
Autonomic WWW Server Management
with Distributed Resources

Takuya Araki
NEC Internet Systems Research Laboratories / Argonne National Laboratory

t-araki@dc.jp.nec.com

ABSTRACT
If many people access a Web server at one time, the server
might not be able to respond within an acceptable time or
even provide the service. Therefore, enough servers should
be assigned to a service to guarantee quality of service. But
reserving a lot of resources for peak access is not cost effec-
tive, because these resources are idle most of the time.

In order to solve this problem, technologies called utility
computing or autonomic computing have been proposed and
are under development. However, these technologies utilize
resources only within one organization.

In this paper, we present an autonomic system archi-
tecture that uses distributed resources leveraged by Grid
technology. In our architecture, computing resources are
rented from different organizations. Our architecture sup-
ports J2EE systems; hence, existing Web applications can
be used without any modification. In addition, our architec-
ture considers the location of the resources when redirecting
a request to a server and allocating a new server, thereby
leading to better performance. We adopted WS-Agreement
as an interface for negotiating service level agreements.

We have implemented and evaluated this system and con-
firmed the effectiveness of this architecture.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

1. INTRODUCTION
If many people access a Web server at one time, the server

might not be able to respond to the client within an accept-
able time or even provide the service. Therefore, enough
servers should be assigned to a service to guarantee quality
of service. But reserving a lot of resources for peak access
is not cost effective, because these resources are idle most of
the time.

In order to solve this problem, technologies called utility
computing or autonomic computing have been proposed and

(c) 2004 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
2nd Workshop on Middleware for Grid Computing Toronto, Canada
Copyright 2004 ACM 1-58113-950-0 ...$5.00.

are under development [10, 12]. With these technologies,
servers are automatically added or removed from a service
according to the load of the service. Since the resources can
be shared between services, these technologies can make the
utility rate of the servers higher.

However, these technologies are not enough to reduce the
cost of servers because they share resources only within one
organization. Thus, many resources might be left idle if
there is not enough work.

In this paper, we present an autonomic system architec-
ture that uses distributed resources leveraged by Grid tech-
nology; computing resources are rented from different or-
ganizations. In addition, the accesses from clients are redi-
rected to a server based on the distance between them. This
strategy improves the performance of Web accesses.

The contribution of this paper is a novel architecture of
distributed autonomic computing that includes following char-
acteristics:

Support Our architecture supports J2EE systems, which
means that not only simple static Web pages but also
complex Web systems such as a shopping site can be
supported by our system.

Security Security is the most important issue when uti-
lizing distributed resources; this issue does not arise
in the current utility or autonomic computing tech-
nology. Our architecture uses Grid Security Infras-
tructure (GSI) [9] for authentication and dynamically
creates VPN for secure communication.

Interface We use a standard interface for our architecture.
Specifically, the latest draft of WS-Agreement [2] is
used for an interface for negotiating service level agree-
ments and resource reservations. We believe this is one
of the early attempts to use the WS-Agreement spec-
ification.

Location Awareness Accesses from clients are redirected
to one of the distributed server based on the location.
In addition, when a new server is added, the location
of the server is decided based on the history of access.
We believe location awareness is the key feature of dis-
tributed autonomic computing systems.

We envision that our system will produce new business
opportunities: a resource provider as a resource seller, and
an autonomic Web server manager as a kind of a value-added
resource reseller.

The rest of this paper is structured as follows. Section
2 explains the background and requirements of the system.

81 Middleware 2004 Companion

Section 3 shows the architecture and its implementation.
Section 4 presents a preliminary evaluation on the system.
Section 5 discusses related work. Section 6 briefly outlines
future work.

2. BACKGROUND AND REQUIREMENTS
In this section, we describe the technology of the Web

system as the background and requirements to our system.

2.1 Background
As we mentioned, we target not only simple static WWW

sites, but also dynamic sites like shopping sites. Dynamic
sites are usually composed of multiple tiers.

