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Abstract

Computer systems are rapidly becoming so complex that maintaining them with
human support staffs will be prohibitively expensive and inefficient. In response, vi-
sionaries have begun proposing that computer systems be imbued with the ability to
configure themselves, diagnose failures, and ultimately repair themselves in response
to these failures. However, despite convincing arguments that such a shift would be
desirable, as of yet there has been little concrete progress made towards this goal. We
view these problems as fundamentally machine learning challenges. Hence, this article
presents a new network simulator designed to study the application of machine learning
methods from a system-wide perspective. We also introduce learning-based methods
for addressing the problems of job routing and CPU scheduling in the networks we
simulate. Our experimental results verify that methods using machine learning out-
perform reasonable heuristic and hand-coded approaches on example networks designed
to capture many of the complexities that exist in real systems.

Keywords: Autonomic Computing, Reinforcement Learning, Q-Learning, Routing,
Scheduling.

1 Introduction

Computer systems are rapidly becoming—indeed some would say have already become—so
complex that maintaining them with human support staffs will be prohibitively expensive
and inefficient. Large enterprise systems, such as those found in medium to large companies,
are prime examples of this phenomenon. Nonetheless, most computer systems today are still
built to rely on static configurations and can be installed, configured, and re-configured only
by human experts.



In response, visionaries have begun proposing that computer systems be imbued with
the ability to configure themselves, diagnose failures, and ultimately repair themselves in
response to these failures. The resulting shift in computational paradigm has been called
by different names, including cognitive systems (Brachman, 2002) and autonomic comput-
ing (Kephart & Chess, 2003), but the underlying motivation and goal is remarkably similar.

Our long-term goal is to enable large-scale integrated computer systems, consisting of tens
to hundreds of machines with varying functionality, to be delivered in a default configuration
and then incrementally tune themselves to the needs of a particular enterprise based on
observed usage patterns. In addition, the systems should be able to adapt to changes in
connectivity due to system failures and/or component upgrades.

We view these goals as fundamentally machine learning challenges. For computer systems
to optimize their own performance without human assistance, they will need to learn from
experience. To continually adjust in response to a dynamic environment, they will need the
adaptability that only machine learning can offer.

Fully automating the maintenance and optimization of a large computer system via
machine learning methods is a staggering challenge. If it is not achievable today, what short-
term goals should we set to maximize the likelihood that it will be achievable tomorrow? One
approach is bottom-up: instead of optimizing an entire system, we can optimize its individual
components. Though the study of autonomic computing is still in its early stages, there has
already been a lot of preliminary progress with the bottom-up approach (see Section 7 for a
thorough survey of related work). For example, many researchers have used machine learning
to optimize network routing (Boyan & Littman, 1994; Di Caro & Dorigo, 1998; Clark et al.,
2003; Itao et al., 2001). In addition, Gomez et al. (2001) used neuroevolution to optimize
dynamic resource allocation on a chip multiprocessor. Chen et al. (2004) used decision trees
to diagnose system failures and Mesnier et al. (2004) used decision trees to classify different
file types and therefore improve disk performance. Furthermore, Brauer and Weiss (1998)
used reinforcement learning methods to optimizing scheduling of tasks on multiple machines.

The bottom-up approach is appealing because optimizing individual components is much
more feasible than optimizing entire systems. Eventually, these components can be assem-
bled into an autonomic system that should perform better than manually configured ones.
However, such an approach fails to address the effects of interactions between various compo-
nents and does not capitalize on opportunities to optimize at a system-wide level. Therefore,
we propose a top-down approach to developing autonomic systems. Our emphasis is on op-
timizing the entire system by developing autonomic components that work well, not just
independently, but in concert with other such components.

Since doing so in a real, full-fledged enterprise system is not currently feasible, we in-
troduce in this article a high-level simulator designed to facilitate the study of machine
learning in enterprise systems. Our simulator captures some of the key complexities that
make system-wide autonomic computing a challenge, while abstracting away the low-level
details that currently make it impractical to create fully autonomic systems on real hardware.

In addition to introducing this new tool, we present machine learning approaches to
optimizing routing and scheduling in the networks represented in the simulator. Our results,
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that adaptive routers and schedulers can do better together than either can individually,
validate the notion of a top-down approach to autonomic computing.

The remainder of this article is organized as follows. Section 2 provides background on our
network simulator and Section 3 details our methods for optimizing routing and scheduling.
Section 4 explains our experimental framework and Section 5 presents the results of those
experiments. Section 6 discusses the implications of these results, Section 7 reviews related
work, and Section 8 highlights some opportunities for future work.

2 Simulation

To pursue our research goals, we need a high-level simulator that is capable of modeling
the relevant types of interactions among the many different components of a computer sys-
tem. While detailed simulators exist for individual system components, such as networks,
databases, etc., to our knowledge there is no simulator that models system-wide interactions.

Therefore, we have designed and implemented a system that simulates the way a computer
network processes user requests from a high-level perspective. The simulator is very general
purpose and can be used to represent many different kinds of networks. For example, Figure 1
depicts a commercial enterprise system in which a set of users use a web interface to check
their mail or query a database.

Web ServerLoad Balancer
Mail Server

Database

Web ServerLoad Balancer
Mail Server

Database

Web ServerLoad Balancer
Mail Server

Database

Web ServerLoad Balancer
Mail Server

Database

User

User

User

User

Figure 1: An example of a network implemented in our simulator; ovals represent users and
rectangles represent machines; the lines between them represent links that allow communication of
jobs or other packets.

The simulator represents a computer network as a graph: nodes represent machines or
users and links represent the communication channels between them. Users create jobs that
travel from machine to machine along links until all of their steps are completed. In Figure 1,
users forward their requests to a Load Balancer which selects a Web Server to handle the
job. The Web Server forwards the job to a Mail Server or Database as appropriate. When
completed, the job is sent back to the user who created it.

