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Abstract

Modern broadband networks have been designed to integrate several service types into the
same network. On the call scale, the process describing the number of calls present in the
network can be modeled by a loss system. In principle, loss systems are mathematically
simple and well understood, and one is able to write down exact expressions for such things
as the blocking probability of a call belonging to a given class. However, for systems of
realistic size in terms of the number and the capacity of the links and the number of traffic
classes, such analytical expressions defy a direct evaluation because of the huge size of the
state space.

In such situations, one has to resort to simulations in order to obtain estimates of the perfor-
mance measures of interest. In this thesis we are specifically dealing with identifying efficient
simulation methods for estimating the blocking probabilities. To this end, we first consider
some basic simulation methods and we show how they are applied for generating samples in
the simulation of loss systems. In particular, from the class of static Monte Carlo methods
we present a rejection sampling method for generating independent samples and the Gibbs
sampler for producing dependent samples. From the class of process simulation methods,
we give a number different Markov chain methods. Also, we compare each method with
respect to their efficiency in terms of the variance of the estimators and the computational
effort associated with the methods.

Then we address the problem of increasing the efficiency of the simulations by using so called
variance reduction techniques. In particular, we present two different methods for estimating
the blocking probabilities in a multiservice loss system. The first method is an importance
sampling method and utilizes some large deviation results for multidimensional random
variables. We derive a composite sampling distribution, which is a weighted combination
of distributions for effectively sampling the blocking states associated with each link in the
network. We also provide heuristics to fix the weights in the composite distribution. This
method is shown to be especially useful when estimating small blocking probabilities.

The second method is based on another known method called conditional expectation
method, where the idea is to utilize known analytical results to the maximum degree. The
method is based on conditioning on the samples hitting certain one-dimensional subsets of
the state space for which conditional expectations can be calculated analytically. Moreover
these expectations can be precomputed and, hence, the utilization of the method does not
cause much extra computational work. In effect, it eliminates the internal variance within
each subset. The method is also independent of the method used for generating samples.
The numerical results confirm the efficiency of the method.
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Chapter 1

Introduction

1.1 Multiservice Networks

The traditional telephone network offers to its users (or subscribers) a single service - the
possibility to make a telephone call. For this call the network reserves a single bandwidth
unit (actually a time slot) from each of the links along the path that the call is routed,
thus forming a connection through the network. A multiservice network offers exactly the
same kind of service to its users, but with the additional possibility that the user can
select the service type it requires from a predefined set of alternatives. The amount of
bandwidth required for the call is then a parameter in the requested service type. Other
parameters defining the service type could be a declaration of the delay- or loss sensitivity
of the requested connection.

The network offers services with transfer capabilities for traditional voice calls, pure data
transmission and video transmission. Furthermore, the last two of these require higher
bitrates for their transmission than traditional telephone calls. Hence, a multiservice net-
work is also a broadband network as opposed to the traditional telephone network, which
is commonly referred to as a narrowband network.

ITU-T and other standardization bodies, e.g. ATM Forum, have adopted ATM (Asynchro-
nous Transfer Mode) as the chosen technology for the realization of the BISDN (Broadband
Integrated Services Network). The standardization of ATM began in the 80’s and by now
several aspects of the network functionality have been standardized. The standards include,
for example, specifications for ATM node interfaces in both public and private networks (see
e.g. [Onv97] for a comprehensive coverage of signaling in ATM networks), specifications for
traffic- and network management etc.

ATM is a connection oriented technology, where a user can request connections from the
network between two ATM addresses. The network then reserves, if possible, the requested
resources from the ATM nodes along the selected route towards the destination. After the
connection has been established, the data transfer between the two end points is carried out
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CHAPTER 1. INTRODUCTION 2

by segmenting the transmitted data into short fixed size cells (53 octets), and transporting
the cells along the reserved route. The amount of resources a connection needs is defined by
a traffic descriptor, which includes information about the required peak and mean rate of
the connection, and the tolerable limits on cell loss, cell delay and cell delay variation (for
more details on ATM technology, see e.g. [Dep95]).

Since we are assuming that resources are reserved for the connection along its route, this
would imply that the underlying network is a circuit switched network, as opposed to a
packet switched network, e.g. the Internet. However, lately there has been development in
the Internet standardization towards introducing different services and resource reservation
into the Internet world as well. The concept corresponding to a connection is then called a
flow and the network is referred to as the ISI (Integrated Services Internet) [Wro97]. It is
aimed at enhancing the capabilities of the Internet such that it could be used for transmitting
video and voice streams with quality of service guarantees, instead of just relying on the
“best effort” type of service of the traditional Internet.

1.2 Performance of Multiservice Networks

The applications, which the multiservice networks will cater for, have widely differing traffic
characteristics. Voice or video applications produce bit streams with either constant or
variable bitrate, but the applications require that the network can transfer the bit stream
as such without introducing too much extra constant delay or delay variation. On the
other hand, data transfer applications have an on/off-type behavior, where cells are either
transmitted at full rate or not transmitted at all. They are also much more affected by
errors in the content of the received bitstream, i.e. lost or corrupted cells/packets, than the
extra delays caused by the queuing in the network nodes. Thus we can see that the network
must be able to handle services with different and sometimes even conflicting requirements
on the network. Furthermore, these requirements must be met at all times over the lifetime
of the connections.

The design and performance analysis of ATM nodes for the multiservice networks would be
an impossibly complex task, if the effects of the traffic streams should be modeled with a
single model defined over all time scales. Luckily it is possible to separate the phenomena
in different time scales from each other. In specific, it is assumed that the higher time scales
are quasistatic with respect to the time scale under consideration, and that the lower time
scales are stationary. The division into time scales was originally presented in [Hui88] and
it allows us to decouple the analysis into three time scales:

• call scale: In this time scale we model the process of call arrivals and departures
into/from the system. The call attempts and the call durations are assumed to have
certain statistical characteristics and also the amount of resources a call requires is
assumed to be a fixed number. Of particular importance in this time scale is the
concept of equivalent bandwidth which allows us to derive the aforementioned resource
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requirement. This time scale corresponds to the traditional modeling of narrowband
networks known as loss systems.

• burst scale: At the burst scale we look at the statistical behavior of a call during
its lifetime. As mentioned before, many services will have a bursty nature where the
source alternates between on and off states, thus introducing a correlation structure
into the cell arrivals in an ATM buffer. However, research has shown that for some
traffic, there does not even exist a natural length of a burst, since the traffic has been
observed to produce similar traffic patterns across time scales ranging from millisec-
onds to hours. Thus, the traffic apparently has some kind of “fractal”-like behavior,
and hence the term self-similar traffic.

• cell scale: Here we fix the number of calls and their burst-state and investigate the
behavior of a buffer in an ATM node under these conditions. Then the cells arrive
from any single source almost equally spaced into the buffer, but, since ATM is an
asynchronous technology, there can be several cells arriving to an output buffer from
different inputs of the node at the same time.

Models dealing with all these time scales are extensively covered, for example, in the final
report of the COST 242 project [Rob96]. In this thesis, however, we will restrict ourselves
to deal with the call scale model of a multiservice network and its performance measures.

1.3 Call Performance of Multiservice Networks

On the call scale the process describing the number of calls present in the network can be
modeled by a loss system. Associated with each call is the route through the network and
the bandwidth requirements on the links. When the call is offered but there is not enough
bandwidth on all the links along the requested route, the call is blocked and lost. The
specific quantities we are interested in are the blocking probabilities for each call.

This is a natural extension of the model for the traditional single service telephone network.
The steady state distribution of the system has a well known product form. A problem
with the exact solution is, however, that it requires the calculation of a so called normal-
ization constant, which entails the calculation of a sum over the complete allowed state
space of the system. Efficient recursive solutions for calculating the blocking probabilities
exist only for the case of multiservice traffic offered to a single link [Kau81, Rob81] and
some special topologies, e.g. the tree topology [Ros95]. In a realistic size general topology
network with possibly hundreds of classes and high speed links, the state space rapidly
becomes astronomical. As a result the exact calculation of the blocking probabilities be-
comes computationally prohibitively expensive (see e.g. [Lou94] for a modern complexity
theoretic analysis on algorithms for calculating exactly blocking probabilities in a general
loss system).

However, analytical approximations to the blocking probabilities have been derived. The
single link case has been analyzed e.g. in [Gaz93, Lab92, Mit94]. In the network case, the
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analytical approaches are based either on using the so called reduced load approximation,
which leads to a set of fixed point equations [Chu93, Kel86, Kel91b, Hun89, Mit95], or
numerical techniques applied to the generating function of the link occupancies [Cho95a,
Dow96, Sim97].

1.4 Simulation of Multiservice Loss Systems

An alternative to deriving approximations is to simulate the system to a desired level of
accuracy given the constraints on the available computing power. The main emphasis of
this thesis is on developing efficient simulation methods for the problem of estimating the
blocking probabilities of a multiservice loss system. The performance of the methods will
be analyzed with respect to the computational effort required to reach a given accuracy and
variance.

Traditionally the simulation approaches have focused on either static Monte Carlo (MC)
techniques or the Markov chain simulation techniques. The static MC can be used since the
stationary distribution of the system is known and it is possible to generate samples directly
from it and we do not need to simulate some stochastic process, e.g. a Markov chain, to
generate samples with the desired distribution. Static MC has been extensively studied by
Ross [Ros95, chap. 6]. Markov chain simulation methods include the regenerative method,
developed by Crane and Iglehart [Cra75, Cra77], which has been lately used in the context
of rare event simulation in loss networks by Heegaard [Hee97]. Another method for using
a Markov chain for generating the samples is to use the so called Gibbs sampler [Tie94].
However, the method does not belong to the class of process simulation methods like the
regenerative method but rather in the class of static Monte Carlo methods since it utilizes
conditional distributions of the known stationary distribution. This method is well known
in the field of e.g. image analysis and Bayesian statistics, and its application to multiservice
loss systems has been presented in [Las98a].

The problem with the aforementioned methods is that they become computationally very
intensive as the state space grows, i.e. the simulation becomes inefficient. Known methods
for increasing the efficiency of simulation include the use of control variables, antithetic
variates, the use of conditional expectations, importance sampling (see e.g. [Ham67, Law91]
for surveys) and more lately the so called RESTART method [Vil91, Vil94]. Importance
sampling has been used especially in the context of rare event simulation of queuing systems,
where the theory of large deviations has helped in the derivation of importance sampling
distributions having in some sense optimal performance, see e.g. [Hei95] for a survey or
[Fra91, Par89, Sad90, Sad91] for individual results. In loss systems importance sampling
has been studied by Ross [Ros95, chap 6], Heegaard [Hee97] and Mandjes [Man97]. All have
used importance sampling effectively as the blocking events have become rarer.

The first contribution of this thesis, to be published in [Las99], is the derivation of an
efficient IS distribution for estimating the blocking probabilities in the multiservice loss
system. We limit ourselves to studying IS distributions which belong to the family of so
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called exponentially shifted distributions. Previously these have been studied e.g. by Ross
in [Ros95, chap. 6] and Mandjes in [Man97]. Ross has presented heuristics which attempt to
increase the likelihood of the blocking states while, at the same, trying to limit the likelihood
of generating misses from the allowed state space, resulting in a rather conservative shift.
Mandjes proposes the use of an importance sampling distribution which shifts the mean of
the sampling distribution to match the most probable blocking state.

Our approach is based on using a similar technique, but we extend the approach with ideas
suggested by the large deviation results obtained by Sadowsky et al. in [Sad90]. They have
shown that sometimes, depending on the shape of the “interesting” set, it is not sufficient
to use one shifted distribution to satisfy the conditions of asymptotical optimality for the
IS distribution. Instead, one needs to use a composite distribution, which is a weighted
combination of several exponentially shifted distributions. The set of blocking states has
this kind of shape and a composite distribution is needed. However, the results in [Sad90]
leave open the question about the choice of the weights in the composite distribution. We
propose heuristics based on attempting to keep the observed variable, i.e. the likelihood ratio,
as constant as possible in the set of the blocking states. The slight increase in computational
complexity when compared with just using a single shifted distribution appears to be well
justified by the gains in the variance reduction and accuracy obtained in our numerical
experiments.

A second contribution, published in [Las98b], of this thesis is another variance reduction
method for estimating e.g. the blocking probabilities, which is rather different from the
ideas behind importance sampling. The rationale behind this method is the realization that
sometimes the heart of the problem does not lie in the rarity of the interesting events, but
rather in the sheer size of the state space of the system. Importance sampling methods
do not necessarily help in weakening the effect of the state space explosion as the size of
the system increases. The reason is that these methods affect the distribution from which
the samples are generated, but the information is still collected on a state-per-state basis.
In contrast, we will present a method that exploits the known analytical results of the
system providing a way to more effectively collect information about the state space given
the current sample state. The method is an application of a known variance reduction
technique called the conditional expectation method, see e.g. [Law91] or [Rub98, p. 97], and
it is based on conditioning on the samples hitting certain subsets of the state space for which
conditional expectations can be calculated analytically. In effect it eliminates the internal
variance within each subset. Furthermore, this method can be used without practically any
increase in computational effort and it is independent of the method used for generating the
samples.

1.5 Outline

This thesis is organized as follows. In chapter 2 we present the basic model of multiservice
loss systems and then consider briefly its applicability for modeling the call scale behavior
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of ATM networks. Chapter 3 gives a short survey of the literature on analytical approxi-
mations on the blocking probabilities in certain asymptotic regimes. In chapter 4 we review
some basic approaches for simulating loss systems and give some numerical and analytical
results regarding the efficiency of these methods. In chapter 5 we look at different means to
increase the efficiency of the simulation process. We first review general known techniques
for achieving this. Then a more extensive literature survey is given on the specific problem
of so called rare event simulation. Also, we review the literature available on the methods to
increase the efficiency of simulating multiservice loss systems in specific. Finally we present
the main contributions of this thesis — the two different variance reduction methods, one
based on conditioning and the other on using importance sampling.



Chapter 2

The Multiservice Loss System

In this chapter we will first present the stochastic model of the system and its solution
from which we can calculate the performance measures of interest. Then we consider the
applicability of the system for modeling the call scale behavior of the ATM network.

2.1 The Basic Model for Loss Networks

Consider a network consisting of J links, indexed with j = 1, . . . , J , each having a capacity
of Cj resource units. The network supports K classes of calls. The calls from the K classes
arrive according to independent Poisson processes with arrival rates λk, k = 1, . . . , K. The
call holding times can, however, have any distribution with a finite mean 1/µk, due to the
so called insensitivity property (see e.g. [Ros95, p. 163]).

Associated with a class-k call, k = 1, . . . , K, is an offered load ρk = λk/µk and a bandwidth
requirement of bj,k units on link j. Note that bj,k = 0 when class-k call does not use link
j. Let the vector bj = (bj,1, . . . , bj,K) denote the required bandwidths of the classes in the
system on link j. Also, we assume that a call is always accepted if there is enough capacity
left and that the blocked calls are cleared. The state of the system is described by the vector
x = (x1, . . . , xK), where element xk is the number of class-k calls present in the network.

The set of allowed states S can be described as

S = {x | ∀j : bj · x ≤ Cj} ,

where the scalar product is defined, as usual, as bj · x =
∑

i bj,ixi, resulting in a coordinate
convex state space. Note that a set is coordinate convex if for any x ∈ S and y ≤ x then
y ∈ S. This also defines an admission policy for new calls known as complete sharing (CS)
in the literature (see e.g. [Lab92, Ros95]).

7
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This system has the well known product form stationary distribution

π(x) =
1

G

K∏
k=1

ρxk
k

xk!
=

1

G

K∏
k=1

f(xk, ρk) =
f(x)

G
, (2.1)

where f(x) =
∏

k ρxk
k /xk! denotes the unnormalized state probability,

f(x, ρ) =
ρx

x!
,

and G is the so called normalization constant

G =
∑
x∈S

f(x).

The set of blocking states for a class-k call, Bk, is

Bk = {x ∈ S | ∃j : bj · (x + ek) > Cj} ,

where ek is a K component vector with 1 in the kth component and zeros elsewhere. Also,
we will denote with Sk the subset of the state space where one more class-k call can be
admitted, i.e.

Sk = S \ Bk.

Then, let us denote by

GB
k =

∑
x∈Bk

f(x),

the state sum over the blocking states for a class-k call, and by

Gk =
∑
x∈Sk

f(x),

the state sum over the admissible set for a class-k call. Note that Gk can be given an
alternative expression in the following way. Let bk = {b1,k, . . . , bJ,k} denote the vector for
the amount of bandwidth class k requires on each of the links in the network, i.e. it is the
kth column from the matrix b. Note that this is not the same as bj defined earlier, which
is the jth row of b. Now by denoting with G(C) the normalization constant G of a system
with link capacity vector C = {C1, . . . , CJ}, then

Gk = G(C − bk),

i.e. a normalization constant where for each link j its capacity is diminished by bj,k.

The blocking probability of a class-k call, Bk, can be expressed in the following forms

Bk = 1 − Gk

G
=

GB
k

G
=
∑
x∈Bk

π(x) =
∑
x∈S

π(x)1x∈Bk = E [1x∈Bk ] . (2.2)
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It should be noted that the distribution π given by (2.1) represents the truncation of a K
dimensional independent Poisson type distribution to the state space S. Then, by defining
another state space S̃ such that S̃ ⊇ S and a random vector X̃ ∈ S̃ with a similar product
form distribution, Pr[X̃ = x] ∼ f(x), we can express the blocking probability as

Bk = E
[
1X̃∈Bk | X̃ ∈ S

]
=

E[1X̃∈Bk ]

E[1X̃∈S ]
. (2.3)

The blocking probabilities also have the following so called elasticity property, originally
obtained in [Vir88],

∂Bj

∂ρi
=

∂Bi

∂ρj
.

As an example, consider the following network shown in Fig. 2.1 with the state space
depicted in the figure on the right. The link capacities appear as linear constraints on the
state space and the blocking states are the states on the boundary of the state space. In
the figure, the blocking states for class 1 calls have been circled.

C1

C2

C3 ρ1

ρ2

. x2

x1

Figure 2.1: Example network and its state space.

2.2 Exact Computation of the Blocking Probabilities

As was noted earlier, the size of the state space of the system becomes intractable very
rapidly as the size of the system increases. However, it is still possible to compute the exact
blocking probabilities in cases where the number of links and/or the number of traffic classes
is not prohibitively large.

The most direct way to perform the calculation would be to brute force perform the summa-
tions in (2.2). This approach has the advantage that the memory requirements are indeed
very small for the algorithm, since one is essentially just collecting K + 1 state sums (K
sums for the blocking states of each class and one sum for the normalization constant G
itself). The drawback of this approach is that the number of traffic classes in the network
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easily becomes quite large as the number of nodes in the network increases leading to an
excessively large state space.

Now consider a situation where the number of traffic classes is greater than the number of
links in the network. Then the state space problem can be alleviated somewhat by changing
the state variable of the system from the number of class-k calls present in the network to
the number of circuits occupied on each link.

For this let Y = {Y1, . . . , YJ} denote the number of occupied circuits on each of the links.
The state space of Y, Y , is the Cartesian product space

Y = {0, . . . , C1} × · · · × {0, . . . , CJ}.

Then we can obtain the distribution of Y by successively convolving the occupancy distri-
bution caused by each individual traffic class with each other. This so called convolution
method was presented in [Ive87], but it was originally presented for the single link case. We
will show here how it is generalized to the computation of the joint distribution of several
links. Note that once we have the distribution of Y the blocking probability is obtained
simply from

Bk = 1 −
C1−b1,k∑

y1=0

· · ·
CJ−bJ,k∑

yJ=0

Pr [Y = y] . (2.4)

To derive a recursive formula for the convolution, we let Yk denote the link occupancy vector
associated with the traffic class k, i.e. Yk = Xk bk. Here Xk is the r.v. for the number of
class-k calls in the network. Now we have that

Y =
K∑

k=1

Yk.

Also, we denote by Y(l) the partial sum of Yk:s up to l classes, i.e. Y(l) =
∑l

k=1 Yk. Then
the following recursion holds:

Y(l) =
l∑

k=1

Yk = Y(l−1) + Yl = Y(l−1) + Xlb
l,

from which it follows by conditioning on the number of class-l calls that

Pr
[
Y(l) = y

]
=

min{y/bl}∑
n=0

Pr
[
Y(l−1) = y − nbl

]
Pr [Xl = n] , (2.5)

where y/bl refers to the componentwise division of the two equal length vectors y and bl.
In (2.5) the upper limit on the index n is derived from the requirement that y − nbl ≥ 0.
Also, note that the distribution for Xl is just the truncated Poisson distribution truncated
at the maximum number of allowed class-l calls.
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This gives us directly a computational algorithm for computing the occupancy distribution.
However, the resulting convolution algorithm gives us the relative values of the distribu-
tion for all the states. From (2.5) we can recursively obtain the unnormalized occupancy
distribution q(y) by computing

q(l)(y) =

min{y/bl}∑
n=0

q(l−1)(y − nbl)f(n, ρl), (2.6)

with the initial conditions {
q(0)(0) = 1.
q(0)(y 6= 0) = 0.

Finally, the occupancy probabilities are obtained by normalization

Pr [Y = y] =
q(y)∑

y∈Y q(y)
.

Thus, the occupancy distribution is computed by evaluating for a fixed l the recursion (2.6)
for all the states resulting in q(l)(·), which gives the unnormalized joint occupancy of all
the classes from 1 up to l. The recursion ends when l = K, i.e. when all the classes have
been convolved and the final step is the normalization. Then the blocking probabilities are
obtained from (2.4). Note that this method requires that the whole occupancy distribution
must be kept in memory giving a much higher memory requirement for the algorithm than
for direct summation. Secondly, during the course of the convolutions, we must go through
the entire state space Y altogether K times (in fact, K +1 times including the computation
of the normalization constant). Hence, it is quite obvious that also this method becomes
intractable as the number of links in the network grows.

2.3 Call Scale Model for Multiservice Networks

The model described above is also applicable almost directly for modeling the call scale
process of ATM networks. The only thing that we need to examine closer in the model is
the method to calculate the current link occupancies

∑K
k=1 bj,kxk for all j = 1, . . . , J , which

is required for determining whether a state belongs to the set of allowed states S or not. In
ATM this so called admission region is potentially much more difficult to obtain, because
the bandwidth required by a given number of calls can be a complex function depending on
all traffic classes and the number of calls of each class.

2.3.1 ATM and Statistical Multiplexing

In ATM the problem of evaluating the required bandwidth given the current state is caused
by the network’s ability to use statistical multiplexing. This is possible because it is an-
ticipated that a large portion of the traffic in the network will have a bursty nature, i.e.
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the traffic from a source will consist of activity periods (possibly of varying intensity) and
silence periods. Furthermore, the quality of service (QoS) guarantees given by the network
for the services are probabilistic in nature, e.g. the cell loss probability (CLP ) is guaran-
teed to be less than say 10−9. In statistical multiplexing the sum of the peak rates of the
calls occupying a link is allowed to be greater than the link capacity Cj, thus causing some
random cell loss, subject to the constraint that the QoS guarantees of all calls have to be
met.