� � � � � � �
� � � 	 	 �
 � � � � �

� � 	 � � �
� � � 	 �
 � � � � � � �

� � � � �
� � � � �
 � � � � � � �

� � � � �

� � � � 	 � � � �

Figure 1: Three tiered architecture

Figure 1 shows a three tiered architecture of a Web system
comprising a Web tier, an AP (application) tier, and a DB
(database) tier. The Web tier is used mainly for creating
HTML documents. The AP tier is responsible for business
logic, which is independent of the presentation layer (the
Web tier). The DB tier stores information that is used by
the AP tier, such as stock information for a shopping site.
It is possible to merge or subdivide some of the tiers, but
basically a Web system can be understood by this model.

J2EE (Java 2 Platform, Enterprise Edition) supports this
kind of Web system. In J2EE, the Web tier is implemented
as a Web container running servlets, and the AP tier is
implemented as an EJB container running EJBs (Enterprise
Java Beans). The system which runs a Web tier and/or an
AP tier is usually called an AP server. Please refer to [3] for
further information about J2EE.

When using more resources to provide better performance,
a structure like Figure 2 is used.

� � � � � � �
� � � 	 	 �
 � � � � �

� � 	 � � �
� � � 	 �
 � � � � � � �

� � � � �
� � � � �
 � � � � � � �

� � � � �
� � � � 	 � � � �

� � 	 � � �
� � � 	 �
 � � � � � � �

� � � � �
� � � � �
 � � � � � � �

����
�� �� �

�� �

����
�� �

� �
�� �

� � � � � ! � � " � � � � �
 � #

Figure 2: Three tiered architecture with a load bal-
ancer

In this case, the requests from end users are distributred
to multiple Web tiers using a load balancer. In this struc-
ture, all resources are placed in a private network because of
security reason and requirement of a load balancer. Number
of resources are fixed.

2.2 Requirements

Several requirements guided our design of an autonomic
system architecture. Most important, our system should
be able to support the three tier model, especially J2EE
systems, because a lot of Web systems are already written
using J2EE; it is desirable that existing Web applications
can be used without modification.

The system should make it possible to add or remove
resources in order to keep quality of service. The system
should be able to utilize distributed resources in the Inter-
net. Communication between distributed resources should
be secure, since it may contain secret information like credit
card numbers.

And, as we mentioned before, location of resources should
be taken into account when redirecting user’s request and
adding a new resource.

3. ARCHITECTURE AND IMPLEMENTA-
TION

In this section, we describe the architecture and imple-
mentation of the system designed to meet the requirements
described in the previous section.

3.1 Overall Structure
Figure 3 shows the overall structure of the system.

� � � � � � � � � � � � 	
 � �

� � � � � � 	 � � � �
� � � � � � � � � � � �

� � � � � � 	 � � � �
� � � � � � � � � � � �

� !

" � � # � � � $ � # � � % � � � � & � ! �

� � � � � � � � � � � � ! � � # � ' � �

(! ') � � � * � � � � � + � � � ,

% ' ' - � � & # �

� � �) � � � �

% � � � � � � � ' � � � � � � !

. � 	 � 	 / � � � � �
0 	 � 1 2
 � � � � � � � 3 � � � � � � � � � � � � 	
 � �

Figure 3: Architecture of the system

The Web application provider is an entity that has a Web
application (e.g., shopping site program in the form of “ear
file” in the case of J2EE), and provides it to the autonomic
Web server manager, so that the application can be used by
end users. It also negotiates service level agreements with
the autonomic Web server manager. This interface uses WS-
Agreement.

The autonomic Web server manager manages the addition
and removal of resources and redirects accesses from end
users.

The resource provider provides computational resources.
This interface is also using WS-Agreement, and the resource
can be reserved for a certain period.

The origin server is one of the computational resources
provided by a resource provider which contains a database
(a DB tier); it is not removed even when the load is low.
Other computational resources provide Web tiers and/or AP
tiers.