The simulator includes the following components:
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Nodes: A node is a component of the network that is connected to other nodes via links.
There are two primary types of nodes: users and machines.

Users: Users are special nodes who create jobs and send them to machines for processing.
Once a job is completed, it is returned to the user, who computes its score.

Machines: A machine is a node that can complete portions of a job. Each type of machine
is defined by the set of steps it knows how to complete. Completing steps uses the
machine’s CPU time so each machine must have an algorithm for allocating CPU time
among the jobs currently in its possession. If a machine cannot complete the next
step of a given job, it must look for a neighboring node that can. If several neighbors
qualify, the machine must make a routing decision, i.e. it must try to determine which
of the contending neighbors to forward the job to so as to optimize performance of
the whole system. An intelligent agent can be used to control a machine and make
decisions about how to allocate CPU time and route jobs.

Links: A link connects two nodes in the network. It is used to transfer jobs and other
packets between nodes.

Packets: A packet is a unit of information that travels between nodes along links. The most
common type of packet is a job, described below, but nodes can create other types of
packets in order to communicate with other nodes about their status.

Jobs: A job is a series of steps that need to be completed in a specified order. For example,
a user who wishes to buy something off a web site might create a “purchase job.” This
job might include steps such as accessing the customer database, confirming credit
card information, and generating an order confirmation. Completing these steps could
require the job to travel among several machines. A system usually has several types
of jobs which differ in the list of steps they require for completion.

Steps: A step is one component of a job. Each step can only be carried out by a subset
of machines in the network. For example, the retrieval of information in response to a
database query must happen at a database server.

In the example shown in Figure 1, Mail Jobs must travel to a Web Server, a Mail Server,
and back to a Web Server before returning to the user. Database Jobs must travel to a Web
Server, a Database, and back to a Web Server before returning to the user. The goal of the
agents controlling the system is to process these user requests as efficiently as possible.

A simulation proceeds for a specified number of discrete timesteps. At each timestep,
machines can allocate their CPU cycles towards the completion of steps on the jobs in their
possession, packets can be sent along links, and packets can arrive at new nodes.

We believe that this simulator provides a valuable testbed for new approaches to auto-
nomic computing. Because its design is very general, it can be used to represent a wide
variety of computer systems with arbitrary topology. Furthermore, it is highly modular
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which makes it easy to insert intelligent agents to control any aspect of the system’s behav-
ior. Most importantly, the simulator captures many of the real world problems associated
with complex computer systems while retaining the simplicity that makes experimental re-
search feasible.

2.1 Load Updates

Each machine periodically (in our case, every five timesteps) sends a special packet called a
Load Update to each of its neighbors. A Load Update indicates how many jobs that machine
already has in its queue. The contents of such an update can help an intelligent router make
better decisions. However, the very presence of the update is also important information: if
a machine does not receive any updates from a given neighbor for a certain period of time
(ten timesteps), it concludes that that neighbor has gone down and will no longer route any
jobs to it until it receives another update. The system has a strong incentive to quickly
detect when machines go down, since any jobs routed to a down machine receive a stiff
penalty. For the purposes of scoring, such jobs are given a completion time of 500 timesteps,
though in fact they are never actually completed. Since Load Updates are communicated
via packets, they incur real network traffic overhead in the simulator. As long as they are
not too frequent, including them as a routine occurrence is not unrealistic.

2.2 Utility Functions

The ultimate goal of our efforts is to improve the network’s utility to its users. In the real
world, that utility is not necessarily straightforward. While it is safe to assume that users
always want their jobs completed as quickly as possible, the value of reducing a job’s com-
pletion time is not always the same. Furthermore, each user may have a different importance
to the system.

In order to capture these complexities, the simulator allows different utility functions for
each user or job type (Walsh et al., 2004). Each utility function can be any monotonically
decreasing function that maps a job’s completion time to its utility. Hence, the goal of the
agents controlling the network is not to minimize average completion time, but to maximize
the cumulative utility over all the jobs it is asked to process.

3 Method

In this section, we present our approach to developing intelligent routers and schedulers for
networks like the ones shown in Figure 1. Achieving good performance in such a network
using fixed algorithms and hand-coded heuristics is very difficult and prone to inflexibility.
Instead, we use reinforcement learning to develop routers and schedulers that are efficient,
robust, and adaptable. The rest of this section explains the details of our approach to these
two problems.
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3.1 Routing

As traditionally posed, the packet routing problem requires a node in a network to decide
to which neighboring node to forward a given packet such that it will reach its destination
most quickly. In the network simulation described above, each machine faces a similar but
not identical problem each time it finishes processing a job. When it is unable to complete
the next step required by the job, it must search among its neighbors for machines that can
complete that step (or that can forward the job to machines that can complete it). If more
than one neighbor qualifies, the machine should make the choice that allows the job to be
completed as quickly as possible.

In both our task and the traditional routing problem, the router tries to minimize the
travel time of a packet given only local information about the network. However, in the
traditional problem the goal is only to get the packet from its source to a specified destination.
In our domain, this goal is not relevant. In fact, since a job returns to its creator when it
is completed, the source and destination are the same. Instead, we want the job to travel
along a path that allows the appropriate machines to complete its various steps in sequence
and return to its creator in minimal time.

In this section, we present four ways of addressing this modified routing problem: a
random method, two reasonable heuristic methods, and Q-routing, a method based on rein-
forcement learning.

3.1.1 Random Router

As its name implies, the random router forwards jobs to a machine selected randomly from
the set of contenders C. A neighboring machine is a contender if it is capable of completing
the job’s next step. If no such machines exist, then C is the set of all neighbors who can
forward the job to a machine that can complete its next step. In the random router, the
probability that a given job will be forwarded to a specific contender c ∈ C is:

Pc =
1

|C|
(1)

where |C| is the size of C. Despite its simplicity, the random router is not without merit.
For example, if all the neighbors have the same speed and do not receive load from anywhere
else, the random router will keep the load on those neighbors evenly balanced. Of course,
it does not address any of the complications that make routing a non-trivial problem and
hence we expect it to perform poorly in real world scenarios.

