
Topology Based Automation of Distributed Applications
Management

Umesh Bellur
Indian Institute of Tech. Bombay

Powai, Mumbai 400076
India

umesh @ it.iitb.ac.in

ABSTRACT
With the widespread use o f distributed computing in the
enterprise, there have been significant advances in development
paradigms for these applications. Server side component
models have considerably simplified development and the
complexity has now shifted to the operational side o f these
applications. The increase in operational complexity has reached
a point where it is no longer feasible for humans to manage the
applications required to run an enterprise. The initial steps to
provide self managing applications are now being taken - a
paradigm known as "autonomic computing" is in it ~ infancy o f
evolution. There have been numerous proposed models o f how
one achieves self management. In this position paper, we
formulate the research problems and basis for "'lights out'"
management o f enterprise application environments.

Categories and Subject Descriptors
D.3.3 [Run time Environments]: Distributed systems,
Autonomic computing, and Analytical methods.

General Terms
Management, Measurement, Performance, Physical Design,
Reliability.

1. INTRODUCTION
As more distributed applications become mainstream enterprise
solutions, there have been considerable advances in making the
development of these applications simpler. The development of
server side component models followed by standardization of
server side "software containers" to host these components have
helped considerably shorten the development lifecycles of large
applications. Indeed it is not uncommon to see release cycles of 6
months or less in the enterprise for major features and 3 months
or less for minor feature adds.

The impact of these rapid application development paradigms
has shifted the complexity from what used to be development to
deployment and beyond - tasks that are commonly handled by
the IT Operations staff in the enterprise. Once the application

has been developed, the first task would be to map it to a physical
architecture given the expected workloads and the availability of
shared physical resources (CPU, disk, network bandwidth etc.).
Once resource mapping is done, the various resources need to be
configured with the appropriate parameters to handle the
application. This in itself is a task of great complexity not only
because of the dependencies between the various components
making up an application but also because one needs to map any
QoS requirements of the application (such as response times and
uptime) to the selection of the different physical components that
the application will run on. For example, network QoS may have
to be negotiated appropriately since network communication
quality can have a significant impact on application performance
of distributed applications. The complexity also arises from the
numbers of parameters that have to be tuned on resources such as
application servers and relational databases. The modern J2EE 1
application server has over 300 parameters that have to be tuned
in order to extract the best value.

Subsequently, monitoring the application with a view to
resolving faults that may occur as well as keeping the
performance tuned in spite of varying workloads is also a
daunting task - one that is amplified by the presence of several
such applications running on the enterpfise's wide and/or local
area network. Empirical evidence suggests that it is impossible to
manually handle and automating these tasks is a necessity.

Of late, there has been an increased focus on "autonomic
computing" techniques - techniques that determine how
application environments can configure and heal themselves in
the event of problems. For example, an application server (or
middleware server) can have over a hundred different parameters
that have to be tuned.

In this paper, we first present an application management
architecture that spans resource discovery to fault detection,
isolation and correction. We are in the process of realization of
this architecture and this paper is work in progress towards the
goal of what is termed zero-touch or lights out management 2.
This is part of the LAMDA (Lights-out, Automated Management
of Distributed Applications) project being done at l iT in
conjunction with the industry.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP "04, January 14-16, 2004, Redwood City, CA.
Copyright 2004 ACM 1-58113-673-0/04/0001...$5.00.

1 J2EE is a trademark of Sun Microsystems and denotes the
server side Java component architecture commonly used to
build enterprise applications today.

2 Lights Out management is a term commonly used in the IT
industry to indicate that no human is needed to manage these
applications.