Middleware for Grid Computing 82

The access from the end user is redirected to one of the
resources, considering the distance to the resource, load of
it, and so on.

We note that all the entities can belong to different or-
ganizations: the Web application provider, the autonomic
Web server manager, resource providers, and end users. Re-
source providers lease their resources to other organizations.
The autonomic Web server manager rents these resources to
provide an abstract Web server that guarantees quality of
service. The Web application provider rents the abstract
Web server from the autonomic Web server manager.

3.2 Detailed Structure
Figure 4 shows the detailed structure of the system. We

explain below each of the services and modules.

� � � � � � � � � � 	

� 	 � 	 � � � � � � 	 �

� 	 � � � � � 	 � � � � � 	 �

� � � � � � � �
� � � � � � � � �

 !

" # $ % & % ' () * + , - + . / + .
' 0 & 0 1 + ' + & $ - + . / () +

2 + - + . / 0 $ (% &
- + . / () + 3 2 " 4 5 � 6 � � � �

� � � � � � 7
� � 5 � � � � �

� 8 � 9 : � � � � � � � �

; $ 0 . $ # < -) . (< $

= > ?2 + @ # + - $ * + , 0 < < A
B ; C "

D � � � � � � � � � � � E � 	 � � � � � 	

F � � � � � G 	 � 	 �

� 	 � � � 	 � � � �

2 + H (. +) $. + @ # + - $ -
I . % ' + & H # - + .

Figure 4: Detailed structure

3.2.1 Resource Provider
Our architecture uses Globus Toolkit 3.2 (GT3.2) [17, 8];

therefore, all services are written as Grid services. GSI [9] is
used for authentication of the services, which is an extension
of PKI that enables single sign-on and delegation by using
proxy certificates [19]. The grid-mapfile is used for autho-
rization of the services, which contains a list of Distinguised
Names (DN) of GSI. Only when the caller’s DN is present
in the grid-mapfile, it is allowed to use the service.

In order to reserve a computational resource, the reser-
vation service is called. It manages the table of reservation
states. After the resource is reserved, the Grid Resource
Allocation and Management Service (GRAM) [18] can be
used to submit a job. (GT3.2 contains GRAM as a stan-
dard service of remote job submission.) In order to enforce
reservation, the system should ensure that GRAM cannot
be used by an entity that is not reserving the resource. To
do this, the reservation service modifies the grid-mapfile; if
the resource is reserved by an entity, the reservation service
changes the grid-mapfile to include only the entity. After
the reservation period, the grid-mapfile reverts to the orig-
inal form. After the reservation, currently running jobs are
canceled by the reservation service.

If GRAM is set up to use a batch job system that sup-
ports advance reservation, the reservation service can utilize
that. For example, MAUI [5] has a command setres that
allows users to reserve resources. In this case, the reserva-
tion service need not modify the grid-mapfile. Submitted

jobs just remain in a queue if the resource is reserved by
another entity.

We decided to use GRAM directly instead of creating a
special service such as a “Web server service”. Our reason
was that we wanted to make the burden of resource providers
smaller; in our architecture, resource providers need to in-
stall only GT3.2 and the reservation service. In addition, the
computational resource can execute any kind of job other
than the AP server. It is important to increase the utility
rate of the computational resource.

For the interface, the reservation service uses the docu-
ment format specified in the current draft of WS-Agreement.
However, it was not possible to perfectly comply with the
protocol described in the specification, because it depends
on WS-Resource Framework [6] which is not supported by
GT3.2.

The document format of the WS-Agreement specification
specifies only the container of domainspecific agreement in-
formation. Therefore, the domainspecific part of the agree-
ment document must be specified. To this end, we extended
SeviceDescriptionTermType to include reservation infor-
mation like reservation period and number of nodes to re-
serve.

Renegotiation is not supported by the current implemen-
tation. We will implement it in the future because it is
important for usability.