Obviously, the cell loss process in the buffers of the ATM nodes is affected by the size of
the buffers of the switch. This also results in two types of multiplexing modes (using the
terminology of [Rob96]):

• rate envelope multiplexing,

• rate sharing multiplexing.

In rate envelope multiplexing we assume that the buffer of the link is small and capable
of only handling the cell scale variations. Consequently, in the multiplexing model the
link is assumed to be bufferless and the resulting models have been shown to be relatively
insensitive to the assumptions made about the stochastic nature of the rate process. Fig.
2.2 illustrates this. In the figure the rate process R(t) is the instantaneous rate of traffic
entering the output buffer, which has service rate equal to the link capacity Cj. In statistical
multiplexing R(t) is now allowed to temporarily exceed Cj (e.g. for time Tloss in the figure).
However, the cell loss probability in this bufferless case, defined as

CLP =
E[(R − Cj)

+]

E[R]
,

must still be below the QoS requirements of the connections.

In rate sharing multiplexing, we assume that the output buffer is capable of storing large
amounts of cells with the hope that we can let the rate process exceed the link capacity
more often or for longer periods of time, thus achieving a better average link utilization
level. However, research has shown that in these so called burst multiplexing models the
buffers have to be large in order to gain significant increases in link utilization and, more
importantly, the results are very sensitive to the model assumptions about the stochastic
nature of the rate process. For more details see e.g. [Rob96].

2.3.2 Link Usage Models for ATM

Irrespective of the nature of the ATM nodes with respect to their buffer sizes, from the
point of view of our system model the link utilization model has to be able to answer the
following question: How much bandwidth is needed to fulfill the QoS requirements given the
current number of calls on the link? The question can be answered by using the following
methods:
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Tloss

Cj

R(t)

t

Figure 2.2: Statistical multiplexing in ATM networks.

• exact calculation of the required bandwidth given the QoS constraints and the number
of calls of each class,

• a nonlinear approximation to the exact solution,

• a linear approximation using the equivalent bandwidth of a class (see e.g. [Hui88,
Kel91a] for an explanation of the concept),

• peak rate allocation (no statistical multiplexing).

These methods will result in different admission regions for the calls. Fig. 2.3 shows the
effect of the choice of the bandwidth allocation method on the admission region for a simple
case with two traffic classes. The admission region for the exact solution or a nonlinear
approximation is concave and rather difficult to obtain. The equivalent bandwidth method
is a linear approximation to the concave exact admission region, but as it is a linear ap-
proximation, it will not include all allowable states and is thus less efficient from the point
of view of the link usage. However, it is still more efficient than just using the peak rates
for determining the bandwidth.

In the first case (peak allocation) and the second case (equivalent bandwidth) the link
utilization is calculated as previously with the bj,k on each link set equal to the peak rate of
the requested call or its equivalent bandwidth, respectively. However, when using the exact
solution or any nonlinear approximation, the link usage, given the number calls of each class
on the link (state) and their QoS requirements, becomes a function of the given state. Then
the set of allowed states is given by

S = {x | ∀j : βj(x) ≤ Cj } ,
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Exact admission region boundary

Admission region boundary 
for equivalent bandwidth

Admission region 
boundary for peak rate

# of class-1 calls

# of class-2 calls

Figure 2.3: Typical admission region for 2 traffic classes.

where βj(·) is some nonlinear function whose value gives for the given argument the required
bandwidth to fulfill the QoS requirements on link j. Note that this implies that embedded
in the function βj(·) is also the knowledge of whether a class uses link j or not. Typically it
is not advantageous to let all different services compete for the complete bandwidth because
to determine the β(·) function for the whole traffic mix would be difficult. Also, in the
literature on connection admission control in ATM networks the models usually assume that
the βj(·) function calculates the required bandwidth with respect to one QoS parameter,
usually the CLP , and a single value for it. Then if the services have different requirements
for example on their cell loss probabilities, the resource reservation would always have to
be done according to the most demanding requirements. This would be inefficient if the
differences in the requirements between the services are several orders of magnitude.

In practice it is most often assumed that the capacity of the link has been partitioned so that
services with similar QoS characteristics have been given a share of the total bandwidth. If
the ATM nodes only have small buffers for cell scale variations this bandwidth partitioning
does not require any extra functionality in the buffers to support it. However, ATM nodes
with large buffers require that the buffers have to support the partitioning of the band-
width through suitable scheduling mechanisms, e.g. weighted round-robin or PGPS (WFQ)
[Par93]. If all the services are separated and all the different services share the available
bandwidth dynamically (i.e. the partition can be changed with each call acceptance) the set
of allowed states can be described as

S =

{
x | ∀j :

K∑
k=1

βj,k(xk) ≤ Cj

}
,
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where we have a βj,k(xk) function depending only on the value of the component xk for each
of the services.

As a conclusion, we notice that the call scale process of the ATM network can be described
by a multiservice loss system. However, the method for evaluating the allowed state space
in the ATM context can be more difficult. Thus the detailed effects of having an ATM
network only affects the shape of the allowed state space.



Chapter 3

Analytical Approximations

In this chapter we review some of the approximation results available in the literature for
the blocking probabilities in multiservice loss systems.

3.1 Introduction

The multiservice loss system and its product form solution are mathematically well under-
stood but, as was mentioned earlier, the exact calculation of the blocking probabilities is
not feasible due to the state space explosion except for very small networks or some spe-
cial topologies. Then one alternative to obtain estimates of the blocking probabilities is by
deriving analytical approximations. In the literature, the articles basically fall into two cat-
egories: ones with approximations for a single link and ones with network approximations.
Usually, the novel mathematical approaches have been first applied in the simpler single
link case and later applied in the network case.

In the derivation of the approximations it is a standard practice to assume that the links
in the network are either in light, critical or heavy traffic conditions, which are defined as
follows: The traffic on link j is said to be

• light if
∑K

k=1 bj,kρk < Cj .

• critical if
∑K

k=1 bj,kρk = Cj .

• heavy if
∑K

k=1 bj,kρk > Cj .

Furthermore, the results are obtained using a suitable scaling of the system corresponding
to asymptotical behavior in a large network setting. Formally, we let ρk → ∞ and Cj → ∞,
but we require that ρk/Cj remains bounded.

16
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3.2 Single Link Approximations

In this subsection we will make a slight alteration to the general notation since we will be
covering only single link models here as opposed to network models. Hence, we will omit
the link dependence from the notation and simply denote with C the capacity of the link,
bk is then the required bandwidth of a class-k call and its offered load is denoted, as usual,
by ρk. The quantities G, Gk and GB

k , i.e. the different state sums, are defined analogously
with only a single link constraint.

In an early work [Lab92] Labourdette and Hart apply linear system theory to the Kaufman-
Roberts recursion for the single link multiservice loss system. The system is transformed into
an equivalent discrete time linear system presentation and they are able to establish that
under the scaling as described before the aggregate state probabilities (link occupancies) of
the link have a product form with respect to the probability of the link being fully occupied,
i.e.

Pr[
∑K

k=1 bkxk = n]

Pr[
∑K

k=1 bkxk = C]
=

Pn

PC

= αC−n,

where α is the unique positive root of

K∑
k=1

bkρkz
bk = C, (3.1)

which is obtained from the eigenvalue problem associated with the linear system form of
the problem. The values of α also reflect the loading of the system, i.e. α < 1 corresponds
to the heavy traffic, α = 1 to the critical traffic and α > 1 to the light traffic case. With
respect to PC the blocking probabilities can then be expressed as

Bk =

C∑
n=C−bk+1

Pn

≈ PC(1 + α + . . . + αbk−1) (3.2)

for all k. The authors derive approximations to PC by considering an equivalent system
with the lowest dimension, i.e. a system with only one traffic class, for which the blocking
probability would be given simply by the classical Erlang-B formula erl(n, ρ), where n is the
size of the system and ρ the offered traffic. This is done by matching the parameters of the
characteristic polynomial of the equivalent system to the parameters of the original system.
As a result they derive that PC can be approximated by

PC =




1 − α
1 − C/m

erl

(
m

d
,
C

d

)
, if α 6= 1,

m

σ2
erl

(
m

d
,
C

d

)
, if α = 1,
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where m =
∑K

k=1 bkρk and σ2 =
∑K

k=1 b2
kρk are the mean and variance of the link occupancy

when C → ∞ (sum of K Poisson variables), and d is a constant given by

d =
log(C) − log(m)

log(α)
.

The approximation (3.2) can be made even simpler when |α| ≤ 1 (heavy and critical load)
and the authors are able to establish the result that the blocking occurs as if the bk circuits
were reserved sequentially and independently giving a new approximation

Bk ≈
{

1 − αbk , if α < 1.
0, if α = 1.

However, the authors were not able to give any results on the magnitude of the error terms
in the different loading regimes for their approximations due to the assumptions made about
the linear system form of the problem.

In a slightly more recent paper [Gaz93] Gazdicki, Lambadaris and Mazumdar derive ap-
proximations for all the loading regimes using techniques similar to what are used in
large deviation methods (see e.g. [Buc90a] or [Sch95] for details on large deviation the-
ory). Again the analysis is based on considering the scaled system, where we denote by
ρk(n) = nρk, C(n) = nC, G(n), GB

k (n) and Bk(n) the corresponding parameters in the
scaled system and then we let n → ∞. Also, we assume here that the greatest com-
mon divisor of bk, k = 1 . . . , K, is 1. The problem is transformed into an “unconstrained”
problem where the capacity is assumed infinite and the resulting stochastic process will have
a multi-dimensional Poisson distribution. Let us first define the aggregate state sets (link
occupancy levels) in the scaled system as

Ym =

{
x, xk ∈ N :

K∑
k=1

bkxk = m

}
.

Then we define the variables in the unconstrained system as

H(n) = e−n(ρ1+...+ρK) G(n),

HB
k (n) = e−n(ρ1+...+ρK) GB

k (n),

and

Fm(n) = e−n(ρ1+...+ρK)
∑
x∈Ym

K∏
k=1

ρk(n)xk

xk!
.

Now, the blocking probabilities can be expressed as

Bk(n) =
HB

k (n)

H(n)
=

∑C(n)
m=C(n)−bk+1 Fm(n)

H(n)
.

By the properties of the Poisson random variables it is not difficult to show that

Fm(n) = Pr

[
n∑

i=1

ηi = m

]
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and

H(n) = Pr

[
n∑

i=1

ηi ≤ nC

]
,

where ηi are independent and identically distributed (i.i.d.) random variables defined as
ηi ∼

∑K
k=1 bkxk and xk is a Poisson random variable with parameter ρk.

By using an exponential change of measure technique and a local limit theorem for sums of
i.i.d. random variables on a lattice the authors derive an approximation to Fm(n). Then,
recalling that HB

k (n) =
∑nC

m=nC−bk+1 Fm(n), the authors derive that

HB
k (n) = e−nI(C) 1√

2πnσ

(
1 − eθCbk

1 − eθC

)
[1 + o(1)] , (3.3)

where I(C) = CθC −∑K
k=1 ρk(e

θCbk − 1) is the so called rate function for ηi and σ is

σ =

√√√√ K∑
k=1

b2
kρkeθCbk , (3.4)

and θC is obtained as a solution to the equation (cf. eq. 3.1)

K∑
k=1

bkρke
θCbk = C.

In the critical traffic case, due to the properties of the rate function, we have I(C) = 0 and
θC = 0 and we obtain

HB
k (n) =

bk√
2πnσ

[1 + o(1)] . (3.5)

What remains, is to find the asymptotic behavior of H(n). For the light and critical traffic
cases they can be derived rather straightforwardly, by the use of Chernoff bound and the
central limit theorem, to be

lim
n→∞

H(n) =

{
1, if

∑K
k=1 bkρk < C,

1/2, if
∑K

k=1 bkρk = C.
(3.6)

However, for the heavy traffic case, the asymptotics are obtained by the use of the Bahadur-
Rao theorem for sums of i.i.d. random variables, which gives a more accurate large deviation
approximation than the asymptotic rate given by Cramer’s theorem. Then, in the heavy
traffic case we have

lim
n→∞

H(n) = e−nI(C) 1

(1 − eθC )
√

2πnσ
[1 + o(1)] , if

K∑
k=1

bkρk > C. (3.7)
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Hence from equations (3.3-3.7) we get the following asymptotics for the blocking probabili-
ties in the different loading regimes

Bk(n) =




e−nI(C) 1√
2πnσ

(
1 − eθCbk

1 − eθC

)
[1 + o(1)] , if

∑K
k=1 bkρk < C,√

2

πn

bk

σ
[1 + o(1)] , if

∑K
k=1 bkρk = C,(

1 − eθCbk
)
[1 + o(1)] , if

∑K
k=1 bkρk > C.

In the paper itself the results were derived for a general lattice type distribution where the
greatest common divisor for bk is greater than 1.

In [Mit94] Mitra and Morrison use another method, which also allows the derivation of ap-
proximations for all loading regimes with rigorous treatment of the error terms. The article
considers a finite source loss model applicable e.g. for modeling burst blocking probabilities,
where each source sharing the buffer is either in a burst mode or silent mode according to
some distribution. The infinite source model, corresponding to the multiservice loss system
for a single link, is then obtained as a limiting case of the finite source model by letting the
number of sources tend to infinity and letting the probability of being in the burst mode
approach 0. However, the limits are approached in such a way that their product will still
be finite corresponding to the offered traffic for class-k call in the scaled system.

The approach is based on using numerical methods for calculating normalization constants
of a multivariate Poisson distribution using an integral presentation. To be specific, for the
normalization constant G of a link with capacity C, the following integral representation
holds

G =
1

2πi

∮
|z|<1

F (z)

(1 − z)zC+1
dz,

where F (z) denotes the generating function for the link occupancy in the infinite capacity
case

F (z) = exp

[
K∑

k=1

ρk(z
bk − 1)

]
.

Then let us define

f(z) =
1

C
(log F (z) − C log z)

=
K∑

k=1

ρk

C
(zbk − 1) − log z.

By the fact that the blocking probabilities can be expressed as Bk = 1−Gk/G, we have the
following expression for the blocking probabilities

Bk =
1

2πiG

∮
|z|<1

(1 − zbk)eCf(z)

z(1 − z)
dz, (3.8)
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where G is given by

G =
1

2πi

∮
|z|<1

eCf(z)

z(1 − z)
dz. (3.9)

Using the saddle point method the authors derive asymptotic approximations to equations
(3.8) and (3.9). The unique positive saddle point z∗ is obtained as a solution to the equation

K∑
k=1

ρk

C
bk(z

∗)bk = 1.

The case when the saddle point is close to the pole z∗ = 1 of the integrands in (3.8) and
(3.9) happens when

∑K
k=1 bkρk ≈ C, i.e. near the critical traffic case. In order to be able to

handle this, the authors use an asymptotic approximation due to Bleistein [Ble66] to derive
the following uniform approximation for the blocking probabilities

Bk =
eCf(z∗)

[
1 − (z∗)bk

]
√

2πCv(z∗)(1 − z∗)A

[
1 + O

(
1

C

)]
,

where A is a constant and

v(z∗) =
K∑

k=1

b2
k

ρk

C
(z∗)bk .

This approximation can be further developed in the light, critical and heavy traffic cases to
get the result

Bk =




[
1 − (z∗)bk

] [
1 + O

(
1
C

)]
, if

∑K
k=1 bkρk > C,

A′
k√
C

[
1 + O

(
1√
C

)]
, if

∑K
k=1 bkρk = C,

A′′
k
eCf(z∗)√

C

[
1 + O

(
1
C

)]
, if

∑K
k=1 bkρk < C,

where A′
k and A′′

k are constants. In these results the scaling parameter should be taken as
C (instead of n as previously), and, with this in mind, the results are seen to be consistent
with the results obtained in [Gaz93].

Earlier results for the critical load case have been obtained by Evans [Eva91] and Reiman
[Rei91]. Also, the qualitative behavior in all loading regimes was studied before by Simonian
[Sim92] using a saddle point technique on the generating functions.

3.3 Network Approximations

Reduced Load Approximations

The result in the previous section for the heavy traffic case was obtained in an early work
by Kelly in [Kel86]. The paper considers a general loss network with static routing and
Kelly showed that in the heavy traffic case and under the scaling as before the blocking
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probabilities of a class-k call (a class consists now of a route and a bandwidth requirement
on each of the links on the route) have the following approximation

Bk = 1 −
J∏

j=1

(1 − Lj)
bj,k , (3.10)

where Lj ∈ [0, 1) is a parameter obtained from a constrained non-linear optimization prob-
lem. The result has the interpretation that blockings seem to happen independently from
link to link and, furthermore, that on each link j the bj,k circuits are reserved independently
and sequentially with a blocking probability of Lj for each circuit. As a consequence, we can
say that the number of free circuits on a link has a geometric distribution with parameter
(1 − Lj).

Kelly goes further in developing the approximations and establishes a reduced load approx-
imation leading to a set of fixed point equations whose solution can be obtained e.g. by
using repeated substitutions. The motivational arguments are as follows, citing Kelly: “If
a request for a circuit on link j is blocked with probability Lj , and if we make the assump-
tion that all such blocking events are independent, then the traffic offered to link j will be
Poisson and the level of carried traffic will be

∑
k bj,kρk

∏
i6=j(1 − Li)

bi,k .” Then we should
require that the blocking probability on link j should be consistent with that level of carried
traffic. As a result we get the set of fixed point equations

Ej = erl

(∑
k

bj,kρk

∏
i6=j

(1 − Ei)
bi,k , Cj

)
, j = 1, . . . , J, (3.11)

where erl(·, ·) denotes, again, the Erlang-B formula. Kelly shows that the equations defined
by (3.11) converge to a unique solution and that under the asymptotic scaling this solution
is the same as obtained from (3.10), i.e. Ej → Lj .

In a more recent paper Kelly and Hunt [Hun89] discuss the effects of having links under
critical traffic in the network on the approximations (3.10) and (3.11). They first establish a
central limit theorem for the distribution of idle circuits on links with critical traffic. Then
they show, by considering a special case with all links under critical traffic, that it is possible
to choose the Lj in (3.10) such that the error is of smaller order than

√
n, where n is the

scaling parameter. However, it turns out that the fixed point approximation (3.11) does not
hold anymore in this case, due to the dependencies between the occupancies of the links
under critical traffic. Therefore, the approximation (3.11) becomes more inaccurate as the
loading of the network reduces.

In [Chu93] Chung and Ross develop two other reduced load approximations, one for the
heavy traffic case and another for the case when none of the links is in the heavy traffic
regime. The first approximation (knapsack approximation), originally published in [Dzi87],
is based on using the Roberts-Kaufman [Kau81, Rob81] recursive algorithm for obtaining
the link blocking probabilities and then invoking the link independence assumption to get
the following approximation. Let us denote by Ej,k the blocking probability of a class-k call
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on link j. Note that Ej,k = 0, if link j is not used by class-k, which happens when bj,k = 0.
Then the fixed point equations for this reduced load approximation become

Ej,k = RKj,k

[
Cj,

{
ρk′
∏
i6=j

(1 − Ei,k′), k′ = 1, . . . , K

}]
, j = 1 . . . , J, k = 1, . . . , K,

where RKj,k(·, ·) denotes the blocking probability of a class-k call obtained by using the
Roberts-Kaufman algorithm on a link with capacity Cj, offered traffics {ρk, k = 1, . . . , K}
each thinned by the amount that gets blocked on all other links except link j, and band-
width requirements bj. The fixed point equations can then be solved iteratively. Blocking
probabilities for each class are then approximated by

Bk = 1 −
J∏

j=1

(1 − Ej,k). (3.12)

The authors then proceed to show, that this approximation does not retain the uniqueness
property of the solution, as opposed to (3.11). However, in the asymptotic limit and under
the heavy traffic assumption the approximation converges to the correct values. Also, it is
shown by numerical examples that the knapsack approximation gives more accurate results
than the approximation of Kelly, although with a considerable increase in the computational
complexity of the approximation — recall that Kelly’s approximation only requires the
calculation of simple Erlang-B functions.

The authors develop also another approximation, Pascal approximation, which is based
on approximating the link occupancy distributions with a truncated Pascal distribution
(negative binomial distribution). The parameters of the distribution are obtained by using
the heuristic that when the link capacity is infinite, the real link occupancy of link j would
have mean and variance given by

mj =
∑

k

bj,kρk, σ2
j =

∑
k

b2
j,kρk.

Then we can approximate the real finite link occupancy distribution by a Pascal distribution
having the same mean and variance, but truncated to the size of link j. Let us denote by
qj(n), n = 0, . . . , Cj, the approximate probability of having n circuits occupied on link j.
Also, define

pk(Cj, mj, σ
2
j ) =

Cj∑
n=Cj−bk+1

qj(n),

as an approximation to the probability of blocking on link j for a class-k call. Now, by again
invoking the link independence assumption, we get for mj and σ2

j

mj =
∑

k

bk,jρk

∏
i6=j

(1 − Ei,k),

σ2
j =

∑
k

b2
k,jρk

∏
i6=j

(1 − Ei,k),
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and the reduced load approximation can be expressed as

Ej,k = pk

[
Cj, mj , σ

2
j

]
, j = 1, . . . , J, k = 1, . . . , K.

Blocking probabilities are then again approximated by (3.12). The authors show by nu-
merical results that this approximation is more accurate than the knapsack approximation
(and thus Kelly’s approximation) in the light traffic case but in the critical traffic case the
knapsack approximation is again more accurate. In fact, the authors show that asymptoti-
cally the Pascal approximation converges to the correct values for the blocking probabilities
in light and critical traffic cases. Also, note that the computational complexity of this ap-
proximation is equivalent to that of Kelly’s since the value of pk(·, ·, ·) can be obtained as a
result of a one dimensional recursion in the same way as the value of the Erlang-B function,
which is used in Kelly’s reduced load approximation.

In [Mit95] Mitra, Morrison and Ramakrishnan suggest another reduced load approximation,
where the link blocking probabilities are evaluated by using the uniform asymptotic approx-
imation for the single link case as presented in [Mit94] (see the previous section). Then the
fixed point equations are obtained by, again, using the link independence assumption.