3.1.2 Speed-Based Router

Without the aid of learning techniques or global information about the network, a router
cannot be expected to perform optimally. However, it can do much better than the random
router by exploiting the available local information, like the speed of its neighbors, to make
routing decisions. Hence, our experiments also test a heuristic in which the likelihood of
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routing to a given neighbor is in direct proportion to that neighbor’s speed. That is, for each
c ∈ C,

Pc =
speed(c)

∑

c′∈C speed(c′))
(2)

Hence, if there are two qualifying neighbors and one is twice as fast as the other, a given
packet will have a 2/3 probability of going to the fast machine and a 1/3 probability of
going to the slower one. This algorithm ignores both the load these neighbors might be
receiving from other machines and the status of any machines the packet might be sent to
later. Hence, it acts as a myopic load balancer.

3.1.3 Load-Based Router

Another heuristic approach to routing is to utilize information about the load on neighboring
nodes, received in Load Updates. In this case, the router always routes to the qualifying
neighbor with the lowest currently estimated load. Hence, for each c ∈ C,

Pc =

{

1, if load(c) ≤ load(c′) for all c′ ∈ C

0, otherwise
(3)

If the capacity of the neighboring machines is a critical factor in the system’s performance,
then load information is likely to be highly useful and the Load-Based Router will perform
very well. However, if the system’s bottleneck is not adjacent to the machine making a
routing decision, then its neighbors will often have no load and this heuristic will perform
identically to the Random Router.

There are many other feasible routing heuristics besides those presented here (e.g. con-
sidering both load and speed when routing). However, all such heuristics must make their
decisions based only on information about immediate neighbors, which may or may not be
a useful guide to efficient routing. By contrast, a machine using Q-routing, presented below,
can learn to route well even when the critical parts of the networks are not adjacent to it.

3.1.4 Q-Router

Despite the distinctive features of our version of the routing problem, techniques developed to
solve the traditional version can, with modification, be applied to the task faced by machines
in our simulation. In this article, we adapt one such technique, called Q-routing (Boyan
& Littman, 1994), to improve the performance of our network. Q-routing is an on-line
learning technique in which reinforcement learning modules are inserted into each node of
the network. Reinforcement learning (Sutton & Barto, 1998) agents attempt to learn effective
control policies by observing the positive and negative rewards they receive from behaving
in different ways in different situations. From this feedback, reinforcement learning agents
learn a value function, which estimates the long-term value of taking a certain action in a
certain state. Once the value function is known, deriving an effective policy is trivial: in
each state the agent simply takes the action that the value function estimates will reap the
greatest long-term reward.
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In Q-routing, the agents do not attempt to maximize a reward function but instead
to minimize a time-to-go function, which estimates how long a given packet will take to
complete if it is routed to a particular neighbor. Each node x maintains a table of estimates
about the time-to-go of different types of packets. Each entry Qx(d, y) is an estimate of how
much additional time a packet will take to travel from x to its ultimate destination d if it is
forwarded to y, a neighbor of x. If x sends a packet to y, it will immediately get back an
estimate t for x’s time-to-go, which is based on the values in y’s Q-table:

t = minz∈ZQy(d, z) (4)

where Z is the set of y’s neighbors. With this information, x can update its estimate of the
time-to-go for packets bound for d that are sent to y. If q is the time the packet spent in
x’s queue and s is the time the packet spent traveling between x and y, then the following
update rule applies:

Qx(d, y) = (1 − α)Qx(d, y) + α(q + s + t) (5)

where α is a learning rate parameter (0.7 in our experiments). In the standard terms of
reinforcement learning (Sutton & Barto, 1998), q + s represents the instantaneous reward
(cost) and t is the estimated value of the next state, y.

By bootstrapping off the values in its neighbors’ Q-tables, this update rule allows each
node to improve its estimate of a packet’s time-to-go without waiting for that packet to reach
its final destination. This approach is based directly on the Q-learning method (Watkins,
1989). Once reasonable Q-values have been learned, packets can be routed efficiently by
simply consulting the appropriate entries in the Q-table and routing to the neighbor with
the lowest estimated time-to-go for packets with the given destination.

State Representation. To make Q-routing more suitable for our unique version of the
routing problem, we must change the state features on which learning is based. Instead of
containing simply the job’s destination, the Q-tables contain three features that indicate in
what general direction the job is headed (and therefore what machine resources it will likely
tax if routed in a particular way):

• the type of the job,

• the type of the next step the job needs completed, and

• the user who created the job.

In addition, we want a fourth state feature that allows the router to consider how much load
is already on the neighbors to which it is considering forwarding a job. We could add a state
feature for every neighbor that represents the current load on that machine. However, this
would dramatically increase the size of the resulting Q-table, especially for large, highly-
connected networks, and could make table-based learning infeasible. Fortunately, almost all
of those state features are irrelevant and can be discarded. Since we are trying to estimate
a job’s time-to-go if it is routed to a given machine, the only information that is relevant
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is the load on that particular machine. Hence, we use an action-dependent feature (Stone
& Veloso, 1999). As the name implies, action-dependent features cause an agent’s state to
change as different actions are considered. In this case, our action-dependent feature always
contains the current load on whatever neighbor we are considering routing to. The load on
all other neighbors is not included and hence the Q-table remains very small.

Update Frequency. The original formulation of Q-routing specifies that each time a node
receives a packet it should reply with a time-to-go estimate for that packet. However, it is
not necessarily optimal to do so every time. In fact, the frequency at which such updates are
sent represents an important trade-off. The more often a reply is sent, the more reliable the
router’s feedback will be and the more rapidly it will train. However, if replies are sent less
often, then more network bandwidth is reserved for actual packets, instead of being clogged
with administrative updates. In our implementation, replies are sent with a 0.5 probability,
which we determined to be reasonable through informal experimentation.