3.2.2 Startup Script
An AP server is invoked from a startup script executed by

GRAM. The Web application program is transferred in the
startup script using GSI-SCP and is then deployed to the
AP server. (GSI-SSH and GSI-SCP are extensions of SSH
and SCP that can use GSI for authentication.)

In addition, a VPN connection to the origin server is cre-
ated in the startup script. This ensures that the communi-
cation between the origin server and the allocated resource
is secure and transparent. To create VPN, one can choose
from several methods including VTun, OpenVPN, and PPP
over SSH. We used PPP over GSI-SSH in order to use GSI
in the current implementation.

Admittedly, security can be preserved without using VPN.
For example, GT3.2 has a functionality to wrap an EJB as
a Grid service whose access can be made secure. However,
it requires modification of the Web application, which is
not desirable considering the requirements discussed in the
previous section.

In the evaluation system, we used Jboss 3.2.3 [13] for the
AP server. Jboss is a free implementation of J2EE specifi-
cation. We used PostgreSQL 7.4.2 for the database.

For the Web application, we used Java Petstore 1.1.2 [16],
which is an example J2EE application developed by Sun
Microsystems.

3.2.3 Origin Server
As we noted, the origin server contains a database in our

architecture. But how much functionality the origin server
covers other than the database depends on the case.

Figure 5 shows three cases. In this figure, we assume a
J2EE system. In J2EE, the AP tier is implemented as an
EJB container, and there are three kinds of EJB: stateless
session bean, stateful session bean, and entity bean. State-
ful/stateless session beans are used to implement business
logic, and entity beans are used to abstract database access;

83 Middleware 2004 Companion

� � � � � � �
� � � � � � 	 �
 � 	 � � �

� � � � �
� � � � � � 	 �
 � 	 � � �

� � � � � �
� �
 �
 �
 � � �

� �
 � � � � � � � � �
 � � � � � �

� � � � � � 	 � �
 	
� 	 � � � � � �
 	

� � � � � � �
� � � � � � 	 �
 � 	 � � �

� � � � �
� � � � � � 	 �
 � 	 � � �

� � � � � �
� �
 �
 �
 � � �

� �
 � � � � � � � � �
 � � � � � �

� � � � � � 	 � �
 	
� 	 � � � � � �
 	

� � � � � � �
� � � � � � 	 �
 � 	 � � �

� � � � �
� � � � � � 	 �
 � 	 � � �

� � � � � �

� �
 �
 �
 � � �

� �
 � � � � � � � � �
 � � � � � �

� � � � � � 	 � �
 	
� 	 � � � � � �
 	

� � � � � 	 � � � � � �� � � � � � � � � � � � � � � � � � �

� 	 � � � � � �

� � � � � 	 � � � � � �� � � � � � � � � � � � � � � � � � �

Figure 5: Functionality of the origin server

basically, one entity bean corresponds to a row of a database
table.

In the top of the figure, the origin server runs only the
database. In the middle of the figure, the origin server runs
entity beans and the database. In the bottom of the figure,
the origin server runs all kinds of beans and the database.

Each case has its pros and cons. In the first case, more
work is done by distributed resources in parallel, which leads
to better performance. However, directly communicating
with database through the Internet may cause a perfor-
mance bottleneck because the communication may contain
transactions; transactions through a highlatency network
may cause performance reduction because the transaction
may lock a table of the database, and the duration of lock
is prolonged by the network latency.

On the other hand, less work is done by distributed re-
sources in the last case. However, transaction is managed
by the AP server.

Therefore, which case should be used depends on the Web
application especially the balance of computation and com-
munication of the application.

In our architecture, we allow the application to decide
which case to use. In the evaluation system, we distributed
only the Web tier shown in the bottom of Figure 5.

3.2.4 Autonomic Web Server Manager
The autonomic Web server manager accepts a Web appli-

cation and its service level agreement as a request.
The interface is similar to the reservation service; it uses

the document format of WS-Agreement. We extended Ser-

viceDescriptionTermType to include a Web application,
and we extended GuaranteeTermType to include the required
response time of the server and the URL path to measure.