Methods Using Generating Functions

In [Cho95a] (see also [Cho95b]) Choudhury, Leung and Whitt develop numerical inversion
algorithms for the generating functions of normalization constants. The approach uses the
fact that the blocking probabilities are expressed as functions of different normalization
constants, i.e. Bk = 1 − Gk/G, and that their generating functions can be expressed in
closed form. Recall from chapter 2.1 that G and Gk are normalization constants calculated
with different link capacities and that G(C) denotes the normalization constant G for a
system with link capacity vector C. Then, for example, the moment generating function
G(z) =

∑
C G(C)

∏
j z

Cj

j of G(C) is given by

G(z) =

∞∑
C1=0

· · ·
∞∑

CJ=0

∑
x∈S

K∏
k=1

ρxk
k

xk!
zC1
1 · · · zCJ

J

=

∞∑
x1=0

· · ·
∞∑

xK=0

∞∑
C1=b1·x

· · ·
∞∑

CJ=bJ ·x

K∏
k=1

ρxk
k

xk!
zC1
1 · · · zCJ

J

=
exp

(∑K
k=1 ρk

∏J
j=1 z

bj,k

j

)
∏J

j=1(1 − zj)

Then the authors devise an algorithm which can numerically invert the generating func-
tions for a given link capacity vector. The main idea in the development of the algorithm
is the transformation of the original problem from a K-dimensional recursion into K one-
dimensional recursions and the inclusion of a scaling method for improving numerical sta-
bility. In their numerical examples the authors show that they are able to handle even large
networks with good accuracy.
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In [Sim97] Simonian, Roberts, Théberge and Mazumbar continue the work done in [Gaz93]
for the single link case and they generalize the results for the network case obtaining ap-
proximations for all loading regimes. They consider the multidimensional distribution of
the link occupancies to which they apply a probability shift technique similar to that used
in [Gaz93]. For this “shifted” link occupancy distribution a local central limit theorem is
obtained allowing one to approximate the shifted distribution by a centered Gaussian dis-
tribution having the covariance of the shifted link occupancy distribution. Using this result
and deriving approximations to the normalization constant, the authors obtain approxima-
tions for the class-k call blocking probabilities assuming that all the links in the network are
either under light, critical or heavy traffic, thus generalizing the earlier results for the single
link case. Also, a uniform estimate is derived for the case when the links in the network are
either under light or critical traffic. This corresponds to a uniform asymptotic estimate for
the light-critical traffic case, as opposed to [Kel91a], where Kelly obtains a similar uniform
asymptotic estimate for the critical-heavy traffic case.

In [Dow96] Down and Virtamo develop another method based on using the contour integral
presentation of the generating function for normalization constants. It continues the work
done in [Mit94] and [Sim97] and attempts to develop a uniform approximation for the
blocking probabilities that would work well also in the case when there is clear dependence
between the activity on different links. The basic idea is here the same as in [Mit94], i.e.
the development of asymptotic approximations for different normalization constants. Now,
with the help of the generating function for the link occupancies in the infinite capacity case

F (z) = exp

[∑
k

ρk

(∏
j

z
bj,k

j − 1

)]
,

the normalization constant G has the following contour integral expression

G =
1

2πi

∮
dz1/z1

zC1
1 (1 − z1)

· · ·
∮

dzJ/zJ

zCJ
J (1 − zJ)

F (z).

Next, define the function

f(z) = log F (z) −
∑

j

(Cj + 1) log zj .

Expanding this function around the saddle point z∗ > 0 and using some changes of variables,
the authors derive the following uniform asymptotic estimate for the case when z < 1 (the
heavy traffic case)

G = ef(z∗)+ 1
2
(1−z∗)T ·D2·(1−z∗)

∫ ∞

v1

dy1 · · ·
∫ ∞

vJ

dyJ
e−

1
2
yT ·D−2·y

(2π)J/2|D| , (3.13)

where D2 is the symmetric matrix of second derivatives with

(D2)ij =
∂2

∂zi∂zj
f(z)|z=z∗,
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and vj are the limits of integration given by the components of

v = D2 · (1 − z∗).

The integral part in (3.13) is now in the form of a multidimensional integration over a
probability density function of a multivariate Gaussian distribution. The authors then
derive a simple multivariate Gaussian distribution as an approximation to the integrand in
(3.13), which is simple to integrate and still has the correct covariance matrix leading to a
computable approximation for the blocking probabilities. However, in the paper it is noted
that the method, as it is presented, does not give very good numerical results and can hence
be considered as a first step in a method for analyzing the effect of dependence between
links on the blocking probabilities in multiservice loss systems.



Chapter 4

Basic Simulation Methods

In this section we review some basic methods for obtaining estimates of the blocking proba-
bilities by using simulation. The methods are roughly divided into three categories differing
in the way that the samples are generated. Their efficiency is evaluated through numer-
ical examples by e.g. examining the correlation structure of the samples for the different
methods.

4.1 General

An alternative to deriving analytical approximations is to obtain estimates of the per-
formance measures of the system through simulation. Generally, simulation can be used
advantageously as a complementary method to analytical methods when modeling complex
systems. The advantages of the simulation approach include:

• It is possible to construct a simulation model of (almost) any complex abstract or real
world system.

• Simulation allows great flexibility in the choice of the level of detail for modeling the
system.

• Simulating any given model is a relatively simple computer programming problem, as
opposed to problems in solving analytical models for which analytical results do not
exist.

On the other hand the simulation approach has its weaknesses:

• Obtaining reliable estimates can be computationally very expensive, despite the tremen-
dous increase in computing power of modern workstations.

• Simulation gives quantitative results for a given set of model parameters and, hence,
it is difficult to obtain insight into the qualitative behavior of a system.

27
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In our case the simulation problem can be considered as being stochastic mathematical
simulation (using the terminology of [Mitr82]). This is because we are here considering, in
general, models of a stochastic nature, where the system’s behavior is determined by random
events. Secondly, the system we are ultimately interested in simulating, the multiservice
loss system, is itself a purely mathematical object representing an abstraction suitable for
modeling a situation where a large population of customers enter the system requesting
resources from several shared resources and the customers stay in the system for a random
period of time.

To be precise, our problem is now of the following type. We want to evaluate some quantity
H defined as the expectation of a random variable h(X), where X has distribution P defined
in the state space S,

H = E [h(X)] . (4.1)

Then an unbiased estimator for H when N samples have been drawn is

Ĥ =
1

N

N∑
n=1

h(Xn). (4.2)

In principle simulation would allow one to obtain estimates with arbitrary accuracy, but
in practice this is limited by the available computing power and hence the time it takes to
reach a certain precision. Therefore, when comparing one method to another, their relative
efficiency depends on:

1. the effort required to generate the samples from P ,

2. the covariance of the generated samples Xn,

3. the effort to evaluate the function h(·),
4. the variance of h(X).

In this chapter we will compare the efficiency of different simulation methods with respect
to the first two items in the above list. Typically there is a trade-off between these two
items. For this, we note first that the variance of (4.2) is

Var
[
Ĥ
]

=
1

N2

N∑
n=1

{
Var [h(Xn)] +

∑
m6=n

Cov [h(Xn), h(Xm)]

}
. (4.3)

From this it can readily be seen that positive correlation between the samples makes the
estimator less efficient from the point of view of the variance.
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4.2 The Static Monte Carlo Method

In the static Monte Carlo method the idea is to generate i.i.d. samples Xn ∈ S with
distribution P also implying that the method requires explicit knowledge of the distribution
P . From (4.3) it is seen that from the point of view of variance this method gives the most
efficient samples, but this happens typically at the expense of having a higher computational
effort per generated sample. Well known sample generation methods that fall in the class of
static Monte Carlo methods are described e.g. in [Rub98] and include the inverse transform
method or the rejection method. However, we can note here that as a method the static
Monte Carlo does not require the samples to be independent. In fact, to be able to use
the static Monte Carlo method it is only required that the distribution P must be known.
Later on we will see how we can generate dependent samples with a class of algorithms
called Markov Chain Monte Carlo methods.

In the case of multiservice loss systems a natural method for generating the samples belong-
ing in the class of static Monte Carlo methods is the following rejection method. It consists
of generating samples of X̃ in a larger space S̃ ⊇ S and rejecting those samples which fall
outside of the allowed state space S. The accepted samples Xn will then have the correct
distribution π and we can estimate the blocking probabilities from (2.2) by

B̂k =
1

N

N∑
n=1

1Xn∈Bk , (4.4)

where N is the number of those samples falling inside the allowed state space S.

A particularly suitable choice for S̃ is the Cartesian product space limited by the maximum
number of allowed class-k calls Nk

max. Formally this state space is defined as

S̃ = {0, . . . , N1
max} × · · · × {0, . . . , NK

max}.
This state space has the nice property that the product form solution (2.1) in S̃ means that
the different components are independent and hence the samples are easy to generate. Then
the sampling distribution is given by:

π̃(x) =
1

G̃

K∏
k=1

ρxk
k

xk!
=

f(x)

G̃
, x ∈ S̃, (4.5)

where

G̃ =

K∏
k=1

Nk
max∑

n=0

ρn
k

n!
.

4.3 Process Simulation

In many cases we are given a process Xt and it is possible to directly simulate the process
itself. The use of static Monte Carlo requires explicit knowledge of the stationary distribu-
tion P of the process, which is, in general, unknown. Using process simulation it is possible
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to avoid that. Then we simulate the process to generate samples Xn with the distribution
P to estimate (4.2). However, now the samples will be correleted. Typically the correlation
is positive and hence, by (4.3), the sampling is less efficient from the point of view of the
variance.

The loss system is an exception, since it is a process for which the stationary distribution is
also known, as discussed e.g. in [Ros95]. Next we describe several methods for estimating
the blocking probabilities by means of Markov chain techniques.

4.3.1 Continuous Time Markov Chain Simulation

In the case of the multiservice loss system we have K independent Poisson arrival streams
with intensities λk, k = 1, . . . , K. Recall that the network consists of J links each with
capacity Cj and that associated with each class-k arrival is its bandwidth requirement bj,k

on each of the links in the network. Also, we know that the stationary distribution depends
on the service time distribution only through its mean and we are therefore free to choose
the service times to have a negative exponential distribution. Then the system is itself
described by a multidimensional continuous time Markov chain (CTMC) Yt. Associated
with the arrival and departure epochs of the CTMC is the embedded discrete time Markov
chain (DTMC) Xn. In Fig. 4.1 we have shown a transition diagram for a two traffic class
example. Note that even the transitions corresponding to arrivals in the blocking states are
included in the jump chain. We will call this as the full jump chain of the process. From
this, we are interested in estimating the blocking probability of a traffic class-k call. This
is given by the steady state performance measure limt→∞ E[1Yt∈Bk ] corresponding to the so
called time congestion of the process, i.e. the proportion of time the process spends in the
blocking states for traffic class k.

x2

x1

Figure 4.1: Transition diagram for the 2 traffic class example.
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The branching probabilities p(x,y) from state x to state y of the DTMC are


p(x,x + ek) = λk∑
k

λk +
∑

k

xkµk

, if x ∈ Sk,

p(x,x) = λk∑
k

λk +
∑

k

xkµk

, if x ∈ Bk,

p(x,x − ek) =
xkµk∑

k

λk +
∑

k

xkµk

, if x ∈ S,

p(x, ·) = 0, otherwise.

(4.6)

Also, the lifetime of each state, T (xn), has an exponential distribution

T (xn) ∼ Exp(
∑

k

λk +
∑

k

xkµk).

The simulation of the CTMC consists of generating a sample path Xn of the DTMC with
branching probabilities given by (4.6) and in each state the generation of the random time
T (Xn) until the next event (arrival or departure). To estimate the blocking probability we
generate N samples from the DTMC and collect the sum of the random times the process
spent in each state, i.e. the total simulated process time, and the sum of the times the
process spends in the blocking states. The blocking probability is then estimated by

B̂k =

∑N
n=1 1Xn∈BkT (Xn)∑N

n=1 T (Xn)
. (4.7)

Note that when using this formulation, the estimator is not unbiased: If the process is
started from the steady state distribution of the CTMC, it is not in the steady state of the
embedded DTMC and hence there is a transient period when the embedded DTMC reaches
steady state. On the other hand, if the process is started from the steady state of the DTMC
it is not the steady state of the CTMC and, therefore, it is also biased. The estimator is
strongly consistent though. An unbiased formulation would be to fix the total simulation
time, instead of having the time depend on e.g. the number of generated transitions from
the DTMC, to start the process from the steady state of the CTMC, and then to estimate
the blocking probability as the ratio of the time the process spends in the blocking states
and the total simulation time.

However, it can be noted that from the point of view of the Markov chain and its properties
the self-transitions corresponding to blocked arrivals can be removed. We call the resulting
process as the partial jump chain. This of course affects the arrival process by effectively
removing the blocked arrivals, but since we are only interested in the amount of time spent
in each state then it is sufficient if this property is retained after removing the transitions.
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Intuitively, it is obvious that this can be done, since the effect of the removal of a self-
transition from the full jump chain will simply be “merged” with the prolonged average
lifetime of the state in the partial jump chain.

4.3.2 Discrete Time Markov Chain Simulation

Now, let us turn our attention to the question of using the embedded DTMC Xn, i.e. the
full jump chain, for generating samples with the stationary distribution π given by (2.1).
By simulating the embedded DTMC Xn we can use the samples in the following ways:

1. The chain Xn weighted with the expected lifetime of the state directly has the distri-
bution π.

2. The subchain XA(m), where A(m) is the index of the state that the mth arriving
customer sees, has the distribution π (PASTA property of the system). Also, by time
reversibility of the chain XA(m), the subchain XD(m), where D(m) is the index of the
state after the mth departure, has the distribution π.

3. The subchain XAk(m), where Ak(m) is the index of the state that the mth arriving
class-k customer sees, has the distribution π (PASTA property of the system). Also,
by time reversibility of the chain XAk(m), the subchain XDk(m), where D(m) is the
index of the state after the mth class-k departure, has the distribution π.

The Weighted Samples Method

The first method is a consequence of a known relation between the stationary distribution
π(x) of the CTMC, given by (2.1), and the stationary distribution π∗(x) of the embedded
DTMC:

π(x) =
π∗(x)E[T (x)]∑

y∈S π∗(y)E[T (y)]
.

This yields directly a simulation method, which we call the weighted samples method. It is
quite similar to the one presented in the previous section for the CTMC. In this method, we
also generate samples Xn from the embedded DTMC. Instead of generating in each state
the exponentially distributed lifetime of the state, we use directly its expected value. During
the simulation we collect the sum of the expected lifetimes of the generated samples Xn and
separately for each traffic class the expected lifetimes of the samples that hit the blocking
states. The blocking probability is then estimated by

B̂k =

∑N
n=1 1Xn∈BkE[T (Xn)]∑N

n=1 E[T (Xn)]
. (4.8)

Again, we can choose to use the full jump chain or to remove the self-transitions. However,
in this case, from the point of view of simulation, there is a slight difference. The removal of
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a self-transition effectively removes the “variability” in the process caused by that transition
arc. Hence, when using the partial jump chain one can expect to have a slightly smaller
variance in the estimates when compared with the ones obtained by using the full jump
chain for the same number of generated samples. We will give some numerical examples on
the effect of removing the self-transitions later in this chapter.

A more important property of this method is that the estimator (4.8) has (in most cases)
lower variance than the estimator of the CTMC method (4.7). This can be explained as
above by noting that by using the expectations we have effectively removed the variability
in each sample associated with the random time the process spends in each state, and only
the variability caused by the random number of hitting different states is left. We will return
to this also in the numerical results section of this chapter.

The Subchain Methods

The two other methods are from the simulation point of view similar — in both cases we
simulate the full jump chain with the self-transitions and choose the suitable states. If we
use the complete arrival subchain XA(n), the blocking probability is estimated by generating
a sample path from the full jump chain and then choosing the states XA(n) as samples. The
estimator is then simply

B̂k =
1

N

N∑
n=1

1XA(n)∈Bk ,

where N is the total number of generated arrivals. We will call this method as the arrival
subchain method. The estimator for the departure subchain XD(n) can be defined in a similar
manner.

If we use the class-k arrival subchain XAk(n), the simulation of the blocking probabilities is,
again, carried out by generating a sample path from the full jump chain and then choosing
the states XAk(n) as samples. This, in fact, corresponds to the simulation of the call conges-
tion of the system, i.e. the proportion of lost calls of class-k to the total number of class-k
arrivals. The estimator is then

B̂k =
1

N

N∑
n=1

1XAk(n)∈Bk ,

where N is the total number of class-k arrivals in the simulation. We will call this method
as the class-k arrival subchain method. Again, this method can be defined, as earlier, for
the reverse time model in terms of departing class-k customers.

In these subchain methods we do not have the alternative of omitting the self-transitions,
because we are now explicitly relying on the PASTA property of Poisson arrivals, which
would be violated if the self-transitions corresponding to blocked arrivals were removed. An
interesting question is which method — the weighted samples method or the subchain meth-
ods — gives lower variance for the same number of generated samples from the embedded
DTMC. Some numerical results related to this question will be given later in this chapter.
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4.3.3 Regenerative Simulation

The regenerative simulation method has been developed for the analysis of so called regen-
erative stochastic processes, see for example [Cra75, Cra77]. Heuristically, a regenerative
process is a stochastic process, which starts probabilistically afresh at certain points in
time, in other words regenerates itself. Then we are able to break the (theoretically) infinite
length steady-state simulation into distinct independent identically distributed finite length
“cycles”, which start from the regeneration state and end there. This is shown for a one
dimensional process in Fig. 4.2, where the horizontal line represents the regeneration state
and the vertical lines indicate the starting of a new cycle.

Figure 4.2: Regenerative simulation.

To be precise, the regenerative simulation method for discrete time simulations is defined
as follows, see e.g. [Cra75]. Let Xn now denote the irreducible embedded Markov chain of
a stochastic process with finite state space and transition matrix P. The goal is, again,
to estimate the expectation H = E[h(X)] of some function h(X). From the theory of
regenerative processes we know that this expectation can be expressed as a ratio of the
expectations of two random variables

E [h(X)] =
E[F ]

E[G]
,

where the random variable F =
∑G

n=1 h(Xn) is the value of h(·) over the length of a cycle
and G is the “length” of the cycle, i.e. the number of samples generated from the DTMC
between two successive regeneration epochs. From this we get the estimator

Ĥ =
1/M

∑M
m=1 Fm

1/M
∑M

m=1 Gm

=

∑M
m=1 Fm∑M
m=1 Gm

, (4.9)

where Fm and Gm are i.i.d. observations of F and G during the mth simulated regeneration
cycle starting from the regeneration state and ending there and M is the total number of
simulation cycles. Note that for Markov chains every state is a regeneration state. This es-
timator is biased since, in general, E[F/G] 6= E[F ]/E[G]. However, the estimator is strongly
consistent, i.e. limM→∞ Ĥ → H with probability 1, since by the law of large numbers
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the numerator and denominator both converge with probability 1 to their expectations.
Regenerative simulation provides a nice way of obtaining i.i.d. samples during a one long
simulation run and we are able to use these samples to construct confidence intervals for
the ratio estimator (4.9). However, the usefulness of this method relies heavily on the fact
that the regeneration state is visited relatively frequently. This is a very strong assumption
and it is not easily fulfilled in systems with large multidimensional state spaces, e.g. the
multiservice loss system. In comparision with the traditional DTMC methods, it can be
noted that in the regenerative method the bias of the estimator is affected by two transients:
the so called initial transient resulting from the fact that the chain must be started from a
fixed state, and from an extra final transient since we have also fixed the final state of the
chain. In contrast, the traditional DTMC methods only have the initial transient.

In the case of the multiservice loss system, we can use the regenerative simulation to estimate
the blocking probability for a class-k call in the following way. Let P denote transition
matrix of the embedded DTMC (the full jump chain), with transition probabilities given by
(4.6), defined in the state space S. We will now use the class-k arrival subchain method to
generate samples with the distribution π(x) as in (2.1) by choosing those states just prior
to an occurrence of a class-k arrival in the generated path. As before, this chain is denoted
by XAk(n). Then we can define the random variable F k simply as

F k =

Gk∑
n=1

1XAk(n)∈Bk ,

where Gk is the number of class-k arrivals in a regeneration cycle, i.e. F k is the number of
blocked class-k arrivals. Then the class-k blocking probability is expressed as

Bk =
E[F k]

E[Gk]
.

The simulation then consists of generating samples XAk(n) for a period of M regenerative
cycles starting from a chosen regeneration state and ending there. During the simulation we
collect i.i.d. samples of F k

m and Gk
m, which denote the mth samples of F k and Hk, respectively.

The blocking probability is then estimated simply by

B̂k =
1/M

∑M
m=1 F k

m

1/M
∑M

m=1 Gk
m

.

As was mentioned earlier, the simulation method calls for the choice of a suitable regen-
eration state, and it leaves us with one free parameter. In [Cra75] the following has been
shown. Let I(t) and I ′(t) denote the width of the confidence interval of an estimator for
two alternative choices of regenaration states when t time units have been simulated. Then
I(t)/I ′(t) → 1 with probability 1 as t → ∞. This means that when the length of the simu-
lation is long enough the width of the obtained confidence intervals become approximately
equal with high probability for simulations starting from different regeneration states. The
regenerative simulation literature traditionally use the heuristics of choosing the regenera-
tion state to be the one having the smallest mean cycle length. However, in [Gly93] it is
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shown that the rate of convergence of the estimator’s standard deviation is indeed affected
by the choice of the regeneration state. It is also noted there that the standard deviation is
not necessarily minimized by this particular choice and that the question of optimal regen-
eration state choice remains open. Analytic methods for finding the most efficient state for
the multiservice loss system will be discussed later in this chapter.

4.4 Markov Chain Monte Carlo Simulation

Markov Chain Monte Carlo (MCMC) methods form a large class of simulation methods, see
e.g. [Bro98, Tie94] for surveys. In the MCMC methods the idea is to simulate some Markov
chain having a known stationary distribution. In particular, the MCMC methods involve
the solution of the problem whereby the stationary distribution is known and we need to
identify a transition matrix with the given stationary distribution, as opposed to traditional
Markov chain methods, where the transition matrix is already known from the start. Thus
we can note that essentially the MCMC methods belong to the class of static Monte Carlo
methods despite that the method produces correlated samples.

In general, the MCMC methods are utilized in the field of so called Bayesian statistics, where
the problem frequently is as follows. Although the form of the stationary distribution of
some multivariate random variable is known, it is not possible to generate samples from the
distribution using the most common static Monte Carlo methods producing independent
samples. Then the MCMC methods attack the problem by constructing an “artificial”
Markov chain with the desired stationary distribution and from which it is also easy generate
samples. The most popular methods can be split into two distinct classes [Bro98]: the
Gibbs sampler type methods and, the more general, Metropolis-Hastings algorithms. In
this section, we briefly describe the Metropolis-Hastings algorithm and its background, and,
more thoroughly, the original Gibbs sampler, which can be applied in a very elegant way in
the context of the multiservice loss system as has been shown in [Las98a].

4.4.1 Metropolis-Hastings Algorithm

The so called Metropolis algorithm was originally published in [Met53] for computing prop-
erties of substances composed of interacting individual molecules and since then it has been
used extensively in the field of statistical physics, see e.g. [Ham67]. The algorithm was later
generalized by Hastings in [Has70]. Here we follow the description of the method given in
[Bro98], where other variants of the Metropolis-Hastings method can also be found.

The idea is based upon deriving a Markov chain to generate samples with a desired distrib-
ution which also satisfies the conditions for detailed balance. Recall that if a Markov chain
Xn with transition probabilities q(x,y) satisfies the detailed balance for distribution p(x),
i.e.

q(x,y)p(x) = q(y,x)p(y), (4.10)
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then the Markov chain has the stationary distribution p(x).