Action Selection. Like other techniques based on reinforcement learning, Q-routing needs
an exploration mechanism to ensure that optimal policies are discovered. If the router always
selects the neighbor with the lowest time-to-go, it may end up with a sub-optimal policy
because only the best neighbor’s estimate will ever get updated. An exploration mechanism
ensures that the router will occasionally select neighbors other than the current best and
hence eventually correct sub-optimalities in its policy. In our implementation, we use ǫ-
greedy exploration (Sutton & Barto, 1998), with ǫ set to 0.05. In ǫ-greedy exploration, the
router will, with probability ǫ, select a neighbor randomly; with probability 1−ǫ it will select
the currently estimated best neighbor.

3.2 Scheduling

The routing techniques discussed above all attempt to distribute load on the system evenly
so as to minimize the time that passes between the creation and completion of a job. Doing
so correctly plays an important role in overall system performance, but it is not the only
factor. Our goal in this article, and the point of introducing a high-level vertical simulator,
is to investigate the possibility of employing autonomic elements at more than one level of
the system. It is with this goal in mind that we attempt to couple the routing mechanisms
already described with schedulers, which must determine how to most efficiently allocate a
given machine’s CPU cycles.

Because our goal is to maximize overall utility, according to the utility functions given for
each user, optimizing routing alone would not be optimal. The routing methods presented in
this paper attempt to minimize the completion time of a given packet. However, completion
time is only indirectly related to the score, which it is our goal to maximize. The score
assigned to any job is determined by a utility function, which can be different for different
types of jobs or users. The only requirement is that the function decrease monotonically
with respect to completion time (i.e. users never prefer their jobs to take longer).
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At first, this monotonicity constraint may seem to make the routing approach sufficient
on its own: if we are minimizing the completion time, we must be maximizing the score.
However, this is true only in the very limited case where all jobs have the same importance.
There are two important ways that jobs can vary in importance.

Firstly, the jobs may be governed by different utility functions. Suppose jobs created by
one user are scored according to the function U(t) = −t while jobs created by another user
scored according to the function U(t) = −100t. In this case, the latter user’s jobs are vastly
more important. Clearly, a network that devotes as much of its capacity towards the former
user’s jobs will be very sub-optimal.

Secondly, utility functions may be non-linear. Even if all jobs are controlled by the same
function, if that function is non-linear then some jobs will matter more than others. Imagine
a utility function that slopes down sharply while t ≤ 50 and then completely flattens out.
Now consider two jobs working their way through the network, one that was created 25
timesteps ago and one that was created 100 timesteps ago. In this scenario, the former job
is much more important than the latter. The job that has been running for 100 timesteps
is a “lost cause”: it is already past the region in which there is hope of improving its score
so spending network resources to speed up its completion would be fruitless. By contrast,
the job that has only run for 25 timesteps is very important: if it is possible to complete the
job in less than 50 timesteps, then every step that can be shaved off its completion time will
result in an improved score.

Hence, when jobs do not all have equal importance, minimizing the completion time of
less important jobs can be dramatically suboptimal because it uses network resources that
would be better reserved for more important jobs. In this sense, the Q-routing technique
explained above has a greedy approach: it attempts to maximize the score of a given job (by
minimizing its completion time) but does not consider how doing so may affect the score of
other jobs.

In principle, this shortcoming could be addressed by revising the values that the Q-
router learns and bases its decisions on. For example, if the Q-values represented global
utility instead of time-to-go, the router would have no incentive to favor the current job and
could eventually learn to route in a way that maximizes global utility, even at the expense of
a particular job’s time-to-go. However, such a system would have the serious disadvantage of
requiring each node to have system-wide information about the consequences of its actions,
whereas the current system is able to learn given only feedback from immediate neighbors.

Another alternative would be to change the router’s action space. Currently, an action
consists of routing a particular job to some neighbor. Instead, each action could represent
a decision about how to route all the jobs currently in the machine’s queue. While such a
system would reduce the router’s myopia, it would create a prohibitively large action space.
Given a queue of length n and a set of m neighbors, there would be mn possible actions.
Since current reinforcement learning methods scale poorly to large action spaces, such a
representation would render our approach intractable.

Given these difficulties, we believe the challenges posed by complicated utility functions
are best addressed, not by further elaborating our routers, but by coupling them with in-
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telligent schedulers. Schedulers determine in what order the jobs sitting at a machine will
be processed. They decide how the machine’s CPU time will be scheduled. By determining
which jobs are in most pressing need of completion and processing them first, intelligent
schedulers can maximize the network’s score even when the utility functions are asymmetric
and non-linear. In the following subsections, we present two simple scheduling heuristics
and introduce a new technique called the insertion scheduler, which utilizes the time-to-go
estimates contained in the router’s Q-table to assess a job’s priority.

3.2.1 FIFO Scheduler

The default scheduling algorithm used in our simulator is the first-in first-out (FIFO) tech-
nique. In this approach, jobs that have been waiting in the machine’s queue the longest
are always processed first. More precisely, the scheduler chooses the next job to process by
selecting randomly from the set Jl of jobs that have been waiting the longest. If time(j) is
the time that job j arrived at the machine and J is the set of waiting jobs, Jl is determined
as follows:

Jl = {j ∈ J | time(j) ≤ time(j′), ∀j′ ∈ J} (6)

Clearly, the FIFO algorithm does nothing to address the complications that arise when jobs
have different importance.

3.2.2 Priority Scheduler

An alternative heuristic that does address these concerns is a priority scheduler, which is
similar to multilevel feedback queues (Tanenbaum, 2001). This algorithm works just like the
FIFO approach except that each job is assigned a priority. When allocating CPU time, the
priority scheduler examines only those jobs with the highest priority and selects randomly
from among the ones that have been waiting the longest. In other words, the priority
scheduler selects jobs randomly from the following set:

Jl = {j ∈ J | time(j) ≤ time(j′) ∧ priority(j) ≥ priority(j′), ∀j′ ∈ J} (7)

If all the utility functions are simply multiples of each other, the priority scheduler can
achieve optimal performance by assigning jobs priorities that correspond to the slope of
their utility functions. However, when the utility functions are truly different or non-linear,
the problem of deciding which jobs deserve higher priority becomes much more complicated
and the simplistic approach of the priority scheduler breaks down.

