
Utility Functions in Autonomic Systems

William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Rajarshi Das
IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532
{wwalsh1, tesauro, kephart, rajarshi}@us.ibm.com

Abstract

Utility functions provide a natural and advantageous
framework for achieving self-optimization in distributedau-
tonomic computing systems. We present a distributed ar-
chitecture, implemented in a realistic prototype data center,
that demonstrates how utility functions can enable a collec-
tion of autonomic elements to continually optimize the use
of computational resources in a dynamic, heterogeneous en-
vironment. Broadly, the architecture is a two-level structure
of independent autonomic elements that supports flexibility,
modularity, and self-management. Individual autonomic el-
ements manage application resource usage to optimize lo-
cal service-level utility functions, and a global Arbiter al-
locates resources among application environments based
on resource-level utility functions obtained from the man-
agers of the applications. We present empirical data that
demonstrate the effectiveness of our utility function scheme
in handling realistic, fluctuating Web-based transactional
workloads running on a Linux cluster.

1 Introduction

Self-optimization is an essential capability of autonomic
computing systems [11]. More precisely, an autonomic
computing system must optimize its own behavior in ac-
cordance with high-level guidance from humans. But what
form should this guidance take, and what mechanisms
should the system employ to translate this guidance into
low-level actions that achieve the desired optimization ob-
jective? The central tenet of this paper is thatutility func-
tionscan provide a general, principled and pragmatic basis
for self-optimization in autonomic computing systems.

Utility functions are well-known in the fields of eco-
nomics [15] and artificial intelligence [20] as a form of pref-
erence specification. In the context of autonomic comput-
ing, utility functions provide the objective function for self-
optimization, mapping each possible state of an entity (an
autonomic system or component) into a real scalar value.

Typically, the state can be described as a vector of attributes,
each of which is either measured directly by or synthesized
from sensor measurements. The value may be expressed in
any suitable unit, with monetary units being the most typ-
ical. The utility function might be specified by a human
administrator, derived from a contract, or derived from an-
other utility function.

Given a utility function, the system or component must
use an appropriate optimization technique in conjunction
with a system model to determine the most valuable fea-
sible state and the means for achieving it. Typically,
these means may include tuning system parameters or re-
allocating resources—both of which are explored in this
paper. Since conditions are constantly changing, the opti-
mization ought to be performed recurrently.

Utility functions have very attractive theoretical proper-
ties, but their use in practical autonomic computing systems
is just beginning to be explored [3, 10]. The major contribu-
tion of this paper is to show how utility functions expressed
in high-level business terms, or service-level attributes, can
be used to dynamically allocate resources in a realistic auto-
nomic computing system. This represents an advance over
the existing literature, which either requires an administra-
tor to ascribe economic value directly to low-level system
resources, or assumes simple standard mappings between
resources and quality of service. Our scheme supports mul-
tiple heterogeneous services by encapsulating their differ-
ences at a local level and providing a uniform means of
communicating resource needs to a resource arbiter. The
form of communication is a resource-level utility function
that is derived locally from the service-level utility function
by optimization algorithms coupled with a model.

The remainder of the paper is organized as follows. In
Section 2, we review related work and distinguish our own
contributions from the existing literature. In Section 3, we
describe how utility functions, embedded in a suitable ar-
chitecture and coupled with appropriate optimization and
modeling technologies, can be used to drive the control and
allocation of resources in a large-scale data center. We also
describe a working prototype autonomic data center that

employs this architecture and set of technologies. Then, in
Section 4, present and discuss some experimental results in
the prototype. Finally, in Section 5, we summarize our find-
ings and discuss future research challenges.

2 Related Work

Some authors [8, 13, 14, 17] have considered policies
for controlling networks and distributed computing systems
that are based on situation-action rules, which specify ex-
actly what to do in certain situations. SuchAction policies
require policy makers to be intimately familiar with low-
level details of system function—a requirement that is in-
compatible with the long-term goal of elevating human ad-
ministrators to a higher level of behavioral specification.

Goal policiesare a higher-level form of behavioral spec-
ification that establish performance objectives, leaving the
system to determine the actions required to achieve those
objectives. Many authors have considered how to al-
locate and control computational resources to guarantee
promised levels of QoS. A common approach to meeting
QoS goals is to restrict requests whose required QoS cannot
be met [25, 27]. Since goals provide only a binary clas-
sification into “desirable” and “undesirable” performance,
some have considered softer measures, such as maximizing
the probability of achieving goals [7, 16, 19] or minimizing
the degree to which goals are not met [4].