The autonomic Web server manager periodically measures
the response time of the specified URL of each distributed
resource. If the response time exceeds a certain percentage
of the required response time (e.g., 80%), the autonomic
Web server manager adds a new resource by reserving a new
resource and invoking the startup script. 1 If all response
times are below a certain value (e.g., 500 ms), the autonomic
Web server manager removes a resource. The policy used for
resource addition and removal is described in Section 3.3.

1Currently reservation information like reservation period,
number of nodes is fixed and specified in a configuration file.

If distributed resources are added or removed, the auto-
nomic Web server manager changes the configuration of the
redirector.

When a server is removed, it should be guaranteed that
no end user is using the resource. Therefore, the system
first stops redirection, and then, after a specified period,
the server is actually removed. The Web application should
ensure that after the specified period the session is invali-
dated.

3.2.5 Redirector
The purpose of the redirector is to redirect the access from

an end user to an appropriate distributed resource. This
technology is studied as distributed load balancing. One of
the products related to this technology is found in [7].

This technology needs two different mechanisms: one to
redirect the request transparently, and another to select the
target of redirection.

To redirect the request transparently, DNS lookup or http
redirection is used. When DNS lookup is used, the returning
IP address of DNS lookup is set to that of the target host.
When http redirection is used, the server returns “moved
temporarily” status when an end user accesses a URL. The
end user then connects to the target host, which is given in
the response automatically. Using http redirection is easier
than using DNS lookup, but it supports only http, and the
redirection is visible from the end user.

To select a target host, metrics such as distance from the
end user to the server and the load of the server are used.
There are several methods to measure the distance. One
method is simply to use a ping program. ICMP echo is used
in the program, and the roundtrip time can be measured.
However, this method takes at least the roundtrip time to
measure the distance, and ICMP echo might be ignored be-
cause of security reason. Another method is to use routing
information stored in routers. The implementation is de-
scribed in [11]. To implement this method requires access
privileges to the router where each server is located.

In our current system, we use http redirection with ping
because of the ease of implementation. We used a servlet to
implement this method, and it is also executed by JBoss on
the origin server.

To measure the latency from the resources to the end user,
the redirector uses GSI-SSH to let the resources call ping to
the end user. The SSH connections between the redirec-
tor and the resources are kept alive, instead of establishing
connections every time. This approach reduces redirection
time. The evaluated latency is cached; end users in a same
network are treated to have the same latency (network size
is configurable).

3.3 Management Policy
The management policy used when redirecting a user re-

quest and adding or removing resources is very important
because it directly affects the resource usage rate. Here, we
discuss what kind of management policy would be optimal
for this architecture.

Figure 6 shows an example of connections between the
end users, distributed resources, and the origin server.

The response time observed by the end user can be de-

Middleware for Grid Computing 84

� � � � � � � � � � 	 	 �
 � � � � �

 � � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � �
� � � � � � � �

� � � � � � � � �

� � � � � � � � � � �
� � � � � � � �

Figure 6: Example of connections

scribed as follows:

ResponseT ime = Latency(EndUser, Resource)

+ TransferT ime(EndUser, Resource)

+ Latency(Resource, Orign)

+ TransferT ime(Resource, Origin)

Here, Latency(A,B) is network latency between A and B,
and TransferTim e(A,B) is contents transfer time from B to
A. TransferTim e depends not only on network bandwidth,
but also on current speed of server B, which is a function of
the original speed of B and current load of B.

The redirector should select a resource to minimize the
ResponseTim e.

When adding a new resource, a resource that reduces the
average ResponseTim e the most should be selected. To cal-
culate the future average ResponseTim e, one can use access
history. This assumes that the future access tendency of the
network locations of the end users will be the same as the
previous access history. This applies when the contents are
drawing interests from special locations (e.g., if the contents
are written in Japanese, it is probable that most of the ac-
cesses come from Japan) or when a certain organization has
a lot of end users (e.g., a large ISP).