3.2.3 Insertion Scheduler

To develop a more sophisticated approach, we need to formulate the problem more carefully.
Every time a new job arrives at a machine, the scheduler must choose an ordering of all the n

jobs in the queue and select for processing the job that appears at the head of that ordering.
Of the n! possible orderings, we want the scheduler to select the ordering with the highest
utility, where utility is the sum of the estimated scores of all the jobs in the queue. Hence,
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to develop an intelligent scheduler, we need to decide 1) how to estimate the utility of an
ordering and 2) how to efficiently select the best ordering from among the n! contenders.

The utility of an ordering is the sum of the constituent jobs’ scores and a given job’s
score is a known function of completion time. Thus, the problem of estimating an ordering’s
utility reduces to estimating the completion time of all the jobs in that ordering. A job’s
completion time depends on three factors:

1. How old the job was when it arrived at the current machine,

2. How long the job will wait in this machine’s queue given the considered ordering, and

3. How much additional time the job will take to complete after it leaves this machine.

The first factor is known and the second factor is easily computed given the speed of the
machine and a list of the jobs preceding this one in the ordering. The third factor is not
known but can be estimated using machine learning. In fact, the values we want to know are
exactly the same as those Q-routing learns. Hence, if the scheduler we place in each machine
is coupled with a Q-router, no additional learning is necessary. We can look up the entry in
the Q-table that corresponds to a job of the given type. Note that this estimate improves
over time as the Q-router learns.

Once we can estimate the completion time of any job, we can compute the utility of
any ordering. The only challenge that remains is how to efficiently select a good ordering
from among the n! possibilities. Clearly, enumerating each possibility is not computationally
feasible. If we treat this task as a search problem, we could use any of a number of optimiza-
tion techniques (e.g. hill climbing, simulated annealing, or genetic algorithms). However,
these techniques also require significant computational resources and the performance gains
offered by the orderings they discover are unlikely to justify the CPU time they consume,
since the search needs to be performed each time a new job arrives. Given these constraints,
we propose a simple, fast heuristic called the insertion scheduler. When a new job arrives,
the insertion scheduler does not consider any orderings that are radically different from the
current ordering. Instead, it decides at what position to insert the new job into the cur-
rent ordering such that utility is maximized. Hence, it needs to consider only n orderings.
While this restriction may prevent the insertion scheduler from discovering the optimal or-
dering, it nonetheless allows for intelligent scheduling of jobs, with only linear computational
complexity, that exploits learned estimates of completion time.

3.2.4 Sample Scheduler

The insertion scheduler uses a heuristic to select which n queue orderings to examine. In order
to test the value of this heuristic, we developed another, similar scheduler that randomly
selects which orderings to test. The sample scheduler estimates the utility of each ordering it
examines in exactly the same manner as the insertion scheduler. It also selects the ordering
that produces the highest estimated utility, just like the insertion scheduler. The only
difference is that it selects n orderings from the n! possibilities randomly instead of using
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the heuristic described above. If the insertion scheduler’s heuristic is worthwhile, we should
expect it to outperform the sample scheduler.

4 Experimental Framework

Our experiments test all of the above methods on three different networks, each of which
simulates a commercial enterprise system serving two companies whose employees generate
requests to access mail and database programs. In this section, we detail the features that
all three networks have in common: the job types, the mechanism for job creation, and the
utility functions that are used by each user.

4.1 Job Types

In all three networks, there are two types of jobs that the users create: Mail Jobs and
Database Jobs. Each Mail Job consists of the following three steps:

1. Web Step, work = 50

2. Mail Step, work = 100

3. Web Step, work = 50

The work associated with each step is simply the number of CPU cycles required to
complete the step. As one might expect, only Web Servers can complete Web Steps and
only Mail Servers can complete Mail Steps. Hence, in order to be completed, each Mail Job
must travel along a path that includes the following stops: 1) visit a Web Server, 2) visit a
Mail Server, 3) return to a Web Server, 4) return to the user who created it.

Each Database Job consists of the following three steps:

1. Web Step, work = 50

2. Database Step, work = 200

3. Web Step, work = 50

Since only a Database can complete a Database Step, the path of a Database Job must
include: 1) visit a Web Server, 2) visit a Database, 3) return to a Web Server, 4) return to
the user who created it.

4.2 Job Creation

All three networks use the following mechanism for determining when users create new jobs.
At each timestep, the users create enough jobs to bring the total number of incomplete jobs
up to a threshold, set to 100 in our experiments. Each newly created job has an equal
probability of being created by each user in the system. This simple method of generating
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jobs models features of real user behavior: users tend to reduce their use of networks that
are overloaded and the creation of new jobs depends on the completion of older ones. For
example, a user typing a document on a slow terminal is likely to stop typing momentarily
when the number of keystrokes not reflected on the screen becomes too great. In addition,
this demand model allows us to easily test our methods on a network that is busy but not
overloaded. Any demand model that is not tied to the system’s capacity is likely to either
under or over utilize network resources. In the former case, weak methods may still get
good performance since there is spare capacity (i.e. a ceiling effect). In the latter case, even
good methods will perform badly because the available resources, regardless of how they
are allocated, are insufficient to meet demand. Our demand model, by striking a balance
between these alternatives, allows us to more effectively compare methods of optimizing the
network’s performance.1

4.3 Utility Functions

In order to capture the complexities raised by users of differing importance, we assign dif-
ferent utility functions, shown in Figure 2, to our two users. The utility functions are used
in all three networks. Jobs created by Company #1 are scored according to the following
function:

U(t) =
{

−10t, if t<50

−t/10−495, otherwise (8)

where t is the job’s completion time. By contrast, jobs created by Company #2 are
scored by the function

U(t) =
{

−t/10, if t<50

−10t+495, otherwise (9)

The crucial feature of these metrics is that they do not have constant slope. Hence, the
change in utility that the system reaps for reducing the response time of a job is not con-
stant. As explained above, this feature gives rise to the complications that make intelligent
scheduling non-trivial. The point at which each function changes slope was chosen so as to
lie in the region of the x-axis that corresponds to typical completion times for jobs in our
networks. If the threshold were nowhere near this region, then the utility functions would de
facto have constant slope, yielding a much easier scheduling problem (i.e. one that the prior-
ity scheduler could handle optimally). The utility functions were not tuned to this problem
in any other way. Though our experiments study only this particular pair of metrics, our
algorithms are designed to work with arbitrary functions of completion time, so long as they
are monotonically decreasing.

1This section is corrected from the orginal paper. See the Errata Section for more details.
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Figure 2: Utility Functions for the two companies.

5 Results

In this section we describe experiments conducted on three different networks comparing
the various routing and scheduling methods described above. The first two networks we use
are designed to establish proof-of-concept for our methods. Hence, they are the simplest
networks we could construct that exhibit the complications our methods attempt to address.
The third network is larger and designed to provide some confidence that these methods will
scale up.

Each experiment runs for 20,000 timesteps. Each simulation is preceded by an additional
5,000 “warmup” steps before tallying scores. In the case of Q-routing, a random router is used
during the warmup steps; Q-routing is turned on and begins training only at timestep #0.
The purpose of the warmup is to ensure that the network is at full capacity before learning
begins. Doing so helps distinguish changes in performance due to discovering superior policies
from those due to load building up in an initially empty network. At any point in the
simulation, the score for each method represents a uniform moving average over the scores
received for the last 100 completed jobs. The scores are averaged over 20 runs.

For each network, we present the results of pairing each routing method with a FIFO
scheduler and pairing each scheduling method with a Q-router. For the sake of clarity, we do
not present the other possible pairs though our experiments confirm that those combinations
perform worse than the best methods.

At timestep #10,000 in each experiment, a system catastrophe is simulated in which the
speed of a few critical machines is cut in half. Since our learning methods are designed to
work on-line, we expect them to adapt rapidly to changes in their environment, a feature
tested by these simulated catastrophes. The details of which machines are effected in each
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experiment are explained below.
In all of the results presented below, assertions of statistical significance are based on a

student’s t-test (at 95% confidence) comparing the scores of the two given methods imme-
diately before the catastrophe (at timestep #10,000) and at the end of the experiment (at
timestep #20,000).

5.1 Network #1

Figure 3 depicts the network used in our first experiment. In this network, the Web Servers
are relatively slow. Hence, they act as a bottleneck to system performance. Note that the
machines that must make important routing decisions (the Load Balancers), are neighbors of
the machines that are critical to system performance. Hence, the speed-based and load-based
routers, which rely on information about their neighbors, can perform very well.

Speed = 150
Web Server

Company #1

Company #2

Speed = 100

Speed = 50
Web Server

Web Server

Speed = 200

Speed = 200
Load Balancer

Load Balancer

Speed = 50
Mail Server

Speed = 100
Mail Server

Speed = 150
Mail Server

Speed = 300

Speed = 200

Speed = 100
Database

Database

Database

Figure 3: Network #1, in which the Web Servers act as a bottleneck to system performance. Ovals
represent users and rectangles represent machines; the lines between them represent links that allow
communication of jobs or other packets. The speed associated with each machine represents the
number of CPU cycles it can execute in one turn. The gray box indicates a machine whose speed
is reduced by half during a system catastrophe.

Figure 4a compares the performance of all four routing methods when paired with a
FIFO scheduler and applied to Network #1.

The graph clearly demonstrates that routing randomly is dramatically suboptimal. The
gap in performance between the random router and its competitors is statistically signifi-
cant. The Q-routing method initially performs as poorly as the random router but improves
rapidly. It performs erratically while exploring different policies but quickly plateaus at the
same level as the speed-based and load-based routers. In this network, it is not surprising
that Q-routing does not outperform these heuristics. Since the system’s bottleneck occurs in
machines that neighbor the load balancers, the heuristic methods are able to route efficiently
based on the speed and load information they receive.

At timestep #10,000, a system catastrophe is simulated in which the speed of the fastest
Web Server (indicated by a gray box in Figure 3) is cut in half. Since the Web Servers act
as bottlenecks in this network, the catastrophe causes a drop in performance for all methods
except the random router, which already routes so inefficiently that the catastrophe does
not further narrow its bottleneck.

Figure 4b compares the performance of all four schedulers when paired with the Q-router.
In this case, using the insertion scheduler yields a statistically significant performance boost
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Figure 4: Results from Network #1. In (a), all four routing methods are paired with a FIFO
scheduler. In (b), all four scheduling methods are paired with Q-routing.

over all the other schedulers. This result suggests that even when Q-routing does not itself
improve performance, it is worth doing because the values it learns can be successfully
exploited in scheduling. The sample scheduler, which evaluates as many orderings as the
insertion scheduler, performs significantly worse, which supports our claim that the insertion
scheduler is a useful heuristic.

5.2 Network #2

Figure 5 depicts the network used in our second experiment. It is identical to Network #1
except that the speed of the Web Servers has been significantly increased. As a consequence,
the system’s bottleneck moves from the Web Servers to the Mail Servers and Databases.
Because of this change, the local information that the heuristic routers rely on is no longer
useful. The Load Balancers can see only the Web Servers and their speeds and loads are no
longer critical to system performance.

Figure 6a compares all four routing methods on Network #2. Since performance now
depends on machines that are not directly visible to the Load Balancers, it is not surprising
that Q-routing outperforms the other methods in this network. Due to their increased speed,
the Web Servers never have load accumulated in their queues, which causes the load-based
router to perform just like a random router. The speed-based router actually performs worse
than random because it is misled by the irrelevant speeds of the Web Servers and attempts
a counterproductive load balancing.