The method begins by choosing some q(x,y) for generating candidate observations and we
allow this candidate generation distribution to depend on the current state of the chain
Xn. For this let us denote by q(x,y) for the transition probability from state x at to state
y. In general the q(·, ·) chain associated with the candidate generation distribution itself
does not need to be reversible. Using this we generate a next candidate observation and
we introduce an acceptance function α(x,y) so that the new candidate is accepted with
probability α(x,y) in which case the chain moves to the state Xn+1 = y. Otherwise the
candidate is rejected and the chain remains in state Xn.

It has been shown that the optimal form for the acceptance function, in the sense that
suitable candidates are rejected least often and computational efficiency is maximized, is
given by

α(x,y) = min

[
1,

p(y)q(y,x)

p(x)q(x,y)

]

= min

[
1,

p(y)

p(x)

]
(if q(x,y) is symmetric).

Then the complete transition probability distribution is given by q(x,y)α(x,y), which also
satisfies the reversibility condition (4.10). It can be shown that the resulting Markov chain
Xn has the stationary distribution p(x), see e.g. [Tie94]. Note that, for implementation, we
only need to know the distribution p(x) up to a constant of proportionality.

The only open remaining question is how to choose the candidate generating distribution?
If q(x,y) = γ(y − x) for some arbitrary density γ, then the kernel driving the chain is
a random walk. Common choices for γ include the uniform distribution on the unit disk,
a multivariate normal distribution or a t-distribution. Alternative choices for q(x,y) are
discussed e.g. in [Bro98] and [Tie94].

4.4.2 Gibbs Sampler

Again, let X = (X1, . . . , XK) ∈ S denote the vector random variable with the distribution
P : p(x) = Pr[X = x]. Another method for constructing a Markov chain Xn having the
invariant distribution P is to use transition probabilities based on conditioning, as defined
in the following theorem (taken with slight modification from [Tie94]).

Theorem 1: Let the sets A1, . . . ,AI form a partition of the state space S and let ι(x)
denote the unique index of the set to which the state x belongs. Let X be a random
variable with distribution P . Then the Markov chain Xn with the transition probability

Pr [Xn+1 = y | Xn = x] = Pr
[
X = y | X ∈ Aι(x)

]
(4.11)

has the invariant distribution P .
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Proof:

Pr [Xn+1 = y] =
∑
x∈S

Pr [Xn+1 = y | Xn = x] Pr [Xn = x]

=
∑

i

∑
x∈Ai

Pr
[
X = y | X ∈ Aι(x)

]
Pr [Xn = x]

=
∑

i

Pr [X = y | X ∈ Ai]
∑
x∈Ai

Pr [Xn = x]

=
∑

i

Pr [X = y | X ∈ Ai] Pr [Xn ∈ Ai] .

Now, if Xn has the distribution π, so does Xn+1 because then

Pr [Xn+1 = y] =
∑

i

Pr [X = y | X ∈ Ai] Pr [X ∈ Ai] = Pr [X = y] = p(y) 2

Let P(1) denote the transition probability matrix with the components given by eq. (4.11).
The Markov chain generated by this transition matrix is not irreducible, because there are
no transitions between different sets. However, by defining several partitions 1, . . . , M we
can construct an irreducible Markov chain Xn. Let P(m), m = 1, . . . , M , denote the cor-
responding transition matrices. Then, with a suitable choice of the partitions, the Markov
chain Xn corresponding to the compound transition matrix P = P(1) · · ·P(M) will be irre-
ducible. Since each P(m) has the invariant distribution P also the compound matrix P will
have the invariant distribution P , and because Xn is now irreducible, P is also its unique
stationary distribution.

In the case of the multiservice loss system we have a product form solution π(x) given by
(2.1) and it is natural to define the sets in a partition to consist of points in coordinate
directions. This leads to the so called Gibbs sampler, which was introduced to the Bayesian
image analysis literature in [Gem84] and subsequently generalized in [Gel90]. Other variants
of the Gibbs sampler method can be found in the survey papers mentioned earlier.

For the purpose of estimating the blocking probability of class-k calls in the multiservice
loss system we define the partition to consist of sets in the coordinate direction of traffic
class k. Considering all the traffic classes we have altogether K partitions. Let us denote
by Ak

i the ith set in partition k. Using the example of two traffic classes, shown in Fig. 4.3
(the left figure) for traffic class 2, the partition consists of the vertical columns. Each set
Ak

i consists of states where the number of calls of all other classes are fixed, but the kth

component varies. In general, we refer to sets Ak
i as k-columns. The set of blocking states

Bk for the class-k calls consists of the end points of the k-columns. Associated with each
partition is a transition matrix P(k). The Markov chain Xn generated by the compound
transition matrix P = P(1) · · ·P(K) is irreducible since it is possible to move from any state
x in the coordinate convex state space S to any other state y with at most K steps in
alternating directions.

The simulation of the Markov chain Xn consists of making transitions with the transi-
tion matrices P(k) in cyclical order. This is illustrated for the two traffic class example
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in Fig. 4.3 (the right figure). In transitions generated with P(k) only the component xk

changes. Starting from state Xn the value of xk of the next state is obtained by drawing
it from the one- dimensional truncated Poisson distribution f(xk, ρk)/g(Lk(Xn), ρk) with
xk ∈ (0, . . . , Lk(Xn)), Lk(Xn) denoting the length of the k-column to which the state Xn

belongs, and g(L, ρ) denoting the normalization sum

g(L, ρ) =

L∑
l=0

ρl

l!
.

x2

x1

x2

x1

Figure 4.3: State space partitioning and Gibbs sampler example.

The Gibbs sampler provides a way of generating Monte Carlo samples from the state space
S, which is simple requiring only the generation of random variables from univariate trun-
cated Poisson distributions for each transition. The advantage it has is that it manages
to eliminate the problem of generating ‘misses’ from the state space S, as happens with
the traditional Monte Carlo techniques. On the other hand, the generation of transitions
from the Markov chain of the Gibbs sampler is almost as easy as for generating them from
the embedded Markov chain associated with the process. The samples generated with the
Gibbs sampler are, however, less correlated than the samples from the embedded Markov
chain. These issues will be elaborated upon in the next section.

4.5 Numerical and Analytical Studies

Here we make numerical and analytical studies related to some of the questions raised during
this chapter. First we compare some of the basic simulation methods introduced in this
chapter with respect to the variance of the methods and their computational complexity.
Then we present a method for explicitly computing the moments of the ratio estimator
associated with the regenerative method for simulating the loss system.

4.5.1 Continuous Time Simulation vs. Discrete Time Simulation

Earlier we made the claim that using the weighted samples method leading to the estimator
(4.8) has (in most cases) lower variance than the estimator of the CTMC method (4.7). For
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this, let us first consider the numerator in (4.8) and (4.7), when there is just one blocking
state. For this, let us denote by V the random variable for the time the process spends in
the blocking state. Then the numerator in (4.7) is simply a random sum of independent
(Markov property) and identically (one state in Bk) distributed random variables Vi with
variance

Var

[
I∑

i=1

Vi

]
= E [I] Var [V ] + E [V ] 2Var [I] ,

where I denotes the random number of times the condition 1Xn∈Bk is true for the N samples.
Calculating the same for (4.8) gives

Var [IE [V ]] = E [V ] 2Var [I] .

Thus, by replacing Vi with its expectation, we have eliminated the first term in the variance
of the numerator of (4.7). In the case when the set Bk consists of many states, we can show
the same in the following way. The variance of the numerator in (4.7) can be computed by
conditioning the covariance of each sample on the pair (Xi,Xj), i.e.

Var

[
N∑

n=1

1Xn∈BkT (Xn)

]
=

N∑
i=1

N∑
j=1

Cov
[
1Xi∈BkT (Xi), 1Xj∈BkT (Xj)

]

=

N∑
i=1

N∑
j=1

E
[
Cov

[
1Xi∈BkT (Xi), 1Xj∈BkT (Xj) | Xi,Xj

]]
+ Cov

[
E [1Xi∈BkT (Xi) | Xi] , E

[
1Xj∈BkT (Xj) | Xj

]]
=

N∑
i=1

N∑
j=1

E
[
1Xi∈Bk1Xj∈BkCov [T (Xi), T (Xj)]

]
+ Cov

[
1Xi∈BkE [T (Xi)] , 1Xj∈BkE [T (Xj)]

]
=

N∑
i=1

N∑
j=1

E
[
1Xi∈Bk1Xj∈BkδijVar [T (Xi)]

]
+ Cov

[
1Xi∈BkE [T (Xi)] , 1Xj∈BkE [T (Xj)]

]
.

In the final step we have utilized the fact that in a CTMC the random life times of each
state are independent of each other. From this it can be seen that if we use the expected
values of the life times of the states as in (4.8), instead of drawing them from the exponen-
tial distributions of the states, we effectively remove the first term in the result above since
Var[E[T (Xi)]] = 0. The above result holds also for the case when considering the denomi-
nator of (4.7). Hence, by using (4.8) we have reduced the variance of the estimator both in
the numerator and denominator. However, this does not imply that the ratio estimator’s
variance is reduced, since the covariance of the numerator and denominator also affects the
results.

In [Goy92] this result is shown in the context of regenerative simulation for an arbitrary
steady state performance measure of a Markov chain and in [Fox96] this has been extended
to semi-Markov processes. However, the proof in [Goy92] also leaves open the effect of the
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covariance between the numerator and the denominator. In regenerative simulation the de-
pendence is easily demonstrated by considering the asymptotic variance of the regenerative
estimator, see e.g. [Cra77, p. 39]. For this let r be the expectation of some steady state
performance measure of a regenerative process. Then from the regenerative theory we know
that r = E[X]/E[α], where X is a cumulative value calculated over one regenerative cycle
and α is the length of a regenerative cycle. Then we have the corresponding regenerative
estimator r̂ = X̄/ᾱ, where X̄ = 1/N

∑N
n=1 Xn and ᾱ = 1/N

∑N
n=1 αn are the sample aver-

ages after N samples have been drawn. Then if we consider the sequence of i.i.d. variables
Zn = Xn − rαn and denote with Z̄ = 1/N

∑N
n=1 Zn, we have by the central limit theorem

√
N Z̄ =

√
N(X̄ − rᾱ) → N(0, σ2), when N → ∞,

where
σ2 = Var [X] − 2rCov [X, α] + r2Var [α] .

By dividing with ᾱ we get√
N(r̂ − r) → N(0, σ2/ᾱ), when N → ∞.

From this we can see that the asymptotic width of the confidence intervals depends not only
on the variances of the numerator and denominator, but also on their covariance.

Next we experiment with a few numerical examples on the single link Erlang system using
either the CTMC method or the weighted samples method. We used two systems with
different capacities and for each two different loads, which were chosen such that the blocking
probability is almost equal in the two systems. The arrival and departure intensities were
also set such that λ = ρ and µ = 1. The exact system parameters are shown in Table 4.1.
To compare the results we estimated the standard deviation of the estimators (σ̂CTMC and
σ̂Weighted in the table) when 1000 samples are generated from the embedded DTMC (the
full jump chain). For the smaller system (C = 5) the standard deviation was estimated
from 1000 independent simulation runs and for the larger system (C = 50) we used 10 000
simulation runs. The results show that the variance of the estimator of the weighted samples
method is slightly smaller than that of the CTMC method.

C ρ σ̂CTMC σ̂Weighted

5 2 0.0094 0.0082
5 1 0.0017 0.0014
50 43 0.0233 0.0226
50 35 0.0060 0.0057

Table 4.1: The standard deviation of the estimators

4.5.2 Comparisons with DTMC Methods

Then we experiment with the difference between using the full jump chain or the partial
chain in the weighted samples method for simulating the blocking probabilities. Again we
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performed tests on the simple Erlang single link model for a small system (C = 5) and a
larger system (C = 50). For both systems we used the same two different loads which were
chosen to give a roughly equal blocking probability in both systems and in each case the
process was scaled in such a way that the average service rate µ = 1 and the average arrival
rate λ = ρ.

The idea was to have the blocking probability equal in both the small and the larger system
to investigate whether the size of the system has any effect on the results. To compare the
two methods we calculated in each case the relative efficiency defined as the ratio of the
estimator’s standard deviation and expected value (σB̂/E[B̂]). In each case we simulated
the results of the weighted samples method using the partial chain to a relative efficiency of
approximately 21% requiring N (in the table) samples to be generated from the embedded
DTMC. Then we tested what is the corresponding figure when using the full jump chain
with the same simulation parameters. The exact simulation parameters and the results
can be seen in Table 4.2. To estimate the standard deviation we used 10 000 independent
simulation runs.

C ρ B N Partial Chain Full Jump Chain
5 2 0.0367 1000 0.2095 0.2256
5 1 0.0031 5000 0.2081 0.2186
50 43 0.0376 8500 0.2021 0.2116
50 35 0.0033 60000 0.2140 0.2214

Table 4.2: The relative efficiency of the estimators

From the results it can be seen that the relative efficiency is slightly smaller for the partial
chain, although the difference is very small. This result is also “understandable” in the
sense that when the self-transition is removed it corresponds to the simulation of the full
chain where the effect of the self-transition is calculated analytically.

This can be shown quite easily in the following way and, for generality, we do it for the
multiservice case. Let us consider some state x which is also a blocking state for traffic class
m but not for the other classes k 6= m. In the partial chain, the lifetime of the state has the
expectation

E [T (x)] =
1∑

k 6=m λk +
∑

k xkµk
.

Calculating the effect of the self-transition in the full jump chain is tantamount to calculating
the expectation of the so called first exit time from the state x, denoted by T̃ (x). Let t̃(x)
denote the lifetime of the state x in the full jump chain. The mean of T̃ (x) can be calculated
from the recursion

E
[
T̃ (x)

]
= E

[
t̃(x)

]
+

λm∑
k λk +

∑
k xkµk

E
[
T̃ (x)

]
,
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from which we get directly

E
[
T̃ (x)

]
=

∑
k λk +

∑
k xkµk∑

k 6=m λk +
∑

k xkµk
E
[
t̃(x)

]
=

∑
k λk +

∑
k xkµk∑

k 6=m λk +
∑

k xkµk

1∑
k λk +

∑
k xkµk

=
1∑

k 6=m λk +
∑

k xkµk
= E [T (x)] .

Next we turn to the question whether the weighted samples method with the partial chain
or the simulation of the full jump chain with the subchain methods gives a lower variance
for the same number of generated samples from the embedded DTMC. Again, we use the
same methodology as the previous test. We performed tests on the simple Erlang single link
model for a small system (C = 5) and a larger system (C = 50) with the process scaled in
such a way that the average service rate µ = 1 and the average arrival rate λ = ρ. Note that,
in this case the arrival subchain method and the class-k arrival subchain methods reduce to
the same method. This time we used for both systems three different loads corresponding to
very high load, high load and low load conditions.The idea was again to have the blocking
probability equal in both the small and the larger system to investigate whether the size
of the system has any effect on the results. In each case we simulate the results of the
weighted samples method to a relative efficiency of approximately 21% and test what is the
corresponding figure for the subchain method with the same simulation parameters. The
exact simulation parameters and the results can be seen in Table 4.3. To estimate the sample
standard deviation the process was simulated starting from steady state until the number
of generated samples indicated in the table (N samples) from the embedded DTMC, and
the standard deviation was obtained from 10 000 independent replicas of simulations having
the indicated length.

C ρ B N Weighted Samples Arrival Subchain
5 3 0.1101 450 0.1989 0.2774
5 2 0.0367 1000 0.2095 0.3179
5 1 0.0031 5000 0.2081 0.4419
50 50 0.1048 2300 0.2104 0.2295
50 43 0.0376 8500 0.2021 0.2204
50 35 0.0033 60 000 0.2140 0.2476

Table 4.3: The relative efficiency of the estimators.

The results clearly show that for a given computational effort the variance is smaller when
using the weighted samples method than for both subchain methods. Although, it appears
that the difference decreases as the capacity increases. This variance reduction is brought
about by the fact that in the weighted samples method we are able to use each generated
sample in the estimator, whereas in the subchain consisting of the states just prior to an
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arrival we can only use a portion of the generated states. However, this is a fair comparison
in the sense that the computational effort is equal for both methods, when the extra effort
required to weight the samples with the average life time of the state is considered negligible.
This advantage would be canceled if we were to compare the methods for the same number
of “accepted” samples, i.e. we would generate N arrivals for the subchain method. Also, the
results would suggest that the advantage of the weighted samples method seems to increase
as the blocking probability becomes smaller. This is explained, at least partly, by the fact
that as the blocking probability becomes smaller, the smaller is the number of arrival events
for a fixed number of transitions from the DTMC and, hence, the less there are samples to
be used in the subchain method.

Then we experiment with small systems having 2 traffic classes to be able to differentiate
between the arrival subchain method and the class-k arrival subchain method. However, now
we will use the full jump chain in the weighted samples method to be able to use a common
realization of the embedded DTMC process for making the comparison of the methods as
effective as possible. Intuitively it would seem plausible that the weighted samples method
would still be most efficient, since in that method we utilize every sample that is generated
from the embedded DTMC, whereas in the subchain methods we only use a subset of the
samples.

To support our intuition we use the following single link, two traffic class systems:

• Example 1: C = 10, ρ = [2, 1],b = [1, 2]

• Example 2: C = 50, ρ = [20, 10],b = [1, 2]

The blocking probabilities in these systems were in the range 0.01 . . . 0.05 and in both cases
the blocking probability of traffic class 2 was higher than for traffic class 1. To compare
the methods for Example 1 we estimated the standard deviation of the estimator for 5000
generated samples from the embedded DTMC. For Example 2 we estimated the standard
deviation of the estimator for 20 000 generated samples from the embedded DTMC. The
deviation was estimated in both cases from 100 independent simulation runs. Also, in both
cases the processes were scaled in such a way that the average service rate µ = 1 and the
average arrival rate λ = ρ. The results are shown in Table 4.4.

Example Class Weighted Samples Arrival Subchain Class-k Arrival Subchain
1 1 0.0023 0.0034 0.0036
1 2 0.0044 0.0062 0.0085
2 1 0.0033 0.0036 0.0039
2 2 0.0062 0.0067 0.0067

Table 4.4: The standard deviation of the estimators for different embedded DTMC methods

The results, again, clearly show that for a given computational effort, i.e. the number
of samples generated from the embedded DTMC, the variance is smaller when using the
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weighted samples method than for both subchain methods. Also, the complete arrival
subchain appears to be more effective than the class-k arrival method, which can be again
at least partly explained by noting that in the class-k arrival method we use only a subset of
the samples used for the estimator of the arrival method. In addition, the arrival subchain
method appears to be the better the smaller is the offered load of the traffic class under
study with respect to the other traffic class. Also, we can note that the differences seem to
become smaller as the system size is increased.

As a conclusion from the experiments made in this section, we can say that from all the
Markov chain methods the simulation of the partial chain with the weighted samples method
gives the best variance performance. However, at the same time, it seems that the differences
may not be so substantial as the system size increases.

4.5.3 Correlation of Sample Generation Methods

In this section we investigate the correlation structure of different sample generation methods
when estimating the blocking probabilities. Specifically, we consider the estimator

B̂k =
1

N

N∑
n=1

h(Xn) =
1

N

N∑
n=1

1Xn∈Bk ,

where the samples Xn have the distribution π as in (2.1) and h(X) = 1X∈Bk . The following
sample generation methods are studied:

• the rejection sampling method as described in section 4.2,

• the subchain method corresponding to all arrival events (case “d1” in the figures)

• the class-k subchain method corresponding to arrival events of class k (case “d2” in
the figures),

• the weighted samples method with full jump chain (case “d3” in the figures), and

• the Gibbs sampler (case “g” in the figures).

The rejection sampling method, as has been noted before, gives independent samples and
hence by (4.3) the most efficient samples in terms of the total variance of the estimator. Thus
we only need to study the DTMC methods and the Gibbs sampler. For this we consider
some numerical examples and try to infer from them some remarks on the efficiency of the
methods.

Our first two examples consist of the same simple two traffic examples that were used in
the previous section, i.e. :

• Example 1: C = 10, ρ = [2, 1],b = [1, 2]
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• Example 2: C = 50, ρ = [20, 10],b = [1, 2]

The idea is to show how the increase of traffic intensity affects the correlation of the DTMC
methods for the same type of system. For this, we have plotted the estimated covariance
function for traffic class 2, i.e. Cov[h(Xn), h(Xn+m)] for m = 0, . . . , 20, for the four methods
in Fig. 4.4, where the figure on the left corresponds to Example 1 and the figure on the
right corresponds to Example 2. Note that for m = 0 the covariance is simply the variance
of each sample in the estimator. From the figures we can first see that the variance of
each sample is lowest for the weighted samples method and that this advantage appears to
diminish as the size of the system is increased. The highest covariance between samples is
for the weighted samples method (especially in Example 2), which is also intuitively clear
since in this method we use every state generated from the jump chain as samples. The
covariance of the arrival subchain method is quite close to the covariance of the weighted
samples method in Example 1 for m ≥ 4, but in Example 2 the arrival subchain has a lower
covariance for m ≥ 2. The class-k subchain method gives almost as good results as the
Gibbs sampler in example 1, where the traffic intensity is low. However, when intensity
is increased, the covariance is increased for the subchain method as well, but the Gibbs
sampler’s performance is not affected so much by the increase in traffic intensity. In these
cases the correlation of the Gibbs sampler becomes practically negligible after 2 samples,
i.e. a full cycle.
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Figure 4.4: Covariance function of h(Xn) for Example 1 and Example 2. In the figure “g”
corresponds to the Gibbs sampler method, “d1” to the arrival subchain method, “d2” to
the class-k arrival subchain method and “d3” to the weighted samples method.

Next we tested how the methods perform when we have a larger system with multiple traffic
classes and several links. For this, we use the four link star network with 12 traffic classes
studied by Ross in [Ros95, chap. 6] in the heavy load case (Example 3). In Fig. 4.5 we
have, again, plotted the covariance function for the estimator for traffic class 2 (left figure)
and traffic class 8 (right figure), for m = 0, . . . , 30. Again, we can see that the difference in
the variance of each sample between the weighted samples method and the other methods
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is practically negligible and that the covariance of the weighted samples method is highest.
Interestingly, we can also see that the covariance drops faster for the class-k subchain method
than for the Gibbs sampler. This can, however, be understood by noting that in this case a
lot of transitions have to be generated from the DTMC between successive class-k arrivals
and hence the covariance between successive such points is also quite low. In the case of the
Gibbs sampler, it seems that the length of the “cycles” K, produces cyclical behavior in the
covariance plots, too. This can be seen in the right hand figure, where the traffic is “super
heavy” and the blocking probability is approximately 23%. There two cycles are clearly
visible — the first one for lags m = 0, . . . , 12 and the second one for lags m = 12 . . . , 24.
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Figure 4.5: Covariance function of h(Xn) for Example 3. In the figure “g” corresponds to
the Gibbs sampler method, “d1” to the arrival subchain method, “d2” to the class-k arrival
subchain method and “d3” to the weighted samples method.