If the response time from the user is below a certain
threshold, one of the resources should be removed to re-
duce the number of rented resources. To select the resource
to remove, one can apply the same method: a resource that
increases the average ResponseTim e the least should be se-
lected.

Thus far we have discussed an ideal policy, and of course
it is not possible to calculate above equation exactly. Ap-
proximation is needed. In our implementation, we assumed
that TransferTim e depends mainly on the current speed of
the resource.

For redirection, the redirector uses the following equation:

ResponseT ime = a ∗ Latency(EndUser, Resource)

+ b ∗ RedirectionCount

RelativeSpeed

+ c ∗ Latency(Resource, Orign)

Here, RedirectionCount is a number of redirected accesses
to the resource within a certain period, and RelativeSpeed

is relative speed of the resource; a, b, and c are constants
that are configurable. TransferTim e(Resource,O rigin) is re-
moved from the equation, because it should be the same if
it is approximated to be the function of the speed of the ori-
gin. RelativeSpeed/RedirectionCount represents the cur-
rent speed of the resource, and b represents average amount
of work; therefore, TransferTim e is represented as b * Re-
directionCount/RelativeSpeed.

For adding a resource, the above equation is also used. In
this case, RedirectionCount is set to 1. To evaluate latency
from the future end users to the resource, we use the history
of the accesses as described before; all candidate resources
are made to ping to recently accessed end users. The average
is used as the Latency of the resource.

Currently the management policy is hard-coded in the
program. Separating it to another module is a future task.

4. PRELIMINARY EVALUATION
We conducted a preliminary evaluation of the system per-

formance using one computer.
The server used for the evaluation had two Pentium Xeon

2.2 GHz processors and 2 GB memory, and it ran Red Hat
Linux 7.3.

First, we evaluated the performance of redirection. This is
an important metric because it directly affects the response
time experienced by the end user.

Table 1: Redirection Time
w/ GSI-SSH Call Reuse Connection On Cache

427 ms 9 ms 1 ms

Table 1 shows the time of redirection. As we described
before, the redirector lets distributed resources ping to the
end user. In order to call ping, a GSI-SSH connection is
established between the redirector and the resources. The
first column of the table shows the redirection time including
the time of establishing the connection. This only occurs at
first redirection. The second column shows the redirection
time when the connection is reused. The last column shows
the redirection time when the ping value is on the cache.
In this evaluation, we accessed from the local server and
redirected to the same server (the above redirection time is
evaluated at the server side). Since the time actually spent
in calling a ping program is small (0.03 ms), it is negligible
in this evaluation.

The evaluation shows that the cost of redirection is small
enough. In particular, it shows that reusing the connection
significantly reduces the cost of redirection. In an actual
situation, the time of a ping call is added to the redirection
time, but it can be controlled by using a timeout of the ping
command.

Next, we evaluated the cost of adding a new server.

Table 2: Server addition time
Total Time Ping Time JBoss Start Time Rest

50.8 s 8.8 s 32.7 s 9.3 s

Table 2 shows the time of adding a server. The column
of ping time shows the time which is used to call a ping
program. It includes resource reservation time and GRAM
job execution time for calling the ping command, and time

85 Middleware 2004 Companion

of calling a callback program which tells the ping value to
the system. The second column shows the time spent to
start JBoss. It shows that more than half of the total time is
spent for it. Rest of the time is used for miscellaneous things
including calling a callback program which tells the system
that JBoss has started up, and modifying the configuration
of redirector. We believe that this total time is acceptable
time for adding Web servers.

We also evaluated the cost of removing a server. The
result, 20.1 seconds, is acceptable because removing a server
is less time critical.

5. RELATED WORK
Several projects and products attempt to share resources

between services. UDC (Utility Data Center) of HP [10], au-
tonomic computing of IBM [12], Oracle 10g, Japanese Busi-
ness Grid project [14] are examples. However, since their
resource sharing is limited within a data center, they do not
address the problems regarding distributed resources.

