, pages 314–329, August 1988.

[VBB00] Milan Vojnovic, Jean-Yves Le Boudec, and Catherine Boutremans.
Global fairness of additive-increase and multiplicative-decrease with
heterogeneous round-trip times. In Proceedings of IEEE INFOCOM,
pages 1303–1312, 2000.

[Wro97a] J. Wroclawski. Specification of the Controlled-Load Network Element
Service, September 1997. RFC 2211.

[Wro97b] J. Wroclawski. The Use of RSVP with IETF Integrated Services,
September 1997. RFC 2210.

104

BIBLIOGRAPHY

[YR01] Ikjun Yeom and A. L. Narasimha Reddy. Modeling TCP behavior
in a differentiated services network. IEEE/ACM Transactions on
Networking, 9(1):31–46, 2001.

105