Having now examined the covariance of the samples for each method we can make some
comments on the complexity of each method. The lowest complexity is for the full jump
chain method with weighted samples. In this method the complexity of each sample gener-
ation is O(K), since at each state there is at most 2 · K possible jump directions and the
determination of which event takes place can be done in O(K) time. The computational
work is, however, increased by the fact that at each state one has to also calculate the
different state dependent branching probabilities, for which precomputation is not feasible
because of excessive memory needs.

The simulation of the arrival subchain method consists of using the full jump chain, but only
picking the suitable samples. Hence, the computational complexity is very much affected by
the mean number of transitions between successive arrivals (or departures). We can make
a rough approximate analysis on this in the following way. Assuming an infinite capacity
the system behaves as K independent Poisson processes each with offered load ρk = λk/µk.
Then we have for each class on the average λk arrivals per time unit. Since the system is
assumed infinite, every arriving customer enters the system and leaves the system as well,
i.e. we have also on the average λk departures per time unit for each traffic class. Thus we
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can say that on the average half of the events are arrivals and half are departures, i.e. on
the average 2 transitions are required between each arrival from the full jump chain giving
a rough complexity of O(2K) for the arrival subchain method, since each transition can be
generated in O(K) time.

For the class-k arrival subchain method we use the same assumptions as above and we can
say that we have in the continuous time process events (arrivals or departures) taking place
at the rate 2 ·∑k λk per time unit. Note that this is an upper bound on the rate, because
in the finite system not all arrivals get service. However, the average time between arrivals
of traffic class k is 1/λk. Then we have on the average during that time(

K∑
m=1

2 λm − λk

)
· 1

λk
= O(K)

other events than arrivals from traffic class k (total average number of events precluding the
arrivals from traffic class k). Thus we can deduce that the complexity of the class-k arrival
subchain method is of the order O(K2), since we have O(K) events between successive
arrivals of traffic class k and each event generation can be done in O(K) time.

In the rejection sampling method we need to generate K Poisson type random variables
from distributions with length Nk

max. Therefore, it has complexity O(KNmax), where Nmax

denotes the largest value of Nk
max for k = 1, . . . , K. However, by using advanced methods for

generating the K random variables, the complexity can be decreased to mere O(K) [Ros95,
p. 233] (O(1) for each traffic class). Despite its higher complexity in comparison with the
DTMC methods, the rejection sampling method has the advantage that the distributions
from which the samples are generated can be precomputed and stored into arrays. The Gibbs
sampler basically consists of generating samples from univariate Poisson distributions with
different “lengths” and the distributions can be, again, precomputed and stored into arrays.
Hence the complexity of the method is O(Nmax), but by using similar methods as for the
rejection sampling method, the lookup time from the arrays can be reduced to O(1).

4.5.4 Bias Analysis of the Regenerative Simulation Method: The

Single Link and Single Traffic Class Case

In this section we address the problem of finding the most efficient regeneration state for
simulating the classical single link Erlang model. For this, we derive a method for analyz-
ing the estimator’s distribution as a function of the number of simulation cycles for any
regeneration state choice. This allows us to examine in detail the effect of the choice of
the regeneration state on the accuracy of the estimator in terms of its expected value and
standard deviation.

Consider the single link, single traffic type case. Let

• n = the current state of the system,
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• N = the size of the system (number of trunks),

• ρ = the offered traffic to the link.

The regenerative method for simulating the blocking probability of this system is as follows:
Define a regenerative cycle as a path generated from the embedded DTMC, which starts
from the regeneration state and ends there. Along the generated path we collect samples of
two random variables: G, the number of arrivals (including blockings) in a cycle, and F , the
number of blockings in a cycle. The observations of these variables in mth cycle are denoted
as Fm and Gm. The simulation is stopped after M cycles. Then our M-cycle estimator for
the blocking probability B̂M becomes

B̂M =
1/M

∑M
m=1 Fm

1/M
∑M

m=1 Gm

=
F̂M

ĜM

(4.12)

Derivation of the Distribution

For deriving the probability generating function (pgf) of the estimator (4.12), let z be the
variable in the pgf associated with arrivals, and y with blockings. The joint probability of
G = k and F = l is given by

p(k, l) =

{
Pr[G = k, F = l |↑] Pr[↑] + Pr[G = k |↓] Pr[↓], l = 0,
Pr[G = k, F = l |↑] Pr[↑], l > 0,

where ↑ and ↓ denote cycles which start from the regeneration state and on the next tran-
sition proceed upwards and downwards respectively. Notice that when the cycle proceeds
downwards from the regeneration state then we will of course have no blockings. The pgf
for the joint probability p(k, l) is defined as

g(z, y) =
∑
k,l

p(k, l)zkyl. (4.13)

Now, to facilitate the analysis we will divide the analysis into two parts: 1) for cycles that
proceed upwards from the regeneration state and 2) for cycles that proceed downwards,
respectively. For this, we denote with Gn

↓ and Gn
↑ the number of arrivals during a cycle

that proceeds downwards and upwards, respectively, starting from state n. For F there
is only need for F n

↑ to be defined. We also introduce similar notation for the pgf’s of the
random variables: gn

↑ (z, y) and gn
↓ (z) denote the pgf’s for cycles proceeding upwards or

downwards from state n. Finally, we shall denote with pn
↓ = n/(ρ + n) and pn

↑ = ρ/(ρ + n)
the probabilities for moving downwards or upwards, respectively, from state n.

From Fig. 4.6 it can be seen that the Gn
↑ and F n

↑ have a recursive structure such that
for the cycles proceeding upwards from state n, the number of arrivals consists of the one
coming from the transition upwards to state n + 1 plus a random sum of arrivals from
cycles beginning from and ending in state n + 1. Now in this case, the number of such
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Figure 4.6: Recursive regeneration cycles.

cycles, denoted with ξn+1
↑ , is geometrically distributed with success probability pn+1

↓ . For
the blockings the reasoning is the same, but there are no blockings until for the cycle
beginning from state N and ending there, in which case the cycle contains exactly one
arrival and blocking. Then we can derive the following recursive equations for the Gn

↑ and
F n
↑ 


(Gn

↑ , F
n
↑ ) = (1, 0) +

∑ξn+1
↑

i=1 (Gn+1
↑,i , F n+1

↑,i ), n < N,

(GN
↑ , FN

↑ ) = (1, 1),
ξn
↑ ∼ Geom(pn

↓ ).

(4.14)

Note that when ξn+1
↑ = 0 (with probability pn+1

↓ ), i.e. when there is an arrival and a departure
immediately after that the sum term vanishes.

Similarly we get for the number arrivals during cycles which proceed downwards (remember
there are no blockings in these cycles)


Gn

↓ = 1 +
∑ξn−1

↓
i=1 Gn−1

↓,i ,

G1
↓ = 1,

ξn
↓ ∼ Geom(pn

↑ ).

(4.15)

Now, in order to get the pgf for the above equations, we use the fact that for the sum of i.i.d.
variables Bi with common pgf B(z), A = B1 + · · ·+BC , where C itself is a random variable
with pgf C(z) and is independent of the Bi, has the pgf A(z) = C(B(z)). Specifically, in
the case where C ∼ Geom(p), the pgf is A(z) = p

1−(1−p)B(z)
. Then we will get the following
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recursive equations for the pgf:s


gn
↑ (z, y) = z

pn+1
↓

1 − pn+1
↑ gn+1

↑ (z, y)
,

gn
↓ (z) = z

pn−1
↑

1 − pn−1
↓ gn−1

↓ (z)
,

gN
↑ (z, y) = zy,

g1
↓(z) = z.

(4.16)

Then the complete pgf gn(z, y) for a simulation cycle starting from state n and ending there
is expressed as

gn(z, y) = pn
↑g

n
↑ (z, y) + pn

↓g
n
↓ (z). (4.17)

Because the random variables in different regeneration cycles are i.i.d., the probability gen-
erating function for the joint probability distribution of the arrivals and blockings during
M cycles will simply become

gn
M(z, y) = (gn(z, y))M . (4.18)

Mean and Variance of the Estimator

In order to calculate the mean of the estimator (4.12) and its variance, we utilize some
properties of the pgf. Here we simplify the notation a little bit in order to avoid confusing and
overly complex notation. We simply denote with g(z, y) the pgf obtained for the estimator
(4.12) through equations (4.16) - (4.18), i.e. we omit the dependence on M and n. Also,
g(i,j)(z, y) is used to denote the ith and jth partial derivatives with respect to z and y.

Then for the numerator part, i.e. random variable F , we shall need the following relations

E [F ] =
∑
k,l

l p(k, l) =
∂

∂y

(∑
k,l

p(k, l)zkyl

)∣∣∣∣∣
z=1,y=1

= g(0,1)(1, 1), (4.19)

E
[
F 2
]

=
∑
k,l

l2 p(k, l) =
∑
k,l

l(l − 1) p(k, l) +
∑
k,l

l p(k, l)

=
∂

∂y2

(∑
k,l

p(k, l)zkyl

)∣∣∣∣∣
z=1,y=1

+
∂

∂y

(∑
k,l

p(k, l)zkyl

)∣∣∣∣∣
z=1,y=1

= g(0,2)(1, 1) + g(0,1)(1, 1). (4.20)

For calculating the statistics of the arrivals G, we need to be able to evaluate the following

E

[
1

G

]
=

∑
k

1

k

∑
l

p(k, l)
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=

∫ 1

0

g(z, 1)

z
dz, (4.21)

E

[
1

G2

]
=

∑
k

1

k2

∑
l

p(k, l)

=

∫ 1

0

1

z

∫ z

0

g(u, 1)

u
du dz

=

∫ 1

0

1

u
du

∫ 1

u

1

z
g(u, 1) dz

= −
∫ 1

0

ln u

u
g(u, 1) du, (4.22)

where in equation (4.22) we have changed the order of integration to simplify the integration
to a single integral.

Eq. (4.21) can be proved quite easily. The pgf of the arrivals G is derived from the total pgf
g(z, y) as g(z, 1) =

∑
k zk

∑
l p(k, l) =

∑
k p∗(k)zk, where we have denoted with p∗(k) the

marginal probabilities of G. Also, note that p∗(0) = 0. Then we have

∫ 1

0

g(z, 1)

z
dz =

∫ 1

0

( ∞∑
k=1

p∗(k)zk−1

)
dz

=
∞∑

k=1

1

k
p∗(k).

Eq. (4.22) can be proved in a similar fashion by only doing the integration twice. Then by
using methods as in equations (4.19) - (4.22) we can derive the following

E
[
B̂M

]
= E

[
F

G

]
=

∫ 1

0

(
1

z
g(0,1)(z, 1)

)
dz, (4.23)

E
[
B̂2

M

]
= E

[
F 2

G2

]
= −

∫ 1

0

(
ln z

z
g(0,2)(z, 1) + g(0,1)(z, 1)

)
dz. (4.24)

Now, by using equations (4.23) and (4.24) we are able to calculate the mean and variance
of the distribution for estimator (4.12) after M simulation cycles.

Numerical Example

In this section we present the results of using equations (4.16) - (4.18) and then evaluating
equations (4.23) and (4.24) on a system with N = 6 and ρ = 2. The exact blocking
probability is erl(2, 6) = 0.0121 in this case. To compare the effect of different regeneration
states, we must be able to compare the mean and variance of the estimator for equal number
of generated events from the DTMC of the process. However, equations (4.23) and (4.24)
only give us values as a function of the number of simulated cycles.
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For this we notice that the mean number of arrivals in a cycle is given by

E [G] = g(1,0)(1, 1). (4.25)

Also, we know that on the average the number of departures during a cycle is (1−B)E[G],
i.e. when the blocking probability becomes smaller the closer the average number of arrivals
during a cycle is to the average number of departures. Thus, it is sufficient to compare the
efficiency of the estimator for different starting states as a function of the mean number of
arrivals needed to achieve certain precision. Therefore, when comparing the estimators we
just need to evaluate (4.23) and (4.24) until a sufficient number of cycles, so that for each
regeneration state, the mean number of arrivals needed to achieve this accuracy is enough.

In Fig. 4.7 we have plotted the results for all possible regeneration states as a function of
the number simulation cycles. However, the x-axis has been scaled to correspond to the
average number of arrivals that need to be generated from the jump chain by using (4.25).
In all the graphs, the lowest curve corresponds to the results for having the regeneration
state as state 1, and the next upper curve corresponds to state 2 etc. In Fig. 4.7 on the left
the horizontal line represents the true value of the blocking probability.
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Figure 4.7: Expected value and the standard deviation of the estimator.

The curves clearly show that the chosen regeneration state affects the bias and the standard
deviation of the etimator considerably. On the other hand they show rapid convergence
as the number of arrivals increases, i.e. simulation time, showing good agreement with the
asymptotic results. What is perhaps most surprising in the curves is that the standard
deviation σB̂M

increases when the chosen regeneration state becomes higher.

4.5.5 Bias Analysis of the Regenerative Simulation Method: The
General Multiservice Loss System Case

In the previous section we were able to derive an analytic expression for the pgf of the
estimator as a function of the number of the regeneration cycles for the single link and
single traffic type case. The crucial point was that the cycles had a recursive structure in
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the simple one-dimensional path state space. This property is lost when we are dealing with
a multi-dimensional state space, since now the paths can wander in different directions in
the state space. However, we can still derive the pgf for the cycles in the multi-dimensional
space by using a Markov chain method.

Derivation of the PGF

The idea is based on the following property. Let Xn be an irreducible Markov chain with
a multi-dimensional state space S and transition matrix P. This transition matrix is con-
structed for the multi-dimensional process by counting the number of states in the state
space and labeling each of them from 0 to n, where n equals one less than the total number
of states in the whole state space. Then each entry pij in the matrix corresponds to the
transition probability of moving from the state labeled i to the state labeled j. The states
of the state space can of course be labeled in any order. Now, assume that we are interested
in finding out the probability of starting the chain from some initial state “0” in the state
space and that the process returns to this state in I transitions. Then by denoting with r
all the other states than state 0, the transition matrix P has the following partition

P =

(
p00 P0r

Pr0 Prr

)
, (4.26)

where P0r and Pr0 are vectors containing the transition probabilities away from state 0 and
back to state 0, respectively, and the submatrix Prr contains the transition probabilities
between all the other states than state 0 (see Fig. 4.8).

0

r

Prr

P0r

Pr0

p00

Figure 4.8: Partition of the transition matrix P.

Using the partitioned matrix we note that the probability of re-entering the initial state 0
in i transitions is given by

Pr [I = i] =

{
p00 i = 1,
P0r · Pi−2

rr · Pr0 i > 1.
(4.27)

This can be used to construct the pgf for the estimator of the blocking probabilities in
a multiservice loss system when using the regenerative simulation method. Then we are
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again able to use similar methods as in the previous section for investigating the bias and
the standard deviation of the estimator as a function of increasing number of regeneration
cycles.

To this end, let us now use P to denote the transition matrix corresponding to the full jump
chain of the multiservice loss system. The regenerative simulation of the system consists of
starting the chain from some initial state 0 until it returns back to that state. Along the
generated path we collect samples of the random variables for the number of arrivals of each
traffic class during a cycle, denoted by Gm

k , and for the number of blockings of each traffic
class during a cycle, denoted by F m

k . The simulation is stopped after M such cycles have
been generated. The blocking probability for traffic class k is then estimated by

B̂M
k =

∑M
m=1 F m

k∑M
m=1 Gm

k

.

To obtain the pgf for this estimator, we first denote by g(zk, yk) the pgf for the joint dis-
tribution of class-k arrivals and blockings during one regenerative cycle when the process
is started from state 0 with zk corresponding to the arrivals and yk to the blockings. Now,
g(zk, yk) can be obtained using conditioning on the length of the cycles I by

g(zk, yk) =
∞∑
i=1

gi(zk, yk)Pr [I = i] , (4.28)

where gi(zk, yk) is the conditional pgf for the arrivals and blockings of traffic class k when
the length of the cycle equals i.

Using (4.27) we can obtain the probability of entering the regeneration state 0 in a given
number of transitions. However, for the estimator we are only interested in the number of
transitions corresponding to arrivals. To derive its pgf, we replace those transitions pij in P
which correspond to an arrival of a class-k call with zkpij and those transitions corresponding
to an arrival and a blocking transition with zkykpij. If we then use (4.27) with the modified
transition probabilities, it gives the ith term in the summation of (4.28), i.e.

P0r · Pi−2
rr · Pr0 = gi(zk, yk)Pr [I = i] . (4.29)

Hence we are able to obtain an approximation for the one cycle pgf g(zk, yk) by evaluating
(4.29) until a sufficient number of terms from (4.28) have been included, e.g. until Pr[I >
i] < 0.001. The M cycle pgf gM(zk, yk) is by the independence of the cycles then simply

gM(zk, yk) = g(zk, yk)
M . (4.30)

Now, we can use the results from the previous section and use (4.23) and (4.24) to calculate
the mean and variance of the estimator from

E
[
B̂M

k

]
=

∫ 1

0

(
1

zk

(
g

(0,1)
M (zk, 1)

)
dz, (4.31)

E
[
(B̂M

k )2
]

= −
∫ 1

0

(
ln zk

zk

g
(0,2)
M (zk, 1) + g

(0,1)
M (zk, 1)

)
dz, (4.32)
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where g(i,j)(z, y) is used to denote the ith and jth partial derivatives with respect to z and
y, respectively.

Numerical example

As a numerical example we use a small tandem link network with two traffic classes and the
following parameters:

• Link capacities C1 = C2 = 5

• Bandwidth requirements: b1 = [2, 3], b2 = [0, 3]

• Offered load: ρ1 = ρ2 = 0.1

The network and the resulting state space are shown in Fig. 4.9.

C1 C2

ρ1

ρ2

x2

x1

Figure 4.9: Network example and its state space.

As a first example consider the case of choosing state [0, 0] as the regeneration state 0 and
assume that we are interested in the results for traffic class 1. We approximated g(z1, y1) by
including the 13 first terms of the sum (4.28) resulting in a very accurate approximation since
now Pr[I ≤ 13] = 0.999984. The average number of transitions to enter the regeneration
state is from (4.27)

E [I] = p00 +
∞∑
i=2

i(Prr · Pi−2
0r · Pr0).

In this case E[I] ≈ 2.36. In Fig. 4.10 we can see the expectation and the standard deviation
of the estimator for the blocking probability of traffic class 1. From the figure we can
see that the estimator is strongly biased downwards in the beginning, but approaches the
correct value (B1 = 0.0123, straight line at the top of the figure) rapidly as the number
simulated cycles increases. Also, aside for the slight increase when only a few cycles have
been simulated, the standard deviation decreases rapidly as the number of cycles increases.

Next we consider the case of choosing state [1, 0] as the regeneration state 0 and, again,
assume that we are interested in the results for traffic class 1. We approximated g(z1, y1) by
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Figure 4.10: Expected value and the standard deviation of the estimator for state [0, 0].

including the 17 first terms of the sum (4.28) resulting in a slightly less accurate approxima-
tion than before but still we have Pr[I ≤ 17] = 0.995788. In this case E[I] ≈ 3.94. In Fig.
4.11 we have the expectation and the standard deviation of the estimator for the blocking
probability of traffic class 1. From the figure we can see that the estimator is strongly biased
downwards in the beginning, but approaches the correct value (again the straight line at
the top of the figure) rapidly as the number simulated cycles increases. Also, the standard
deviation decreases rapidly as the number of cycles increases.
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Figure 4.11: Expected value and the standard deviation of the estimator for state [1, 0].

In comparison with the first example we can see from the figures that, for the same number
of cycles, the choice [1, 0] for the regeneration state would be better in terms of the bias
and the standard deviation of the estimator. However, this is not the whole truth since
the average length of a cycle for state [0, 0] was only 2.36 whereas for state [1, 0] it was
3.94. Hence, the average time to simulate a fixed number of cycles is for the state [0, 0] only
2.36/3.94 ≈ 60% of the time it would take for the choice [1, 0]. When we take this scaling
of the results into consideration the two alternatives become almost equally good.



Chapter 5

Simulation Speedup Techniques

In this chapter we first review briefly known general techniques from the simulation literature
for increasing the simulation efficiency, i.e. for reducing the variance of the estimator. Then a
review is given on the material available on importance sampling applied in communication
system simulation. Finally, we give two novel variance reduction methods in the context of
the multiservice loss system.

5.1 General Variance Reduction Methods

In general, obtaining results with simulation requires a large amount of computational work
and, hence, time. Also, as we know from the central limit theorem, no matter what kind of
simulation method is used, the width of the confidence interval of the results depends on the
standard deviation of the result, which, in turn, is inversely proportional to the square root
of the sample size. Therefore, if one is somehow able to obtain samples which have a smaller
variance, this will result in a more accurate estimate with a given number of samples. If the
reduction of variance can be obtained without causing excessive additional computational
complexity, the savings in simulation run time can be significant. Such methods are generally
known as variance reduction techniques, and they are based on utilizing known analytical
results and/or properties of the system under study.

Next we briefly describe the following methods: common random numbers, antithetic vari-
ates, control variables, conditional expectations and importance sampling (IS). An early
work reviewing these methods, except the common random numbers method, is [Ham67,
chap. 6] describing their usage in the context of Monte Carlo simulation. More recent reviews
can be found e.g. in [Mitr82, chap. 6], [Law91, chap. 11] and [Rub98, chap. 4].

58
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5.1.1 Common Random Numbers

This method is applicable when comparing the performance of two similar systems. For
example we might be interested in the performance difference of a queue under two different
scheduling policies. To be precise, assume we have a performance measure X and we want
to estimate the difference in the expectation of X under these two different policies

∆m = mA − mB = E
[
XA
]− E

[
XB
]
,

where XA and XB denote the r.v. X under policy A, and B, respectively. To estimate the
difference ∆m it is advantageous to use the same realizations of the input process, i.e. the
same random numbers are used to generate the input process realization for policy A as for
policy B, since if e.g. under policy A there appears an arrival burst, the same burst will also
appear in the simulation under policy B. During a simulation we obtain N samples of XA

n

and XB
n , n = 1, . . . , N . Let X̄A = 1/N

∑N
n=1 XA

n denote the sample mean for policy A and
X̄B the corresponding variable for policy B. Then

∆m̂ = X̄A − X̄B (5.1)

is still an unbiased estimator for ∆m. However, the variance of this is

Var [∆m̂] = Var
[
X̄A
]
+ Var

[
X̄B
]− Cov

[
X̄A, X̄B

]
.

Now the samples XA
1 , . . . , XA

N are independent and so are XB
1 , . . . , XB

N , but when using the
same arrival realizations the XA

n and XB
n , n = 1, . . . , N are positively correlated. Hence,

the sample averages X̄A and X̄B are positively correlated and the estimator (5.1) has lower
variance than when using independent arrival realizations.

In general, it can be noted that when the performance of any two systems are compared,
it is always advantageous to try to make the comparison under as identical circumstances
as possible. However, the implementation of the common random numbers is not always so
straight forward and may require some effort in the synchronization of the simulations of
the alternative systems.