Polimatica [15] is a similar kind of system, but it em-
phasizes policy based management. It supports physically
distributed resources but does not support resources owned
by different organizations.

EdgeComputing [1] of Akamai has a similar structure to
ours. It supports a J2EE system and utilizes distributed
resources. However, it does not support resources adminis-
tered by other organizations. Moreover, it does not support
dynamic addition and removing resources.

JOSH [4] is a higherlevel job scheduler for Globus Toolkit
3. It has a functionality that uses a ping command to select
a resource according to location.

6. CONCLUSION
We have presented a novel autonomic architecture for a

Web system. Leveraged by Grid technology, the architec-
ture uses distributed resources. We described the detailed
architecture, the current implementation, and the prelimi-
nary evaluation.

Future work includes evaluating the system in more de-
tail and enhancing the system so that it can be used for a
practical, largescale WWW system.

7. ACKNOWLEDGMENTS
This work was in part supported by the Mathematical,

Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38. We thank Dr. Kate Keahey
for useful discussion and suggestion.

8. REFERENCES
[1] Akamai. A developer’s giude to on-demand distributed

computing. http://www.akamai.com/en/resources/
pdf/whitepapers/Akamai DeveloperGuide
Distributed Computing.pdf.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu. Web services agreement specification
(WS-Agreement) version 1.1, 2004.

[3] S. Bodoff, D. Green, K. Haase, E. Jendrock,
M. Pawlan, and B. Stearns. The J2EE Tutorial.
Addison-Wesley, 2002.

[4] G. Cawood. Josh functional specification.
http://www.epcc.ed.ac.uk/sungrid/PUB/D4 1-
FunctionalSpecification.pdf.

[5] Cluster Resources. Maui scheduler.
http://www.supercluster.org/maui/.

[6] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey,
S. Graham, I. Sedukhin, D. Snelling, S. Tuecke, and
W. Vambenepe. The WS-Resource Framework Version
1.0. http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

[7] F5 Networks. 3-DNS Controller.
http://www.f5.com/f5products/3dns/.

[8] I. Foster and C. Kesselman. Globus: A
Metacomputing Infrastructure Toolkit. IntlJ.
Supercom puter Applications, 11(2):115–128, 1997.

[9] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
security architecture for computational grids. In 5th
ACM Conference on Com puter and Com m unications
Security Conference, pages 83–92, 1998.

[10] Hewlett-Packard. Utility data center: Overview.
http://www.hp.com/large/infrastructure/utilitydata/
overview/.

[11] S. Horman. Globally distributed content (using BGP
to take over the world), 2001.
http://www.supersparrow.org/ss paper/stuff/ss paper.pdf.

[12] IBM. Autonomic computing.
http://www.research.ibm.com/autonomic/.

[13] Jboss Inc. Jboss: Professional open source.
http://www.jboss.org/.

[14] H. Kishimoto, T. Kojo, and F. Maciel. Business grid
middleware: Goals and status, 2004. GlobusWORLD
2004,
http://www.globusworld.org/program/slides/3c 1.pdf.

[15] Y. Maeno, M. Kawato, S. Nisimura, F. Machida,
H. Fujio, and T. Kamachi. Polimatica: Abstraction in
policy-customizable private virtual organizations. In
IEEE InternationalConference on W eb Services
(IW CS’2004), 2004.

[16] Sun Microsystems. Java Pet Store.
http://java.sun.com/developer/releases/petstore/.

[17] The Globus Alliance. The Globus Toolkit.
http://www.globus.org/toolkit/.

[18] The Globus Alliance. WS GRAM Documentation.
http://www-unix.globus.org/toolkit/docs/3.2/gram/
ws/index.html.

[19] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and
M. Thompson. Internet X.509 Public Key
Infrastructure (PKI) Proxy Certificate Profile. RFC
3820.

Middleware for Grid Computing 86