In this network, the catastrophe at timestep #10,000 involves cutting in half the speed
of the fastest Mail Server and Database (indicated by gray boxes in Figure 5). Since the
heuristic routers were underloading the faster machines before the catastrophe, the reduction
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Figure 5: Network #2, in which the Mail Servers and Databases act as a bottleneck to system
performance. Ovals represent users and rectangles represent machines; the lines between them
represent links that allow communication of jobs or other packets. The speed associated with each
machine represents the number of CPU cycles it can execute in one turn. Gray boxes indicate
machines whose speed is reduced by half during a system catastrophe.
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Figure 6: Results from Network #2. In (a), all four routing methods are paired with a FIFO
scheduler. In (b), all four scheduling methods are paired with Q-routing.

in speed does not effect them. With fewer resources available, the performance of Q-routing
inevitably degrades, though it is able, through on-line adaptation of its policy, to retain a
small advantage over the other methods.

Figure 6b pairs all four schedulers with the Q-router to evaluated their performance on
Network #2. As above, the insertion scheduler provides a statistically significant boost in
performance over the other methods. The relatively weak scores of the sample scheduler
further confirm the usefulness of the insertion scheduler’s heuristic for selecting orderings to
evaluate.
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5.3 Network #3

Networks #1 and #2 are intended to provide proof-of-concept for the advantages of learning-
based routing and scheduling. To demonstrate that these advantages scale up, we also tested
our various methods on the larger network depicted in Figure 7. In this network, the same
two Load Balancers must choose between nine Web Servers, each of which is connected to
its own Mail Server and Database. As in Network #2, the Web Servers have enough CPU
cycles that the bottleneck to system performance lies in the Mail Servers and Databases. In
order to keep this larger network busy, the users are allowed to have 500 incomplete jobs at
any time (as opposed to the 100 allows in Networks #1 and #2).
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Figure 7: Network #3, in which the Load Balancers must choose between nine Web Servers instead
of three. Ovals represent users and rectangles represent machines; the lines between them represent
links that allow communication of jobs or other packets. The speed associated with each machine
represents the number of CPU cycles it can execute in one turn. Gray boxes indicate machines
whose speed is reduced by half during a system catastrophe.

Figure 8a compares the performance on this larger network of all four routing methods
when paired with a FIFO scheduler. Since the Web Servers all have the same speed in this
network, the speed-based router performs similarly to the random and load-based routers.
As in Network #2, Q-routing achieves by far the best performance, obtaining a statistically
significant improvement over the other methods.

The catastrophe that occurs at timestep #10,000 consists of cutting in half the speed of
the four fastest Mail Servers and Databases (indicated by gray boxes in Figure 7). Though
its performance inevitably degrades, Q-routing recovers gracefully by adjusting its policy
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Figure 8: Results from Network #3. In (a), all four routing methods are paired with a FIFO
scheduler. In (b), all four scheduling methods are paired with Q-routing.

on-line in response to environmental changes.
Figure 8b compares all four schedulers on Network #3 by pairing them with Q-routing.

As before, the insertion scheduler scores the highest, yielding a statistically significant im-
provement over FIFO scheduling, the fixed heuristic of the priority scheduler, and the random
evaluations of the sample scheduler.

6 Discussion

Our experimental results indicate clearly that machine learning methods offer a substan-
tial advantage in optimizing the performance of computer networks. Both the router and
scheduler placed in each machine benefit substantially from the time-to-go estimates discov-
ered through reinforcement learning. Furthermore, the best performance is achieved only by
placing intelligent, adaptive agents at more than one level of the system: the Q-router and
the insertion scheduler perform better together than either could apart. Hence, they benefit
from a sensible division of optimization tasks; the router focuses on routing jobs efficiently
and balancing load throughout the network while the scheduler focuses on prioritizing those
jobs whose effect on the score will be most decisive.

This advantage is especially compelling in systems like Networks #2 and #3 in which
the machines that make important routing decisions (the Load Balancers) are not direct
neighbors of the machines that are most critical to system performance (the Mail Servers
and Databases). In these scenarios, the information necessary to route efficiently is not
directly available and a good policy can be discovered only by learning from experience.
However, even when this is not the case, as in Network #1, and heuristic routing methods
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perform well, learning-based systems can still reap an advantage by exploiting Q-routing’s
time-to-go estimates to improve CPU scheduling. Furthermore, the success of the Q-router
and the insertion scheduler on a larger system (Network #3) is cause for optimism that these
methods will continue to be successful on networks of realistic complexity.

Note that while our simulator models the network overhead that our learning algorithms
generate (in the form of Load Updates and Q-Updates), it does not model the computational
cost of running them. This simplification is probably not significant for routing, since Q-
routing’s update rule requires only a handful of arithmetic operations for each job. However,
scheduling algorithms can be significantly more expensive, which is why we are committed
to finding fast heuristics for addressing this problem. For example, the insertion scheduler
examines only n of the n! possible queue orderings each time it must rearrange its jobs.

Since all of the results we present were obtained in simulation, it remains to be seen how
these methods will perform in real systems. In particular, while our simulator strives to
capture many of the intricacies that make adaptive routing and scheduling a challenge, it
also glosses over many complicating aspects of real systems. For example, in our simulator
the time required to complete a step is a deterministic function of the machine’s speed,
whereas in real systems it depends on the state of the machine’s memory, disks, caches, etc.
In addition, our simulator assumes that jobs never need resources on more than one machine
simultaneously, thus avoiding the need to reason about locks, pin data in caches, etc. These,
and many other, issues will need to be addressed before our methods will be deployable in
real systems. However, we believe that our top-down, system-wide, perspective will play an
essential role in the emerging field of autonomic computing.