5.1.2 Antithetic Variates

Let us again consider the r.v. X and estimating its expectation m = E[X]. Instead of just
generating independent samples of X during the simulation the idea is now to generate
pairs of samples such that if either value of a pair happens to have a large value the other
value will tend to have a small value and vice versa. This will induce negative correlation
between the pairs of samples. Such a pair is called a pair of antithetic random variables.
Let us denote by (X

(1)
n , X

(2)
n ) the nth such pair of samples and during the simulation N

such pairs are generated. Also, we assume that the different pairs are independent and that
X

(1)
n ∼ X

(2)
n ∼ X. Then let

Xn =
X

(1)
n + X

(2)
n

2
.
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Now m̄ = 1/N
∑N

n=1 Xn is an unbiased estimate for m, but its variance is

Var [m̄] =
Var[X

(1)
n ] + Var[X

(2)
n ] + Cov[X

(1)
n , X

(2)
n ]

4N
.

From this we can see that, if we manage to induce negative correlation between X
(1)
n and

X
(2)
n , we have smaller variance for m̄ than when they are independent.

To create the negative correlation we try to choose the sequences of the Uk ∼ U(0, 1), (k =
1, . . .) distributed random variables driving the simulation runs appropriately. In practice

this means that if some r.v. Uk is used for some specific purpose in generating X
(1)
n (typically

to generate some r.v. using e.g. the so called inverse transform method, see e.g. [Rub98, p.

18] for details on this method), the r.v. 1− Uk is used in the generation of X
(2)
n for exactly

the same purpose. Then, if Uk contributes to a large value of X
(1)
n , 1 − Uk contributes to a

small value of X
(2)
n . In general, it is, however, difficult to quantify the amount of variance

reduction obtained with this method and, moreover, the reduction is not even guaranteed in
all cases. Also, the application of this method requires careful synchronization between the
generation of the (X

(1)
n , X

(2)
n ) pairs to ensure that the random number sequences U1, U2, . . .

and 1 − U1, 1 − U2, . . . are used for exactly the same purpose.

5.1.3 Control Variables

The basic control variables method can be described in the following way. The key idea is
to utilize strong positive correlation between the r.v. under study X and another so called
control variable Y for which the expectation y = E[Y ] is assumed to be known. Again the
goal is to estimate m = E[X]. During the simulation we generate samples of both X and Y .
The samples Xn and Yn can be used to construct an estimate with lower variance. Consider
the following estimator

V = X̄ − Ȳ + y,

where X̄ and Ȳ denote sample averages. This is clearly an unbiased estimator and its
variance is

Var [V ] = Var
[
X̄
]
+ Var

[
Ȳ
]− 2Cov

[
X̄, Ȳ

]
.

Thus the variance is smaller than Var[X̄] if Cov[X̄, Ȳ ] > Var[Ȳ ]/2.

This basic method may be improved by including a free parameter a in the definition of V ,
i.e. we let

Ṽ = X̄ − a(Ȳ − y).

The variance of this estimator has a quadratic form with respect to the parameter a and
from that it is easily computed that the minimum variance choice for the parameter a is
given by a∗ = Cov[X̄, Ȳ ]/Var[Ȳ ]. Then the variance of Ṽ is

Var
[
Ṽ
]

= (1 − ρ2
X̄,Ȳ )Var

[
X̄
]
,



CHAPTER 5. SIMULATION SPEEDUP TECHNIQUES 61

where ρX̄,Ȳ denotes the cross correlation of X̄ and Ȳ . From this it can be readily seen that
the variance is always reduced irrespective of the sign of the correlation and that the larger
|ρX̄,Ȳ | is, the greater the variance reduction. However, in many cases the covariance cannot
be analytically computed and, hence, it must be estimated prior to the actual simulation. In
general, this method already applies the principle that if any analytical results are available
of the system under study that are directly or indirectly related, this prior information can
be used to construct more efficient estimators.

We can note here that the use of control variables requires that during the simulation both
the actual observed r.v. X and the control r.v. Y are simulated. Henderson [Hen97] has
recently published a Ph.D. thesis on a related method, whereby one approximates the r.v.
X by another r.v., say X ′. Then during the simulation only X ′ is simulated. It turns out
that sometimes X ′ can be chosen such that E[X ′] = E[X] but Var[X ′] < Var[X]. Henderson
considers specifically the case when X and X ′ are Markov chains.

5.1.4 Conditional Expectations

In this method we utilize known analytical results of the simulated system in a similar
manner as before, but this time we replace some r.v. with the value of its conditional
expectation. Again we are estimating m = E[X]. Let us assume now that we are able to
calculate analytically the conditional expectation Z = E[X | Y ], which is also a r.v. whose
value changes as Y changes, but when Y is fixed Z has a fixed value. Then during the
simulation we generate samples Zn, instead of samples Xn. Note that then each sample is
still an unbiased sample of X since

E [Z] = E [E [X | Y ]] = E [X] .

Recall the formula for the unconditional variance in terms of conditional variance and ex-
pectation

Var [X] = E [Var [X | Y ]] + Var [E [X | Y ]] ,

from which follows that

Var [Z] = Var [E [X | Y ]] = Var [X] − E [Var [X | Y ]]

showing that the conditioning eliminates the variance of X for all those values of X where
the value of Y is fixed. This means that by conditioning we always reduce the variance of
each sample.

However, since our final estimator is the sample average Z̄ = 1/N
∑N

n=1 Zn, the reduction of
the variance for the sample average is only guaranteed when the samples Zn are independent.
When the samples are positively correlated, which is quite typical e.g. when using process
simulation, the reduction is not guaranteed, since it may happen that the expectations will
increase the positive correlation such that the variance reduction of the samples is canceled.

We can here also note that the weighted samples method presented in the previous chapter
can be interpreted as resulting from the application of this method. By using the expected
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values of the lifetimes of each state we are using as samples the conditional expectation for
the lifetime of the state conditioned on the embedded DTMC being in a given state. Later
in this chapter we will show how this method can be applied in the case of the multiservice
loss system to give substantial variance reduction.

5.1.5 Importance Sampling

Consider again the following estimation problem. Let p(x) denote the density of the r.v. X
obtaining values in the set S and we are interested in estimating the expectation E[f(X)].
We can express the expectation

m = E [f(X)] =
∑
x∈S

f(x) p(x) =
∑
x∈S

f(x)
p(x)

q(x)
q(x) = Eq [f(X) w(X)] , (5.2)

where q(x) is some other density defined in the set S and in addition having the property
that q(x) > 0, ∀x ∈ S : p(x) > 0. Also, Eq denotes expectation with respect to the density
q(x) and w(x) = p(x)/q(x) is the so called likelihood ratio. This leads to the simulation
method known as importance sampling. We generate samples Xn, n = 1, . . . , N , using the
density q(x). Then from (5.2) an unbiased estimator for m is

m̂ =
1

N

N∑
n=1

f(Xn)w(Xn).

That is we can estimate m by using another density and then unbiasing the result by
multiplying the samples with the likelihood ratio.

Then the problem is to find among the class of all possible densities the one that will produce
minimum variance for the estimator (5.2). A well known result for the optimal choice of
q(x), i.e. giving the minimum variance for the estimator, is to set

q(x) =
f(x) p(x)

m
.

This choice would make the variance of m̂ zero, since it has the property of making each
sample f(Xn)w(Xn) = m with probability 1. However, the optimal choice is of course
not a feasible density, since it requires knowledge of the unknown quantity m that we are
attempting to estimate. Then the next approach is to try to approximate the optimal choice
in some way. This has been subject to a considerable amount of research and the results
that apply to simulation of queuing systems will be presented in the next section. Also,
later in this chapter we will derive a composite IS distribution for estimating the blocking
probabilities in the multiservice loss system, with the guideline of trying to approximate the
optimal distribution.
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5.2 Rare Event Simulation

Next we will review the literature on variance reduction in the simulation of so called rare
events. This particular class of problems has attracted a lot of attention in the research
community and is perhaps the one for which the theory has been most throughly developed.
For this let us first define the rare event simulation problem. Let X be a r.v. with density
p(x) and consider estimating the probability γ that X is in some set A, i.e. as in (5.2) with
f(X) = 1X∈A,

γ = Ep [1X∈A] . (5.3)

The static MC method to estimate the probability is to generate N i.i.d. samples of X
from p(x) and use the estimator γ̂N = 1/N

∑N
n=1 1Xn∈A, which has the variance σ2(γ̂N) =

γ(1 − γ)/N . Let RE(γ̂N) = σ(γ̂N)/γ denote the relative error of the estimator. Then

RE(γ̂N) =

√
1 − γ

γN
≈ 1√

γN
→ ∞ when γ → 0.

Thus when using standard simulation the relative error is unbounded as the event becomes
rarer. This also implies that in order to get an estimate with fixed relative error the required
number of samples N to reach this accuracy goes to infinity as γ → 0. Srinivas shows the
same result for Markov chains in [Sri96].

It is in this context that several techniques have been applied to identify methods that
attempt to solve the problem of unbounded relative error. For the most part the literature
deals with methods to identify efficient IS distributions. Another approach is the so called
splitting method.

5.2.1 Importance Sampling Methods for Queuing Systems

An early review of IS in static Monte Carlo methods is given in [Ham67]. More recent reviews
are [Gly89] dealing with general stochastic processes and [Hei95] reviewing IS results in the
context of queuing and reliability models. Another very good overview can be found in
[Sri96, chap. 1]. Some of the discussion here is taken from [Hei95] and [Sri96]. Also, we
limit ourselves to consider the IS problem from the point of view of simulating queuing
systems.

Consider the equation (5.3). Applying IS to this we get the following estimator

γ̂N(q) =
1

N

N∑
n=1

1Xn∈A
p(Xn)

q(Xn)
=

1

N

N∑
n=1

1Xn∈Aw(Xn), (5.4)

where the samples X1, . . . , XN are i.i.d. and generated from the density q(x). Then the
optimal zero variance IS density q(x) is

q(x) =

{
p(x)/Pr[A], if X ∈ A,
0, otherwise,
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i.e. the original density p(x) conditioned on A. If the sequence {X1, . . . , XN} is a Markov
chain under measure P with transition probabilities p(·, ·) and initial distribution ν the
corresponding estimator becomes

γ̂N(Q) =
1

N

N∑
n=1

1Xn∈A
ν(X1)

η(X1)

N∏
n=2

p(Xn−1, Xn)

q(Xn−1, Xn)
=

1

N

N∑
n=1

1Xn∈ALN , (5.5)

where η denotes the initial distribution and q(·, ·) denotes the transition probabilities under
the IS measure Q, and LN is the likelihood ratio. The zero variance IS measure would
in this case be the joint probability of the sequence {X1, . . . , XN} conditioned on A, re-
quiring, again, knowledge of the estimated parameter. For our purposes it is sufficient to
consider the i.i.d. case and the Markov chain case when using IS (see [Gly89] for informa-
tion on IS with more general stochastic processes). In general, it can be noted that for
any sequence {X1, . . . , XN}, the optimal IS distribution exhibits the tautology of requiring
explicit knowledge of the estimated quantity, making it an unrealizable IS distribution.

How should the IS measure Q then be chosen (or the density q in the i.i.d. case) ? The
estimator (5.4) is clearly unbiased and so is (5.5), when ν is the stationary distribution of
the chain under the measure P . Then the variance of the estimator is

Var [γ̂N(·)] = E
[
(γ̂N(·))2

]− Pr [A] 2.

Then, by the positivity of this variance for any measure, to minimize the mean square error
of the estimator it is sufficient to minimize the first term E[(γ̂N (·))2]. For this a good IS
measure is one which makes the likelihood ratio small in the set A, i.e. under the IS measure
the events Xn ∈ A have a high probability. Srinivas [Sri96] has shown a related monotonicity
result for discrete state space Markov chains regarding the properties of a good η, q(·, ·) pair
forming the IS measure of the Markov chain: Given that the chain visits the set A during a
regenerative cycle with TA denoting the time it happens, if x0, . . . , xTA

and x′
0, . . . , x

′
TA

are
such that

ν(x0)

TA−1∏
n=0

p(xn, xn+1) > ν(x′
0)

TA−1∏
n=0

p(x′
n, x′

n+1)

then

η(x0)

TA−1∏
n=0

q(xn, xn+1) > η(x′
0)

TA−1∏
n=0

q(x′
n, x′

n+1),

which states that the IS measure Q should preserve the likelihood ordering of those paths
leading to the event A under the original measure P .

At this point we can also make a remark about the increase in computational cost associated
with using IS. Generally, the IS distributions that are used increase the computational costs
somewhat, but the considerable reduction in the necessary sample sizes amply make up for
the extra computational effort. Glynn and Whitt give a theoretical treatment of this issue
in [Gly92].

Next we discuss the application of IS in the context of steady state simulation and, specifi-
cally, using Markov chains for that. Then we discuss the different approaches to choosing a
good IS measure in the literature.
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Dynamic Importance Sampling

When using IS in Markov chain simulation and estimating steady state performance mea-
sures, one issue is that the likelihood ratio LN → 0 in (5.5) when N → ∞. Thus, γ̂N(Q) → 0
as N → ∞, i.e. the estimator (5.5) is not consistent, although it is unbiased (note that the
Monte Carlo estimator with i.i.d. samples (5.4) does not suffer from this). This is shown for-
mally in [Gly89] for a broad class of processes called regenerative generalized semi-Markov
processes of which a DTMC is a special case. A more exact analysis of this is given by
Glynn in [Gly94] for the case of Markov chains. Intuitively it is quite obvious, since the
IS measure Q should be chosen to make the “less likely” events under P more likely under
Q. Then the value of each term in the product of the likelihood ratio LN corresponding to
transitions from the Markov chain under Q is “usually” less than 1. Luckily it is possible to
avoid this problem by using regenerative simulation, where the theoretically infinite length
steady state simulation problem is transformed into independent finite length cycles.

Then the rare event problem (5.3) for DTMCs is transformed into the estimation of the
ratio

γ =
E[
∑τ−1

n=0 1Xn∈A]

E[τ ]
, (5.6)

where τ is the first time that the DTMC enters the regeneration state. This issue has
been addressed in the context of reliability models by Goyal et. al. [Goy92]. There it has
been noted that under the original measure the estimation of the denominator does not
involve a rare event and hence it can be estimated using normal simulation. To derive the
IS measure for the simulation of the numerator, the authors consider a simple three state
reliability model, which is simple enough to permit analytical solutions for the optimal IS
measure. In essence, their conclusion is then that the importance sampling measure for
the numerator should move the process quickly to the rare set A and once it has been
reached the importance sampling should be turned off, i.e. the simulation should be carried
out under the original measure to drive the process back to the regenerative state. Thus,
the method has been named as dynamic importance sampling, since the process is not
anymore time homogenous under the IS measure. Devetsikiotis and Townsend have made
similar conclusions in [Dev93a]. Goyal et. al. also note that it is only the estimation of
the numerator in (5.6) which involves a rare event and it is for this that an efficient IS
distribution should be found. The estimation of the denominator can be done efficiently
without the use of IS. In [Goy92] the authors propose to use known methods such as failure
biasing (see e.g. [Sha94] or [Hei95] and the references there in) to achieve this, but we will
not describe these methods here since, as mentioned earlier, we are here more interested in
queuing systems rather than reliability models, which have slightly different properties.

The fact that the estimation of the numerator in (5.6) can be split into two parts, where
only one involves a rare event can be illustrated in the following way. Let us denote by B
the event that Xn reaches the set A for the first time before returning to the regenerative
state and let τB denote the time that this happens. Then by conditioning on event B the
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numerator of (5.6) can be expressed as

E

[
τ−1∑
n=0

1Xn∈A

]
= E

[
τ−1∑

n=τB

1Xn∈A | B

]
Pr [B]

= Pr [B] + E

[
τ−1∑

n=τB+1

1Xn∈A | B

]
Pr [B] .

From this it can be seen that the estimation corresponds to the estimation of two quantities:
first estimating the probability of reaching the set A and then the additional expectation
for the average number of times the process returns to the set A once the process is started
from the set A before returning to the regeneration state of which the latter is not a rare
event problem.

Iterative Methods

Now we return to the question of how to choose the IS measure for the simulation. In practice
it is not possible to try to minimize E[(γ̂N(Q))2] over the class of all possible measures Q. A
feasible approach is then to limit the search to a parametric family parameterized by some
θ ∈ Θ and try to find the θ∗ that minimizes E[(γ̂N (θ))2] for estimator (5.4) or (5.5). In most
cases closed form formulas for E[(γ̂N(θ))2] are not available, so one can then try to estimate
∂
∂θ

E[(γ̂N(θ))2] by simulation and use the stochastic optimization techniques described in e.g.
[Gly90] to perform the search for the minimum.

This approach is very practical, since it requires very little analytical knowledge of the
system to be simulated as opposed to the asymptotically optimal IS methods we will review
later. It has been used successfully by Devetsikiokis and Townsend [Dev93a] for estimating
cell losses in the context of DTMC chain simulation of queuing systems and in [Dev93b] for
estimating bit error rates in communication systems. The idea is that during the search for
optimal θ∗ only relatively short simulations need to be done to estimate E[(γ̂N(θ))2]. Once
convergence has been achieved the actual simulation is performed with the parameter θ∗. In
[Dev93c] the authors also use this method to find the value of θ under which the probability
of the rare event is maximized.

A related approach has been proposed by Stadler and Roy [Sta93] (see references therein
for more articles on this approach). They consider the i.i.d. case in the context of bit
error estimation in communication systems. The idea is based on the following: During a
simulation those samples that hit the rare set A are distributed according to the optimal
IS measure and can be used to estimate its properties. Then we can run several (short)
simulation runs and during each run the probability of interest γ̂N(·) and the properties of
the optimal IS measure are estimated. The actual IS measure (in the i.i.d. case a density)
used for generating the samples is then modified in such a way that its properties match
the estimated properties of the optimal IS measure, and the modified IS measure is used
in the next simulation run. In this iterative manner the IS measure becomes more like the
optimal IS measure in terms of the properties that one is estimating from it as the number of
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simulation runs increases, and, hence, also the accuracy of γ̂N(·) increases. In practice, the
chosen property that is to be estimated from the optimal IS measure can be, for example,
the mean of the optimal IS measure, i.e. the conditional expectation E[X | X ∈ A], and/or
the conditional variance of X in the set A.

Asymptotically Optimal Importance Sampling

Since the unique optimal IS measure is impractical, many authors have tried other weaker
criteria. Earlier we discussed that the relative error of the estimates is unbounded when
the estimated probability goes to zero. More formally, let us consider a sequence of rare
event problems indexed by a parameter ε such that the probability of interest γ(ε) → 0 as
ε → 0. Then one criterion for the efficiency of the IS measure Q is that the relative error is
bounded under the measure Q:

lim
ε→0

RE(γ̂N(Q)) = lim
ε→0

σ(γ̂N(Q))

γ(ε)
→ d < ∞,

where d is some constant. This implies that the number of samples required to reach a fixed
confidence level (say 95%) is also bounded as ε → 0. This criterion has been used in the
context of simulating reliability models, see e.g. [Sha94] for proofs of certain IS measures
having this property.

In queuing systems the standard terminology is to call an asymptotically efficient IS measure
asymptotically optimal. The conditions of asymptotic optimality are very much rooted in
the study of exponentially rare events for which large deviations theory can be applied
effectively. For such models it can sometimes be shown that

lim
ε→0

ε log(γ(ε)) → c

for some constant c. If
lim
ε→0

ε log(E
[
γ̂N(Q)2

]
) → 2c,

then the IS measure Q is said to be asymptotically optimal, i.e. for an exponentially rare
event the rate of decrease of the second moment of the estimator is twice that of the first
moment. Thus also the number of samples to reach a fixed relative error increases more
slowly than any exponential, although it may not be bounded. Note that for exponentially
rare events this is a weaker form of optimality than having bounded relative error.

Early references in asymptotic optimality include Siegmund [Sie76] and Cottrell et. al.
[Cot83]. In both articles the authors consider the parametric family of so called exponentially
shifted IS measures and they are able to derive the optimal form of the IS measure exhibiting
the asymptotic optimality criteria as discussed above. In particular, Siegmund was the first
to relate large deviation results to asymptotic optimality in simulations. He considers the
r.v. γ̂n = 1/n

∑n
k=1 f(Xk), where Xk are i.i.d. with density p(x). Then, provided certain

conditions are satisfied, the probability Pn = Pr[γ̂n ∈ A] vanishes at an exponential rate.
An exponentially shifted distribution q(x) is specified by

q(x) = eθf(x)−log λ(θ)p(x),
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where λ(θ) is the so called moment generating function

λ(θ) = E
[
eθf(Xk)

]
.

Siegmund shows that the particular shift determined by the parameter θ obtained from the
minimization of the so called large deviation rate function, also asymptotically minimizes
the estimator variance in the class of exponential shifts.

Cottrell et. al. [Cot83] consider the problem of determining most likely paths for discrete
time Markov processes. Their approach deals directly with the sample paths of the process
and uses “Wentzell-Freidlin”-type large deviation results. They first determine the optimal
path, i.e. in some sense the most likely path, leading to some interesting set of states
when the process is started from some fixed state as a solution to a dynamic programming
problem. Then they derive the form of the change of measure under which the probability
of the optimal path is maximized and the form turns out to be an exponentially shifted
distribution at each state of the path where the shift parameter is, again, determined by
minimization of the large deviation rate function. Finally they prove that in the family
of exponential shifts this choice of the shift parameter minimizes the asymptotic estimator
variance.

Some of the most powerful asymptotic optimality results have been obtained by Bucklew
and Sadowsky in a series of papers. Let us first consider the following asymptotic optimality
results presented by Bucklew in [Buc90a, chap. 8]. There he takes Xi to be an irreducible
Markov chain under P on a finite state space with initial distribution ν and transition
probabilities p(·, ·), and considers the event

An =

{
x1, . . . , xn :

1

n

n∑
i=1

f(xi) ≥ 0

}
,

where E[f(x)] < 0 taken with respect to the stationary distribution of the chain. The
probability Pr[An] is estimated by

γ̂p =
1

k

k∑
j=1

1Xj∈An
,

where Xj = (Xj
1 , . . . , X

j
n) is the jth independent sample of the first n steps of the chain

Xi. Then let us limit ourselves to the case where the IS measure Q is a Markov chain Yi

on the same state space with initial distribution η and transition probabilities q(·, ·). The
corresponding IS estimator is given by

γ̂q =
1

k

k∑
j=1

1Xj∈An

ν(Y j
1 )

η(Y j
1 )

n−1∏
i=1

p(Y j
i , Y j

i+1)

q(Y j
i , Y j

i+1)
.