171

2. The LAMDA Vision
There are several facets to autonomic computing all of which
form part of the LAMDA vision.

a. Physical Design and deployment - Self Configuration.
There are two aspects to this - static and dynamic.
Static design lays out certain constraints on location of
the application components and maps it initially to a
physical topology. The dynamic version ensures that
these constraints continue to be met and may move
application components, add or remove computing
resources and reconfignre the infrastructure.

b. Root Cause Isolation and correction - Self Healing. Self
healing can be for the purposes of correcting a
structural constraint or property that has been broken
such as those related to performance, availability or
capacity.

c. Self Protection - Related to the second facet, this is for
the purposes of healing a security breach that has
occurred. The techniques and the basis for self
protection are often very different from those used for
self healing and so will be considered separately.

As a part of this effort (especially part a), we have also developed
meta models for describing application QoS parameters and
resource needs which we use in trying to come up with the
physical design.

2.1 The Basis of LAMDA

2 . 1 . 1 Structural Basis - Topology-
The starting point for self-healing or self configuration is to
know one self and so determining the topology of the application
in relation to its execution environment is critical. An application
cannot be deployed without knowledge of the various
components that make it up. Both the static parts of the
component (viz, it's packaging) as well as it's physical footprint
need to be well understood for problem isolation and correction.

Topology therefore is a description of:

a. The infrastructure (both physical such as compute
servers as well as logical such as server component
containers), its configuration and its dependence on the
underlying network.

b. The static view application components and their
configurations.

c. The dynamic or run time view of application
components that execute on the infrastructure. This
specifies the physical footprint that the component
exhibits at run time. For example, an EJB can be
deployed on several J2EE containers either as a cluster
or singly.

d. Dependencies that exist between application
components, between application components and
infrastructure (software, hardware and network).

Topology is a realization of the meta-model that characterizes
applications and their execution environments and provides a
canonical language for common understanding of what an
application is and what it depends on. Every tool in the LAMDA
arsenal works off of topology. Since the topology of a distributed

shared execution environment is constantly changing
(applications are being added, removed or updated, machines are
upgraded or added, the network is being tuned etc.), we need a
process that will keep up-to-date the topology of the existing
environment including any applications that are currently
executing on it.

2 . 1 . 2 Analytical Basis
In order to have a predictive model of both capacity management
as well as potential failures, we need an analytical model of an
application and its execution infrastructure that we can solve
under the constraints specified by the needed application QoS.

For the purposes of self configuration as it relates to performance
tuning and capacity management we are using Hierarchical
Queuing Petri Nets (HQPN) to model our environment. HPQNs
are a variation of Colored General Stochastic Petri Nets and
stochastic queuing models where we can build hierarchies of
such Petri nets recursively. Every place can be attached to a
Queue to represent scheduling policies and waits. The hierarchy
is built up by folding the sub Petri net to represent a single place
which has a timed wait. HQPNs have been employed in similar
situations to analyze application performance and the component
model of deployment is particularly well suited to be modeled
using HPQNs. For further information on HPQNs, we refer the
reader to [15]. They translate to their underlying Markov chains
which can be solved using well understood methods.

The analytical basis for self healing however is still in the
formative stage but we are leaning towards using multi-agent
architectures (MAS) coupled with distributed correlation
algorithms that correlate across the network, compute and
software infrastructure layers. MAS gives us the ability to
decentralize decision making as it related to root cause isolation
and also adds the notion of machine learning which is needed in
trying to isolate root causes from a variety of patterns that occur
in these complex environments.

3. Current Status
This project was born out of the experience of several system
administrators who had the first hand experience of setting and
managing service QoS on multiple applications in a shared data
center environment. Since then we have added an analytical
flavor to the application management process architecture.

We have currently implemented a functional Discovery
subsystem which works off the meta-model described in earlier
sections. This tool does auto discovery of a networked
environment and can discover and map the topology of:

a. Layer 2 and 3 (IP) Networks including VLANs, VPNs,
Firewalls and Load Balancers

b. Compute layers consisting of heterogeneous operating
systems (SUN Solaris, Linux etc.) and classes of
machines.

c. Software infrastructure such as Apache Web servers
(Version 1.3+), J2EE Application Servers (JBOSS
Version 3.0+) and Oracle Databases (Version 8 and 9).

d. Application components such as ServletsHSPs,
Enterprise Java Beans and DB Schemas along with
their interdependencies.