7 Related Work

The study of autonomic computing is still in its early stages. Nonetheless, there already
exists a broad body of work that relates, in terms of both methods and goals, to the efforts
described here.

The method with the closest relationship to our approach is of course the original Q-
routing technique (Boyan & Littman, 1994), of which our method is a close adaptation.
A chief limitation of canonical Q-routing is that distinguishes between packets based only
on their ultimate destination, which is insufficient in enterprise systems where jobs always
return to their creator upon completion. In this article, we show that by expanding the
learner’s state representation, the principle behind Q-routing can be successfully applied to
resource management tasks that do not exactly match the routing problem as traditionally
posed.

In addition, there are many other approaches to network routing with the aid of ma-
chine learning (Di Caro & Dorigo, 1998; Clark et al., 2003; Itao et al., 2001). In particular,
AntNet (Di Caro & Dorigo, 1998) uses an ant colony metaphor to create agents that con-
currently explore the network and exchange information about it. Though it could be easily
adapted to manage workloads on enterprise systems, it does not explicitly learn time-to-go
estimates for each type of packet and hence its routing tables could not easily be exploited
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by CPU schedulers, as we have done with Q-routing.
The operating systems literature discusses many techniques for CPU scheduling, includ-

ing multilevel feedback queues (Tanenbaum, 2001), which are similar to the priority sched-
uler discussed here. However, we know of no other work that exploits reinforcement learning
methods to optimize CPU scheduling.

Beyond the scope of routing and scheduling, there is also considerable research devoted to
using machine learning to optimize resource management in complex systems. For example,
Brauer and Weiss (1998) use reinforcement learning methods to optimize scheduling of tasks
on multiple machines. Gomez et al. (2001) use neuroevolution to optimize dynamic resource
allocation on a chip multiprocessor. Abdezaher et al. (2002) present a technique for managing
web servers that considers, as we do, jobs of differing utility, though their method uses
only classical feedback control. Also, Yellin (2003) presents an algorithm for dynamically
selecting among component implementations, though each individual implementation must
still be manually configured. These methods are important contributions to the goal of
optimizing individual parts of complex systems but they do not address our specific focus:
the problems and possibilities of simultaneously optimizing multiple components from a
system-wide perspective.

Whereas our research employs reinforcement learning techniques, other researchers have
used supervised learning methods to address classification problems of interest to autonomic
computing. Chen et al. (2004) use decision trees to diagnose system failures, an important
problem. However, their solution does not address the question of how to deal with a failure
once it is diagnosed, which would require either manual intervention or a reinforcement
learning agent. Mesnier et al. (2004) use decision trees to classify different file types and
therefore improve disk performance. Again, such a system is useful only if we know (or can
get the computer to learn) what kind of disk behavior is best suited to each file type.

Finally, there is also research in autonomic computing that does not address machine
learning at all, but instead redesigns system architectures to create new possibilities for
adaptation. For example, Jann et al. (2003) present an architecture that allows dynamic
movement of hardware resources across logical partitions without rebooting. They do not
address how an intelligent agent might determine when resource reallocation should occur.
Hence their work, while striving for different goals, fits cohesively with our approach: as
they try to create opportunities for adaptability, we try to create agents that can exploit
those opportunities.

8 Future Work

In ongoing research, we plan to investigate new ways of applying machine learning methods
to further automate and optimize networks like the one studied in this article. In particular,
we hope to automate the decision of how frequently machines should send updates to their
neighbors. Both Load Updates and Q-Updates are more useful if they are sent more often;
however, both kinds of updates also tax precious network bandwidth. Rather than finding
the balance between these two factors through manual experimentation, we would like to
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devise a network intelligent enough to determine optimal update frequencies without human
assistance.

In addition, we would like to use machine learning to determine what network topology
gives optimal performance. In the research presented here, network performance is optimized
given a certain configuration; the structure of the network is not within the learner’s control.
We hope to develop a system in which machine learning helps determine the most efficient
structure of the network when it is initially designed, when it needs to be upgraded, or when
it is repaired.

Our on-going research goal is to discover, implement, and test machine learning methods
in support of autonomic computing at all levels of a computer system. Though this initial
work is all in simulation, the true measure of our methods is whether they can impact
performance on real systems. Whenever possible, our design decisions are made with this
fact in mind. Ultimately we plan to implement and test our autonomic computing methods,
such as the Q-router and insertion scheduler, on real computer systems.

9 Conclusion

The three main contributions of this article are:

1. A concrete formulation of the autonomic computing problem in terms on the represen-
tative task of enterprise system optimization.

2. A new vertical simulator designed to abstractly represent all aspects of a computer
system. This simulator is fully implemented and tested. It is used for all of the
experiments presented in this paper.

3. Adaptive approaches to the network routing and scheduling problems in this simulator
that out-perform reasonable benchmark policies.

The simulator that we introduce facilitates the study of autonomic computing methods
from a top-down perspective. Rather than simply optimizing individual components, we
focus on optimizing the interactions between components at a system-wide level. The results
presented here, in addition to demonstrating that machine learning methods can offer a
significant advantage for job routing and scheduling, also validate this top-down approach.
They provide evidence of the value of combining intelligent, adaptive agents at more than one
level of the system. Together these results offer hope that machine learning methods, when
applied repeatedly and in concert, can produce the robust, self-configuring, and self-repairing
systems necessary to meet tomorrow’s computing needs.

Errata

Section 4.2 originally stated that each user creates either 1 or 2 jobs per turn until a maximum
threshold is reached. However, this description was in error. Due to an implementation bug,
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the experiments reported in this paper used a slightly different job creation model. On
each turn, the users create however many jobs is necessary to bring the total number of
incomplete jobs in the network up to the given maximum, which is 100 for Networks #1
and #2 and 500 for Network #3. Each newly created job has an equal probability of being
created by Company #1 or Company #2. For Network #3, this fact is important, as the
job creation model reported in Section 4.2 will not create enough jobs to cause significant
network congestion.
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