Then by the large deviation principle

1

n
log Pr [An] 2 → 2 log λ(θ0),
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where λ(θ0) denotes now the largest eigenvalue of the operator

Tθg(x) =
∑

y

eθf(y)g(y)p(x, y)

and λ′(θ0) = 0 defines θ0. Note that the Tθg(x) operator is a generalization of the moment
generating function defined earlier for the i.i.d. case. Recall that the variance of the IS
estimator is Var[γ̂q] = E[γ̂2

q ]−Pr[An]2. Bucklew then shows that q is asymptotically optimal,
i.e.

lim
n→∞

1

n
log (Var [γ̂q]) = 2 log λ(θ0),

if

lim
n→∞

1

n
log
(
E
[
γ̂2

q

])
= 2 log λ(θ0);

otherwise

lim
n→∞

1

n
log
(
E
[
γ̂2

q

])
= lim

n→∞
1

n
log (Var [γ̂q]) > 2 log λ(θ0).

He then proceeds to show that the optimal choice for q is, in fact, unique and is given by

q(x, y) = eθ0f(y) r(y)

r(x)λ(θ0)
p(x, y), (5.7)

where r(·) is the right eigen-vector associated with λ(θ0). Note that this is a non-parametric
result which states that among the class of all finite state space irreducible Markov chains
the optimized exponentially shifted chain is the only asymptotically optimal IS measure.
In Bucklew et. al. [Buc90b] this result is extended to a more general state space and more
general sets An. They also show that for a fixed relative error the number of samples
required grows as O(

√
n) when n → ∞ when the IS measure is (5.7); otherwise the number

of samples required grows exponentially.

In [Sad90] Sadowsky and Bucklew consider the following multidimensional case. Let {Yn, n =
1, 2, . . .} be a sequence of d-dimensional random vectors. The goal is to estimate the prob-
ability

γn = Pr [Yn ∈ E] =

∫
1y∈E Fn(dy) (5.8)

where E is a multidimensional set and Fn(·) is the true distribution of the sequence Yn.
Then the IS estimator for (5.8) is

γ̂(L)
n =

1

L

L∑
l=1

dFn

dF ∗
n

(Y (l)
n ) 1

Y
(l)
n ∈E

, (5.9)

where Y
(l)
n , l = 1, . . . , L, are L independent realizations of the sequence Yn generated from

the IS distribution F ∗
n(·).

For the sequence Yn we assume that the following holds. We define for each θ ∈ Rd and
each n < ∞

µn(θ) =
1

n
log
(
E
[
enθ·Yn

])
,
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where the center dot denotes the normal dot product. Then we assume that the asymptotic
log-moment generating function,

µ(θ) = lim
n→∞

µn(θ),

always exists for all θ ∈ Rd. This is the case, for example when Yn = 1/n
∑n

k=1 Zk, where
Zk are bounded and i.i.d. or Gaussian with covariance matrix proportional to 1/n. Also,
we define the large deviation rate function

I(y) = θ0y − µ(θ0),

where θ0 is obtained as a solution from ∇µ(θ0) = y. From this, one obtains the so called
Cramér transform of the set E as

I(E) = inf
y∈E

I(y). (5.10)

An important concept in large deviation theory is the so called dominating point. In earlier
results we have reviewed, it has not been explicitly stated, since we have been dealing with
one dimensional random variables and in such cases the sets of practical interest in most
cases have a dominating point. However, in a multidimensional case this is not so obvious
anymore. This can be illustrated in the following way. Let us assume there exists a unique
solution ν as the minimizing value of y in (5.10) and let θ0 be the solution to ∇µ(θ0) = ν.
Then let us define the half space H(ν) = {y : θ0 · (y − ν) ≥ 0}, i.e. the part of space
lying “above” the hyperplane obtained by setting a tangent to the rate function level set
{y : I(y) = I(ν)} at point ν. If the set E is wholly contained within H(ν), i.e. E ⊂ H(ν),
then the point ν is the dominating point of the set E. This is illustrated in Fig. 5.1. A
sufficient condition, but not a necessary one, for the existence of a dominating point is e.g.
that E is convex and that the rate function I(·) < ∞ at least somewhere in E.

However, a set does not always have a dominating point as illustrated in Fig. 5.2. In the
figure we can see that to cover the set E with half spaces, two points V = {ν1, ν2} are
required. Still in the figure the set E has a unique minimum rate point, since I(ν1) < I(ν2).
In the article all such “important” points are still called minimum rate points.

Sadowsky and Bucklew then proceed to show that the second moment of the estimator
(5.9), i.e. E[(γ̂

(L)
n )2], is uniquely minimized by the dominating point exponentially shifted

distribution,
F ∗

n(dy) = en[θ0·y−µn(θ0)]Fn(dy), (5.11)

if ν is the dominating point of the set E (θ0 is again the solution to the equation ∇µ(θ0) = ν).
Hence, (5.11) is also asymptotically optimal when ν is a dominating point.

The main result of the paper, however, concerns the case when there is no dominating point,
i.e. the case illustrated in Fig. 5.2. To present the result we first define the essential domain
of the rate function as I = {t ∈ Rd : I(y) < ∞}. Also, we denote by V = {ν1, . . . , νm} ⊂ I
the set of minimum rate points of the set E as described earlier. To define the set V
precisely we require a) that νi ∈ ∂E, i.e. each point νi lies on the boundary of the set E, b)
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E

µ’(0)

ν

Figure 5.1: The set E with a dominating point ν.

E

µ’(0)

ν1

ν2

Figure 5.2: The set E with two minimum rate points ν1 and ν2.
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that Ē ⊂ ⋃m
i=1 H(νi) , where Ē denotes the closure of the set E and H(νi) is a half space

lying “above” the hyperplane obtained by setting a tangent to the rate function level set
{y : I(y) = I(νi)} at point νi, and c) that I(νi) ≥ I(E). Essentially this means that the set
V must have enough points so that the set E can be covered with the half spaces H(νi).
Then the authors show that the unique asymptotically optimal shifted distribution is given
by

F ∗
n(dy) =

[
m∑

i=1

en[θi·y−µn(θi)]pi

]
Fn(dy),

where (p1, . . . , pm) is a probability vector and θi is again the solution to the equation
∇µ(θi) = νi, stating that the asymptotically optimal IS distribution has a composite form.
Based on this result we will later present a similar composite IS distribution for simulating
the blocking probabilities in loss systems.

The previous works show that the dominating point shifted distribution asymptotically
minimizes the variance of the estimate. In [Sad93] Sadowsky continues the development
of the above discussed paper [Sad90] and shows that the optimized shifted distribution

asymptotically minimizes all error moments E[(γ̂
(L)
n − γ)k], k ≥ 2, thus implying that the

number of samples required to estimate any error moment grows as O(
√

n) when n → ∞.
Any other IS distribution causes this sampling cost to grow exponentially as n → ∞. This
has a very important practical implication as regards to e.g. when to stop the simulation.
Consider the stopping rule for simulation, where the simulation is stopped after the estimated
variance has dropped below some threshold requiring stability of e.g. the fourth moment
of γ̂

(L)
n . If the IS distribution is not asymptotically optimal the estimated variances as a

function of the number samples that have been drawn is unstable resulting typically in
serious underestimation of the true variance. Furthermore, the behavior of the estimated
variance is inconsistent as the number of samples increases in the sense that the estimated
variance usually has sudden “jumps” where the estimate’s value is suddenly affected by
some very infrequent sample which has a huge weight. When the asymptotically optimal IS
distribution is used, this problem is avoided.

In [Sad91] Sadowsky studies the GI/GI/m queue. Specifically, he considers the probability
of the event

An = {queue length exceeds n in a busy period}.
The paper first provides a rigorous proof of the heuristic arguments given in [Par89] for the
case of the GI/GI/1 queue. He shows that the unique asymptotically optimal IS measure
exponentially shifts both the interarrival- and service time distributions by a parameter θ0

satisfying
λA(θ0)λB(θ0) = 1,

where λA(·) and λB(·) denote the moment generating functions of the interarrival- and
service times. Then the results are extended to the multiserver case. Chang et. al. have ex-
tended this idea to queues with complex arrival processes, see e.g. [Cha95] and the references
therein.
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A word of caution should be made at this point regarding the usability of the above men-
tioned results, which is mentioned e.g. in [Buc90a, chap. 8]. The asymptotic optimality
applies only for rare event problems for which a large deviation principle applies and one
must remember that this is not the case for all rare event problems. In such cases the
exponential shifting may not be optimal or even near optimal.

Importance Sampling Methods for Queuing Networks

Parekh and Walrand were the first to suggest exponential shifting for queuing networks in a
highly influential paper [Par89]. They first consider the M/M/1 queue and the estimation
of the probability of the event, Pn, that the queue reaches level n before becoming empty
again. They show by using similar methods as Cottrell et. al. [Cot83] that for this case
the optimal exponentially shifted IS distribution is obtained by interchanging the arrival
intensity λ and service rate µ of the queue. However, when this approach is applied to a
queuing network it fails due to discontinuities of the transition rates at the boundaries of
the state space.

Then the authors study a simple tandem queue network where arrivals are Poisson (with
rate λ), the service rates are exponential in both queues (with rates µ1, µ2) and customers
enter the system at queue 1 and leave the system only through queue 2. The probability of
interest, Pn, is that of the number of customers in the network reaching n before emptying
again given that the system starts empty. They give a large deviation approximation for
Pn leading to a constrained optimization problem. Then it is shown numerically that if
queue 1 is the bottleneck, then setting λ = µ1 and µ1 = λ is the optimal solution and if
queue 2 is the bottleneck, then λ = µ2 and µ2 = λ. This generalizes the interchange of
the parameters of the M/M/1 queue to a tandem network. Similar results are obtained
for the cases with two queues in parallel and the tandem case where customers leave the
system with some probability after finishing service in queue 1. In [Gla95] Glasserman and
Kou consider the tandem case in more detail and they show that the IS measure is not
asymptotically optimal when the value of µ1 is close to the value of µ2. However, when their
values are very different from each other, the heuristics give an asymptotically optimal IS
measure in the sense as discussed earlier. Frater et. al. continued the ideas of [Par89] and
extended them to general Jackson networks with routing in [Fra91]. They show that the
resulting constrained optimization problem has a unique solution and that it can be solved
analytically. In [Fra94] Frater and Anderson show how to solve the corresponding heuristic
optimization problem for a tandem network of GI/GI/1 queues.

Since provably asymptotically optimal IS measures for general queuing networks are very dif-
ficult to obtain due to the complexity of the problem, Hsieh proposes in a recently published
Ph.D. thesis [Hsi97] an alternative. The thesis considers generalized Jackson networks and
estimating the probability that the total network backlog exceeds n. The method, called
SEEKPATH, is adaptive in nature and begins by estimating a good shifting parameter
for the exponentially shifted IS measure for a small value of n corresponding to a “scal-
ing down” of the original rare event. After the shift parameter has been estimated the
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actual system is simulated. In the thesis it is showed for the case of the GI/M/1 queue
that the SEEKPATH-method behaves approximately as the optimal exponentially shifted
IS distribution. The actual performance of the method has been tested through extensive
numerical studies, where the method is compared to other methods from the literature, e.g.
the heuristics suggested by Parekh and Walrand [Par89].

In [Ros93] Ross and Wang consider a closed queuing network in an asymptotic region where
the population size N → ∞ while the load of the network decreases correspondingly such
that each queue in the network still remains stable, i.e. the network satisfies so called normal
usage conditions. The authors consider applying Monte Carlo summation techniques for es-
timating the normalization constant and utilization of the network. First the authors derive
an IS distribution for sampling the normalization constant of the network that has bounded
relative error, as defined earlier in this chapter, having the form of a multivariate indepen-
dent exponential distribution, i.e. the components of the distribution are independent. Next
they consider estimating the utilization of the network under normal usage conditions and
conclude that the IS distribution with bounded relative error is a correlated multivariate
normal distribution, from which it is difficult to sample from. However, the authors are
able to develop an approximation for the asymptotically optimal solution, which is easy to
sample from. Finally the authors consider the network under critical usage, i.e. where the
load of the queues is close to 1. In this case also the asymptotically optimal IS distribution
turns out to be difficult to sample from.

5.2.2 Importance Sampling Methods for Loss Systems

The literature on importance sampling methods specifically on loss networks is not very
extensive. Furthermore, the methods that have been applied are all applications of the
ideas already presented earlier in the previous section.

In [Ros95, chap. 6] Ross derives a heuristic IS distribution, which is also an exponentially
shifted version of the original sampling distribution. However, the rationale behind the
determination of the shift parameter is quite different from earlier methods. When using
the static MC, the simulation consists of estimating two independent probabilities (see eq.
(2.3): the probability of hitting the blocking states and the probability of being in the
allowed state space. Ross proposes heuristics based on an observation that when using
the static MC method and the same IS distribution for both probabilities, then with the
optimal, i.e. minimum variance, IS distribution half of the samples will fall within the
allowed state space and half of the samples will fall within the blocking states. Based on
this observation Ross has presented heuristics for selecting the shift parameter attempting
to increase the likelihood of the blocking states, while, at the same, trying to limit the
likelihood of generating misses from the allowed state space. The problem, however, with
these heuristics is that the resulting shift is too conservative as the blocking probabilities
become smaller.

In [Man97] Mandjes considers the same problem and using the static Monte Carlo method
for simulating the blocking probabilities. He notes first that it is not advantageous in
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the rare event context to estimate the two probabilities at the same time using the same
sampling distribution. Instead, it is only the probability of hitting the blocking states that
requires importance sampling. Mandjes’ method is motivated by large deviation results
for rare events of sums of independent Poisson variables and he proposes the use of an
importance sampling distribution which shifts the mean of the sampling distribution to
match the most probable blocking state. Essentially the method assumes that to estimate
the blocking probability it is enough to identify the most probable blocking state, which also
identifies the link where the blocking will occur, and to shift the sampling distribution such
that its probability mass will be concentrated around the most probable blocking state.
In the language of [Sad90], the method of Mandjes only identifies the unique minimum
rate point of the set of the blocking states and, as discussed earlier, Sadowsky has shown
that especially in multidimensional settings this is not necessarily enough to satisfy the
conditions of asymptotical optimality for the IS distribution. We will return to this later
when we present our own composite IS distribution for the same problem.

In [Hee97] Heegaard presents a regenerative Markov chain method, which uses the ideas of
dynamic importance sampling and adaptive importance sampling. The basic idea is to use
importance sampling to drive the process to the set of the blocking states and then turn off
the importance sampling to speed up the regeneration. The method is adaptive in the sense
that during the IS phase at each state along the generated path the jump distributions are
changed according to the current state of the chain. In practice this is accomplished by first
randomly sampling one of the link constraints to be the “target” of the path and then using
the heuristics of [Par89] to select the shifting parameters for the jump distributions. The
paper also gives heuristics for constructing the “target” distribution at each state.

5.2.3 The RESTART Method

As we have noted above, the effectiveness of importance sampling depends critically on the
ability to find the right IS distribution. In [Vil91] M. Villén–Altamirano and J. Villén–
Altamirano have presented an alternative method for rare event simulation that appears to
require very little analytical analysis for its applicability. Their method, called RESTART,
is based on a known method called splitting used e.g. in particle transmission simulation, see
e.g. [Ham67, chap. 8.2]. The method can also be taken as a generalization of the conditional
expectation method where also the conditional expectation is estimated through simulation.

Let us again consider the simulation of some process Xn describing e.g. the queue length
process of a stable queue. Consider, again, the probability of a rare event A, Pr[A], that
starting from the origin the process reaches the level N before returning to the origin.
Let C be another less rare event such that C ⊃ A, for example that the queue length
exceeds some intermediate threshold. Then we have the conditional probability that Pr[A] =
Pr[A | C]Pr[C]. Using simulation it is easy to estimate the probability Pr[C] since it
is estimated from the whole simulation data and it is less rare. However, the conditional
probability Pr[A | C] is estimated only from the portion of the simulation where the event C
occurred. Since the occurrence of event C is still relatively infrequent (although much more
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frequent than the occurrence of event A), the conditional probability Pr[A | C] does not get
estimated very well. In RESTART the idea is to increase the accuracy of the estimate for
the conditional probability Pr[A | C] by making several independent replications of those
parts of the process where the event C occurred, i.e. the process evolution is split into several
paths when the threshold has been reached. In [Vil94] this method is extended to the case
with several intermediate thresholds. Also, some guidelines for choosing the thresholds are
given.

In [Gla96] Glasserman et. al. address the problem of choosing the number of subpaths
to generate when a path splits. They assume certain characteristics from the dynamics
of the process between the thresholds and they model the movement of the process from
one threshold to another as a branching process with different levels of generality. They
show that appropriately choosing the degree of splitting at each threshold is critical to the
effectiveness of the method. In fact, they show that with the right amount of splitting the
method is asymptotically optimal in the sense as described earlier. The choice balances
two competing concerns: excessive splitting creates an explosive computational burden,
and insufficient splitting eliminates the advantage over straightforward simulation. Loosely
speaking, the result can be interpreted such that when a path splits, the number of subpaths
should be chosen such that on average one subpath makes it to the next threshold. This
keeps the expected number of paths alive at each threshold roughly constant. In [Gla97]
Glasserman et. al. address the significance of choosing the threshold levels appropriately.
Essentially they show that to achieve asymptotical optimality the thresholds should be
chosen in some sense consistent with the most likely path to the rare set implying again a
necessity to understand the large deviation asymptotics of the process to be simulated.

In a recent paper [Har97] Haraszti and Townsend present a new related method called direct
probability redistribution (DPR). Their method is related to RESTART in the sense that in
DPR the state space is also divided into progressively rarer subsets but, unlike in RESTART,
the sets do not have to be nested. In DPR also the basic idea is to increase the accuracy of
the conditional probabilities by making several retrials for those paths that enter a specific
subset. In the paper the theory is developed for the case of simulating DTMCs.

5.3 Composite Importance Sampling Distribution for

Loss Systems

In this section we present the derivation of an efficient IS distribution for estimating the
blocking probabilities in a multiservice loss system, which will be published in [Las99].
Recall that based on the identity (2.3) we can have the following MC estimator

B̂k =
1/N

∑N
n=1 1X̃n∈Bk

1/N
∑N

n=1 1X̃n∈S
, (5.12)

where X̃n are independent samples of X̃ defined in the larger state space S̃.
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Let P ∗ : p∗(x) = Pr[X̃ = x] > 0 for X̃ ∈ S̃ denote the importance sampling distribution.
With respect to this distribution the expectation in the numerator of (2.3) becomes

E
[
1X̃∈Bk

]
= Ep∗

[
1X̃∈Bkw(X̃)

]
,

where w(x) = p(x)/p∗(x) is the likelihood ratio. The same holds for the denominator as
well, and we get the estimator

B̂k =

∑N
n=1 w(X̃n)1X̃n∈Bk∑N
n=1 w(X̃n)1X̃n∈S

. (5.13)

As has been noted earlier by Mandjes in [Man97] that in the case of the multiservice loss
system it is only the estimation of the numerator that can be made more efficient by us-
ing IS. Hence, we will next focus on efficiently estimating the numerator of (5.13), i.e.
1/N

∑N
n=1 w(X̃n)1X̃n∈Bk .

5.3.1 Efficient IS distribution

Let us consider a general problem of estimating the probability of the event B

β = Pr [X ∈ B] = E [1X∈B] ,

where X ∈ S has some distribution p(x) and B ⊆ S. Now we wish to get insight into how
the IS distribution should be chosen. By denoting with p∗(x) the IS distribution, we can
again express the expectation as

β = Ep∗ [w(X)] , (5.14)

where now w(X) = [p(X)/p∗(X)] 1X∈B. Note that here we also include the indicator 1X∈B in
the definition of w(·) as opposed to how it has been defined earlier. Also, let β∗ = Ep∗ [1X∈B]
be the probability of the event B with respect to the distribution p∗(x). By conditioning on
the value of the random variable I = 1X∈B we can express (5.14) as

β = Ep∗ [w(X)] = Ep∗ [Ep∗ [w(X)|I]] = β∗Ep∗ [w(X)|I = 1] .

Thus we have Ep∗ [w(X)|I = 1] = β/β∗. The variance of w(X) under P ∗ is then

Varp∗ [w(x)] = Varp∗ [Ep∗ [w(X)|I]] + Ep∗ [Varp∗ [w(X)|I]]

= Ep∗
[
Ep∗ [w(X)|I]2

]− Ep∗ [Ep∗ [w(X)|I]]2 + β∗σ∗2

=
β2

β∗ − β2 + β∗σ∗2, (5.15)

where σ∗2 = Varp∗ [w(X)|I = 1] is the variance of w(X) in B under P ∗. From this formula-
tion we are able to get the desired insight into the effect of the IS distribution.
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When no shifting is used and p∗(x) = p(x) then also β∗ = β and σ∗2 = 0. In this case

Varp [w(X)] = β(1 − β) ≈ β.

By increasing the probability β∗ of B under p∗(x), the first and most important term in
(5.15) is reduced. Ideally, if one can make β∗ = 1, the first and second term completely
cancel. If the probability of B can be increased uniformly, i.e. with w(x) constant in B, then
σ∗2 = 0 and the estimator would have a zero variance. The ideal IS distribution implies
knowledge of the quantity to be estimated, and cannot be easily constructed. An efficient
IS distribution, however, tries to approximate it as closely as possible. In practice one is
limited to a family of shifted distributions, and one has to compromise between the two
factors. It is important to increase the probability of B but at the same time it is important
to keep w(x) as constant as possible in B in order to minimize σ∗2.

Guided by this insight, we now develop an efficient IS distribution for simulating the blocking
probabilities in the multiservice loss system. The basic idea is to derive a distribution for
traffic class k which will make all the blocking states associated with the active link capacity
constraints more probable. For this we first need to identify the most probable blocking
states on the links which traffic class k uses in the network. This is illustrated in Fig. 5.3,
which shows an example with two traffic classes. Now we could choose one of these points
and shift the original distribution such that the main mass of the distribution is centered
around that point. In this way we can increase β∗. However, if we use only one point then
the distribution of w(x) in B will be uneven giving rise to a large σ∗2. Therefore, it is
more advantageous to use a composite distribution which is a weighted combination of the
individual shifted distributions.

x2

x1

Figure 5.3: Most probable blocking states in a two traffic class example with two link
constraints.

This approach is supported by the results of [Sad90], as was discussed earlier, where it
was shown that so called asymptotically optimal shifted distribution for B indeed is of this
composite form for problems satisfying a large deviation principle. For loss systems this
is the case e.g. in the limit when the offered loads tend to zero. Then a failure to include
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the most probable blocking states on all the links involved, corresponding to the minimum
rate points in [Sad90], means that the sampling distribution can be asymptotically very
inefficient. This suggests that the composite distribution leads to an efficient sampling
distribution even in the non-asymptotic regime. The asymptotic theory, however, leaves
the weights in the composite distribution open. We will here fix them by the heuristics of
maximal uniformity of w(x) in B.