172

The starting point for this tool is a range of IP Addresses which
serves as the bounds of discovery. We have also performance
benchmarked this tool up to a 300 server data center environment
and performance is more than adequate at about 15 seconds for a
100 servers with linear increase. We have also proved that
Discovery consumes less than 3% of the system resources to run.

We are in the process of dealing with the other problems
described earlier and are putting together analytical models for
this environment.

4. SUMMARY
To tackle the growing complexity of managing
distributed/networked applications, we have proposed
management architecture for autonomic computing of such
environments. The LAMDA architecture revolves around the
environment's topology for which we have developed a meta-
model.

Although the work is ongoing, this paper states our position on
the architectural approaches that are required to deal with the
issues holistically. We feel that there will be significant benefit to
interact with the other researchers in the area who may be taking
other approaches and that the exchange of ideas will benefit all
concemed.

5. REFERENCES
[1] Bigus, J. P., et al. "A Toolkit for Building Multiagent

AutonomicSystems",
http ://www.researeh.ibm.com]j oumal/sj/413/bigus.html,
2002.

[2] Blair, G., et al., "Reflection, Self-Awareness and Self-
Healing in OpenORB", ACM WOSS", 9-14, Nov., 2002.

[3] Dabrowshi, C. and Mills K., "Understanding Self-healing in
Service-Discovery Systems", ACM WOSS, Charleston, SC,
USA., 15-20, Nov., 2002.

[4] Dashofy E. M.m et al., "Towards Architecture-based Self-
Healing Systems", ACM WOSS, Charleston, SC, USA.,
21-26, Nov., 2002.

[5] Fox A. and Patterson, D., "When Does Fast Recovery
Trump High Reliability?", Proceedings of the EASY 2002.
San Jose, CA, October 2002.

[6] Ganek, A., "A letter from Vice President, Autononomic
Computing, Alan Ganek" htm://www-
3.ibm.com/autonomic/letter.shtml, 2002.

[7] Garlan, D. and Schmerl, B.,"Model-based Adaptation for
Self-Healing Systems", ACM WOSS, Charleston, SC,
USA., 27-32, Nov., 2002.

[8] George S., et al., "A Biologically Inspired Programming
Model for Self-Healing Systems", ACM WOSS, Charleston,
SC, USA., 102-104, Nov., 2002.

[9] IBM paper-l: "IBM autonomic computing challenges note:
academic focus article: challenges",
htto://www.research.ibm.corn/autonomic/academic/challen~
es.html, 2002

[10]Mikic-Rakic, M., et al., "Architectural Style Requirements
for Self-Healing Systems, ACM WOSS, Charleston, SC,
USA., 49-54, Nov., 2002.

[11] Patterson, D., et al., "Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies", In
Proceedings of the UC Berkeley Computer Science
Technical Report UCB/CSD-02-1175, Berkeley, CA, March
2002.

[12] Tivoli software, "Autonomic Computing: The Value of Self
Managing Systems",
httD://www.tivoli.com/news/features/oct2002/autonomic.ht
ml, 2002.

[13] Vaidyanathan, K., Selvamuthu, D., and Trivedi, K. S.,
Analysis of Inspection-Based Preventive Maintenance in
Operational Software Systems, Intl. Symposium on Reliable
Distributed Systems, SRDS 2002, Osaka, Japan, October
2002

[14] Probability and Statistics with Reliability, Queueing and
Computer Science Applications, Kishore S. Trivedi, ISBN
0-471-33341-7, John Wiley and Sons.

[15] F. Bause, P. Buchholz and P. Kemper- QPN Tool for the
Specification and Analysis of Hierarchically Combined
Queueing Petri Nets. Quantitative Evaluation of Computing
and Communication Systems, Lecture Notes in Computer
Science No. 977, Springer-Verlag, 1995

173