The most probable blocking states

The most probable blocking state on link j is found by maximizing (2.1) on a given hyper-
plane representing the capacity constraint of the link,

max
x

K∏
k=1

ρxk
k

xk!
= max

x

K∏
k=1

f(xk, ρk)

subject to x · bj = Cj,

where the components of x are real valued, i.e. not restricted to integers. This problem
has been considered elsewhere in the literature (e.g. [Kel86] and [Man97]) and usually it has
been solved by using the Stirling’s approximation for the factorial term and then solving the
constrained optimization problem. However, the solution can easily be found numerically
even without using the Stirling’s approximation by using standard techniques. To this end,
consider the following equivalent optimization problem

max
x

K∑
k=1

log f(xk, ρk)

subject to x · bj = Cj .

(5.16)

Introducing the Lagrange multiplier θ, we are lead to the unconstrained maximization of
the following objective function

max
x

K∑
k=1

[log f(xk, ρk) − θxkbj,k] − θCj. (5.17)

Maximization of (5.17) with respect to the xk, leads to the solution

xk = h−1(θbj,k, ρk), k = 1, . . . , K, (5.18)

where h−1(·, ρ) denotes the inverse function of h(·, ρ),

h(xk, ρk) =
∂

∂xk
log f(xk, ρk).
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It is easy to check that h(·, ·) is a monotonously decreasing function of xk and hence the
inverse function is also well defined. The Lagrange multiplier θ is now determined by
requiring that the solution must satisfy the constraint of (5.16), i.e.

K∑
k=1

bj,kh
−1(θbj,k, ρk) = Cj. (5.19)

Hence, the solution x∗
j to (5.16) is obtained by first solving (5.19) for θ and then evaluating

(5.18) for k = 1, . . . , K. This solution represents the “most likely” blocking state on the link
j. Note, that the solution x∗

j may actually lie outside the allowed state space S. Despite
this, we can still use such a point as a shifting center.

Determining the weights

We restrict ourselves to consider IS distributions belonging to the family of exponentially
shifted distributions. In the case of the Poisson distribution the shifted distribution is also
a Poisson distribution but with a different load parameter γ, instead of ρ. Now the main
mass of the sampling distribution can be moved to the point x∗

j by selecting γj = x∗
j .

Let us denote by p∗j(x) the resulting shifted distribution, defined in the state space S̃. In

fact, if S̃ is the whole space X̃ ≥ 0, the shifting would correspond to moving the mean
of the distribution to x∗

j . This is again illustrated in Fig. 5.4, which shows the sampling
distributions of a two traffic class example with two link constraints.

x2

x1

Figure 5.4: The shifted distributions in a two traffic example with two link constraints.

A traffic class uses only a subset of all the links in the network. Thus, when estimating
the blocking probability of traffic class k, we only need to sample on those links, which the
traffic class k actually uses and the complete sampling distribution for traffic class k is then
a weighted combination of those distributions. For this let us denote by Rk the set of links
the traffic class k uses. Formally we have that

Rk = {j ∈ 1, . . . , J | bj,k > 0}.
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Also, let Jk denote the number of links in the set Rk. Then the composite sampling distri-
bution for traffic class k is expressed as

p∗(x) =
∑
i∈Rk

Pi p∗i (x), (5.20)

where the Pi form a discrete probability distribution. In particular Pi is the probability of
using the distribution p∗i (·) for generating the sample. It remains to find a method to obtain
these weights. Again, the used heuristics are based on the goal of keeping the likelihood
ratio as constant as possible in Bk. With Jk parameters Pi available, we cannot make w(x)
constant everywhere in Bk. Instead, we choose to require w(x) to be constant, η, at the
most probable blocking states x∗

j . This requirement leads to a set of linear equations

∑
i∈Rk

Pi p∗i (x
∗
j) = η p(x∗

j), ∀j ∈ Rk, (5.21)

where the constant η is chosen such that
∑

i Pi = 1.

Unfortunately, there is no guarantee that the solution always satisfies Pi ≥ 0, ∀i ∈ Rk. If
negative values appear, (5.21) may be replaced by a suitable minimization problem with
the constraint, Pi ≥ 0, ∀i ∈ Rk. This case, however, is left for future research.

5.3.2 Numerical examples

Here we consider some numerical examples in order to illustrate the efficiency of the com-
posite IS distribution in Monte Carlo simulation of the blocking probabilities. First we
consider a simple 2 traffic class network with 3 links. The exact parameters of the network
are: Cj = [100, 120, 170],b1 = [2, 0],b2 = [0, 3] and b3 = [2, 3] (i.e. the network topology is
the same as e.g. in Fig. 2.1). We consider the blocking probability of traffic class 1 with two
different loads such that the blocking probabilities are of the order 10−2 (Case 1 in the Table
5.1) and 10−4 (Case 2 in the Table 5.1). The exact used offered loads were ρ = [35, 22] (Case
1) and ρ = [27, 18] (Case 2). We compare the composite method against results obtained
with the standard MC (MC in the table) and the methods proposed by Mandjes (Single
shift in the table) in [Man97], and Ross in [Ros95, chap. 6], which both correspond to the
use of a single shifted IS distribution. For this, we estimated the standard deviation under
P ∗ of the observed variable w(X̃) 1X̃∈Bk in the estimator (5.13). We used 100 000 samples
for Case 1 and 10 000 000 samples for Case 2. To verify the accuracy of the result we also
calculated the exact result for the standard deviation by brute force summation. This is
given in parenthesis next to the estimated result. The results show that with the composite
distribution we are able to reduce the variance of the samples considerably. For example, in
Case 2 the deviation of the sample with the composite method is almost 14 times smaller
than with the standard Monte Carlo method.

Next we experiment with the numerical example studied by Heegaard [Hee97], where he
uses an adaptive importance sampling scheme in a Markov chain simulation setting for
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Case Composite Single shift Ross MC
1 0.0434 (0.0442) 0.0582 (0.0569) 0.0686 (0.0685) 0.0988 (0.0999)
2 0.00057 (0.00080) 0.0015 (0.0030) 0.0030 (0.0030) 0.0110 (0.0110)

Table 5.1: The standard deviation of the observed variable.

extremely low blocking probabilities. The example corresponds to a network where for
most of the classes the blocking is not dominated by any single link. The network has
11 links and 10 traffic classes. However, the link sizes are small enough to permit the
calculation of the exact blocking probabilities Bk by brute force summation or by the use
of a convolution algorithm, see e.g. [Ive87]. We selected as examples three traffic classes (2,
4 and 6) to illustrate the differences in accuracy when using just one shifted distribution
and the composite distribution. In this case the single shifted IS distribution is obtained
with the method of Mandjes. We do not consider the method by Ross, because it suffers
from the shift being too conservative and e.g. in the examples here the method is not able
to produce any estimate even after 1 000 000 samples. To compare the results we compute
the relative error of the estimate, given by (B̂k − Bk)/Bk, and the 95% confidence interval
as estimated from the simulation. For each example we give the results for N = 10 000 or
N = 100 000 samples in the simulation.

class Bk N Single shift Composite distribution
2 0.587 · 10−9 10 000 −0.329 ± 0.020 −0.014 ± 0.032
2 0.587 · 10−9 100 000 −0.317 ± 0.026 −0.015 ± 0.020
6 0.244 · 10−9 10 000 −0.184 ± 0.013 −0.086 ± 0.051
6 0.244 · 10−9 100 000 −0.111 ± 0.054 0.025 ± 0.089
4 0.186 · 10−9 10 000 −0.051 ± 0.031 −0.043 ± 0.032
4 0.186 · 10−9 100 000 0.016 ± 0.039 −0.019 ± 0.027

Table 5.2: The relative error for the estimates and the estimated 95% confidence intervals.

From the results we can clearly see the better accuracy of using the composite distribution,
see especially the results of traffic class 2. However, for traffic class 4 it could be seen from
the results of the likelihood maximization problem that there is basically only a single link
where the main contribution to the blocking probability comes. Then, as the results in the
table show, it is sufficient to use only a single shifted distribution.

For the cases covered here Heegaard obtained results with a relative accuracy of approxi-
mately 10%− 20%, but the estimated confidence intervals were wide enough to include also
the correct values. However, to obtain the results the simulation required 15 replicas of 300
000 regenerative cycles starting from an empty system and ending there.

The results in Table 5.2 also illustrate a serious problem which often appears when using IS
for simulation of very rare events: the variances are heavily under estimated. As mentioned
earlier, this problem has been studied by Sadowsky in [Sad93]. There he showed that the



CHAPTER 5. SIMULATION SPEEDUP TECHNIQUES 83

asymptotically optimal sampling distribution is also asymptotically optimal for estimating
all moments of the estimator. For example the estimation of the sample variance requires
stability of the fourth moment of the estimator. Instability of the fourth moment results
typically in under estimation of the true variance.

An intuitive explanation for this is the following. When using just a single shifted distrib-
ution the problem is that the likelihood ratio can have a huge value in some points in the
state space, but under the shifted distribution these points have a very small probability, and
during the simulation we may never observe these significant points. Hence, the estimates
for the mean and, in particular, for the variance, are not accurate. The composite method
is not totally immune to this either, since by comparing the reduction in the variance of
the estimator when increasing the number of samples from 10 000 to 100 000, the variance
is not reduced correspondingly by the factor 10. In fact, from the results of traffic class 6,
we can see that although the relative error diminished when increasing the number of the
samples the estimated variance actually became larger.

5.4 Conditional Expectation Method in Loss Systems

In this section we first give a general description of a variance reduction method for Monte
Carlo simulations published in [Las98b], which is based on the conditional expectation
method as described earlier in section 5.1.4 in this thesis and e.g. in [Law91] or [Rub98, p.
97]. Then we show how it can be applied in the context of the multiservice loss system.

5.4.1 The General Formulation

Let us consider a general problem of estimating the expectation

H = E [h(X)] (5.22)

of some function h(·) of a vector random variable X ∈ S with some state space S and
having a distribution P . The Monte Carlo method consists of drawing N independent
samples Xn, n = 1, . . . , N , from the distribution P yielding an unbiased estimate

Ĥ =
1

N

N∑
n=1

h(Xn). (5.23)

Now the following elementary identity holds always

H = E [h(X)] = E [E [h(X) | g(X)]] ,

where g(·) is another function. Assume that the conditional expectation

η(x) = E [h(X) | g(X) = x]
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can be calculated analytically. Then the expectation of h(X) becomes

H = E [h(X)] = E [η(g(X))] ,

Correspondingly, we get a new Monte Carlo estimator for H ,

Ĥ =
1

N

N∑
n=1

η(g(Xn)). (5.24)

More specifically, we consider the case where the state space S has a partitioning into sets
Ai, i = 1, . . . , I. A state X belongs to one and only one of the sets Ai. Let us again denote
the unique index of this set by ι(X). We use this discrete valued function as the function
g(·) in the above formulae. So, finally, our estimator is

Ĥ =
1

N

N∑
n=1

η(ι(Xn)) =
1

N

I∑
i=1

η(i)Ni, (5.25)

where Ni is the count of the samples having ι(Xn) = i or, equivalently, Xn ∈ Ai, and
η(i) = E[h(X) | X ∈ Ai]. In fact, the latter form could have been written directly from

E [h(X)] =
∑

i

E [h(X) | X ∈ Ai] Pr [X ∈ Ai] =
∑

i

η(i)Pr [X ∈ Ai] .

Since η(i) represents the conditional expectation of h(X) over the set Ai it is intuitively
obvious that the variance of estimator (5.25) is smaller than that of (5.23). That this indeed
is the case can be seen by calculating the variances of the estimators by conditioning on the
value of ι(X). In the case of estimator (5.23) the variance (multiplied by N) is

N Var
[
Ĥ
]

= Var [h(X)] = E [Var [h(X) | ι(X)]] + Var [E [h(X) | ι(X)]] , (5.26)

whereas for estimator (5.25) the same quantity is

N Var
[
Ĥ
]

= Var [η(ι(X))] = E [Var [η(ι(X)) | ι(X)]] + Var [E [η(ι(X)) | ι(X)]]

= Var [E [h(X) | ι(X)]] ,

which shows that sampling the values of the exact conditional expectations eliminates the
internal variance of h(X) within each set Ai, i.e. the first term in (5.26).

The method described above is simple. However, it is very useful in cases where one is
able to define a partition of the state space S such that the conditional expectations η(i) =
E[h(X) | X ∈ Ai] can be calculated analytically for all i. This requirement is nicely fulfilled
by systems with product form state probabilities such as the multiservice loss system.
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5.4.2 Application to Loss Systems

Specifically, in the case of the multiservice loss system, we use the same K partitions as
with the Gibbs sampler, i.e. partition k consists of columns in the direction k, and Ak

i

denotes the ith k-column in partition k. Now, the blocking probability, given by (2.2), is
an expectation of the considered type with h(X) = 1X∈Bk . Because of the product form of
the state probabilities (2.1) the conditional expectation ηk(i) = E[1X∈Bk | X ∈ Ak

i ] can be
calculated easily. The probability distribution constrained to column i in partition k (set
Ak

i ) is a truncated Poisson distribution and the conditional blocking probability is given
by the Erlang loss function (B formula), erl(Lk

i , ρk), where Lk
i denotes the length of the

k-column i (set Ak
i ). This leads to the estimator

B̂k =
1

N

N∑
n=1

erl(Lk(Xn), ρk), (5.27)

where, for clarity, we have written directly Lk(X) (instead of Lk
ι(X)) for the length of the

k-column to which the state X belongs.

This rather obvious decomposition does not seem to have been exploited in the context of
simulation of loss systems in spite of its significant advantages. Note that in the standard
Monte Carlo simulation, a sample point Xn gives a contribution to the blocking probability
only when it hits the set Bk. In contrast, in the proposed method, for each sample point
we collect the conditional expectation over the whole column, always containing a blocking
state at the end of the column. Further, note that there is no penalty for this advantage as
the values of erl(L, ρ) can be easily precomputed and stored into an array for all the values
of L and ρ needed.

5.4.3 Alternative Application to Loss Networks

In the previous application, the samples Xn have to be generated in the state space S from
the distribution (2.1). However, as we noted at the end of Chapter 2, eq. (2.3), we can
define the blocking probability by considering a random vector X̃ in a larger state space S̃.
Monte Carlo method can be applied both for the numerator and the denominator leading
to the estimator

B̂k =

∑N
n=1 1X̃n∈Bk∑N
n=1 1X̃n∈S

. (5.28)

If the same samples X̃n are used in both the numerator and the denominator this estimator,
in effect, reduces to the estimator B̂k = 1/NS

∑
n 1Xn∈Bk , where the samples Xn are obtained

from X̃n by including only those NS samples which fall within S, i.e. the Xn are generated
by the rejection method.

Something new, however, is obtained when we notice that both the numerator and the
denominator of (2.3) can be estimated with the conditional expectation method. To this
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end we define K partitions of space S̃ into sets Ãk
i where the sets in the kth partition consists

of k-columns in the space S̃, as illustrated in Fig. 4. Further, we define the conditional

x2

x1

Figure 5.5: New partitioning of the state space.

expectations

ηk(i) = E
[
1X̃∈Bk | X̃ ∈ Ãk

i

]
,

ϑk(i) = E
[
1X̃∈S | X̃ ∈ Ãk

i

]
.

Note that the set Bk is still formed by the endpoints of the k-columns Ak
i , not by those of

the Ãk
i . Both of the conditional expectations can be calculated analytically,

ηk(i) =

{
0, Ãk

i ∩ S = ∅,

f(Lk
i , ρk)/g(Nk

max, ρk), Ãk
i ∩ S 6= ∅,

ϑk(i) =

{
0, Ãk

i ∩ S = ∅,

g(Lk
i , ρk)/g(Nk

max, ρk), Ãk
i ∩ S 6= ∅,

where, again, Lk
i is the length of the column Ak

i (⊆ Ãk
i ), and, as before, g(L, ρ) =

∑L
l=0 ρl/l!.

With the aid of these conditional expectations the blocking probability (2.3) can be written
as

Bk =
E[ηk(ιk(X̃))]

E[ϑk(ιk(X̃))]
,

where ιk(X̃) now denotes the unique index i of set Ãk
i to which X̃ belongs. The corresponding

Monte Carlo estimator becomes

B̂k =

∑N
n=1 ηk(ιk(X̃n))∑N
n=1 ϑk(ιk(X̃n))

=

∑N
n=1 f(L(X̃n), ρk)1X̃

(k)
n ∈S∑N

n=1 g(L(X̃n), ρk)1X̃
(k)
n ∈S

, (5.29)

where Lk(X̃) denotes the length of the column Ak
i to which X̃ belongs, X̃

(k)
n is the K-vector

obtained from X̃n by setting its kth component to 0 (the set Ãk
i to which X̃n belongs has a

nonempty intersection with S if and only if X̃
(k)
n ∈ S), and where we have utilized the fact

that g(Nk
max, ρk) is constant for traffic class k and cancels out.

In this formulation even a sample X̃n falling outside S can give a contribution to the
numerator and denominator of (5.29).
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5.4.4 Numerical results

Here we compare through numerical examples the efficiency of the different methods pre-
sented in this paper. As an example we use the same four link star network as studied
by Ross in [Ros95, chap 6] with moderate and light traffic loads (cases 1 and 2 in the
tables). Blocking probabilities and the 95% confidence intervals are given for two typical
traffic classes (out of 12). We also experiment with a larger network (case 3) where the link
capacities have been increased roughly by a factor of 20 and the traffic intensities have been
increased correspondingly.

In Table 1 we compare the efficiency of the conditional expectation method (CE method in
the tables), with samples generated in S and S̃, against those obtained with standard Monte
Carlo simulation. From the results one can see that by using the conditional expectation
method a significant variance reduction is obtained and that the reduction factor increases
as the system size increases. Note that if the standard deviation is reduced by a factor of
e.g. 7 as in the case 3 for traffic class 2, this corresponds to a reduction by a factor of 49 in
the required number of samples.

Table 5.3: Blocking probabilities (%) with confidence intervals

Case Class Standard MC CE method in S CE method in S̃
1 2 0.295 ± 0.034 0.287 ± 0.010 0.301 ± 0.010
1 8 1.960 ± 0.090 1.945 ± 0.042 1.976 ± 0.031
2 2 0.052 ± 0.014 0.043 ± 0.006 0.046 ± 0.004
2 8 0.360 ± 0.040 0.343 ± 0.011 0.350 ± 0.012
3 2 0.112 ± 0.021 0.116 ± 0.004 0.114 ± 0.003
3 8 0.600 ± 0.049 0.596 ± 0.006 0.595 ± 0.008



Chapter 6

Conclusions and Future Research

Over the past decade, simulation as a method for obtaining estimates of performance mea-
sures has become increasingly popular due to the enormous increase in the computing power
of modern computers. In this thesis we have considered the problem of using simulation to
efficiently estimate the blocking probabilities of a multiservice loss system.

The model for the loss system and blocking probabilities was defined in chapter 2. There we
also considered the exact calculation of blocking probabilities and gave an explicit formu-
lation for the so called convolution method which can, in cases where the number of traffic
classes is greater than the number of links in the network, reduce the computational effort
over the direct brute force summation approach. Then the applicability of using the loss
system to model the call scale behavior of ATM networks was considered. It was concluded
that the loss system can be used for this purpose, but the shape of the allowed state space
can be potentially difficult to obtain depending on the way how statistical multiplexing
effects are taken into consideration.

In chapter 3 we reviewed the literature available on analytical approximations for loss sys-
tems. In chapter 4 we presented several different direct simulation methods for simulating
the loss system of which the Gibbs sampler appears to be a novel application in this context.
Then a number of numerical/analytical studies were made regarding the variance proper-
ties of the methods in comparison with their computational effort. Based on our results it
appears that when using a DTMC simulation technique the most efficient way in terms of
variance and simulation effort is the weighted samples method. However, at the same time
it seems that the differences become smaller as the traffic intensities and system size are
increased. When comparing the Markov chain methods, the Gibbs sampler and the rejec-
tion sampling method, the rejection sampling method gives the most efficient samples but
at the highest computational effort per sample. The Gibbs sampler is next in terms of both
variance and effort. The DTMC methods (the subchain methods and the weighted samples)
have the lowest computational cost per sample but the worst variance performance. Based
on the studies it is not, however, possible to determine uniquely the best alternative for
simulating the system. Additionally, we developed an analytical method to assess the bias
and the deviation of the regenerative estimator for the multiservice loss system as a function

88
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of the number of simulated cycles given any choice for the regeneration state.

The downside of the simulation method is that to reach some level of accuracy may re-
quire very long simulation times. In chapter 5 we first reviewed the literature on variance
reduction techniques, with which simulation times can be reduced. Special attention was
given to surveying the literature on rare event simulation. Based on the survey many of
the techniques presented there could be applied to loss systems as well, e.g. the gradient
estimation techniques and the queuing network heuristics of [Fra91].

Then we presented our application of some large deviation results for multidimensional ran-
dom variables to loss systems. Previous research on IS distributions for simulating loss
systems has considered the use of only one exponentially twisted distribution. We derived
an IS distribution which has the form of a composite distribution. The distribution is a
weighted combination of several exponentially twisted distributions, each of which corre-
sponds to a distribution for effectively sampling the blocking states on a single link. In
[Sad90] the composite form has, in fact, been shown to be asymptotically optimal. How-
ever, the asymptotic theory leaves open the choice of the weights. For this, we also presented
heuristics, which try to minimize the variance of the samples within the set of the blocking
states. This is done by choosing the weights such that the likelihood ratio in the most
probable blocking states is a constant. However, the heuristics cannot guarantee that the
weights would always be positive. This can be avoided by defining a suitable optimization
problem for determining the weights, but we have left the development of this for further
study. The numerical results confirm the accuracy of the proposed method.

Another contribution of the thesis is the conditional expectation method, which gives sig-
nificant variance reduction, and is easy to apply in systems having a product form. The
method is based on partitioning the state space into sets such that within each set the
conditional expectation of the estimated function can be calculated analytically, which in
effect eliminates the internal variance within the set from the estimator. We presented two
versions of the method: one where the sets are constrained within the allowed state space
and another where we define a larger sampling state space and use the conditional expecta-
tion method to collect the contribution of even those samples, which fall outside the allowed
state space. Another important property of the method is that it does not incur any extra
computational effort, since the information collected for each sample can be precomputed
prior to the simulation and stored into arrays without increasing the memory requirements
excessively.

All in all, based on the studies made in this thesis, the simulation problem still remains
a difficult one mainly due to the dimensionality problem. The conditional expectation
method presented here alleviates the problem by reducing the dimensionality essentially
by one giving substantial variance reduction. The IS approach, on the other hand, gives
huge variance reduction when the blocking probabilities are very small. However, this is
not really the case when considering blocking events in realistic networks but even in such
cases the proposed IS heuristics still give considerable variance reduction. Thus, it can be
said that with the methods presented in this thesis we are able to study notably larger
systems than would be possible when using straight forward methods, although we cannot
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claim that the problem of dimensionality inherent in the system is solved entirely with the
proposed techniques. Hence, the problem still leaves room for research especially in the
area of attempting to combine different variance reduction methods e.g. the conditional
expectations method and IS. More theoretical open issues include the development of the
theory of asymptotically optimal sampling distributions for loss systems when the scaling
of the system is done such that both the offered loads and the capacities of the links are
scaled, as is done when developing analytical approximations for loss systems.
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