Utility functionscan serve as an even higher-level form
of behavioral specification, as they allow one to indicate de-
grees of desirability for different levels of QoS, perhaps dis-
tinguished by different applications or user classes. Utility
functions permit on-the-fly determination of a “best” feasi-
ble state, while goal policies place the system in any state
that happens to be both feasible and acceptable, with no
drive towards further improvement. Utility-based resource
allocation is not a new concept for computing systems. In
1968, Sutherland [22] proposed a futures market in which
users could bid for computer time based on their own utility
functions. More recent work has also focused on utility-
based approaches [5, 10, 18]. In all of these approaches,
utility is specified directly in terms of resources. However,
a truly autonomic computing system should not require ad-
ministrators to ascribe value to low-level resources. Instead,
they should be able to specify utility in terms of the service-
level attributes that matter to them or their customers, such
as end-to-end response time, latency, throughput, etc.

Some market-based approaches [12, 23, 26] allow ap-
plications to specify their utility directly for goods repre-
senting QoS guarantees. The market contains agents that
provide these QoS guarantees and know how to transform
demand for QoS into demand for actual resources, and the
market mechanism determines the resource allocation. This
approach works well in domains where standard mappings

between resources and QoS can be established. However,
in a real data center the service specifications and the map-
pings from resource to QoS can be arbitrarily complex and
application-specific. In the next section, we present an ar-
chitecture and method that can cope with the complexity
that will typify data centers and other autonomic computing
systems.

3 Control and Resource Allocation in a Data
Center

In this section, we illustrate how utility functions may
be used effectively in autonomic systems by means of a
data center scenario. The data center manages numerous re-
sources, including compute servers, database servers, stor-
age devices, etc., and serves many different customers us-
ing multiple large-scale applications. We focus in particular
on the dynamic allocation and management of the compute
servers within the data center, although our general method-
ology applies to multiple, arbitrary resources. In Section3.1
we describe the high-level architecture of the data center
model, and in 3.2 we describe the architecture the Appli-
cation Managers, which manage individual applications. In
Section 3.3 we outline the details of the data center imple-
mentation in a realistic prototype system.

3.1 Data Center Architecture

The data center, illustrated in Figure 1, contains a num-
ber of logically separatedApplication Environments, each
providing a distinct application service using a dedicated,
but dynamically allocated, pool of resources of various
types, such as application servers, databases, or even virtual
resources such as logical partitions.1 An Application En-
vironment also has a router to direct workload to servers.
Each Application Environment has aservice-level utility
functionspecifying the business value of providing a given
level of service to users of the Application Environment.
The utility function may reflect the payment/penalty terms
of service-level agreements with customers, and may also
incorporate additional considerations such as the value of
maintaining the data center’s reputation for providing good
service. We assume the utility function is independent of
that of other Application Environments, and that all utility
functions share a common scale of valuation, such as a com-
mon currency. The utility function for environmenti is of
the formUi(Si ,Di), whereSi is the service level space ini
andDi is the demand space ini. BothSi andDi are vectors
that specify values for multiple user classes.Si is partic-
ular to i, and can contain any viable service metrics (e.g.,

1The inclusion of servers inside the Application Environment is meant
to indicate a logical relationship, not physical proximity.

U1(R) U2(R)

Resource

Arbiter

Application Environment 1

Router ServersServersServers
ServersServersServers

Application
Manager U1(S, D)U1(S, D)

Application Environment 2

Router
ServersServersServersRouter
ServersServersServers
ServersServersServers

Application
Manager U (S, D)U

2
(S, D)

Figure 1. Data center architecture.

response time, throughput, etc.). Although such service-
level specification of utility will often be most useful, we
do not exclude the possibility thatSi could directly measure
resources assigned to the classes ini.

The system goal is to optimize∑i Ui(Si ,Di) on a con-
tinual basis to accommodate fluctuations in demand. To
this end, we present a distributed architecture, shown in
Figure 1, consisting of multiple interacting autonomic el-
ements.Autonomic elements, analogous to software agents,
are the basic self-managing building blocks of autonomic
computing systems. They manage their own behavior and
their relationships with other autonomic elements, through
which they provide or consume computational services
[11]. The global optimization task is distributed among au-
tonomic elements in a two-level structure.

At the lower level, the detailed control and optimization
of a fixed amount of resources within an Application Envi-
ronment is handled by a residentApplication Manager. As
demand shifts, Application Manageri may find it necessary
to adjust certain control parameters or divert resources from
one transaction class to another in order to keepUi(Si ,Di) as
optimal as possible, given a fixed amountRi of resources.
(Here Ri is a vector, each component of which indicates
the amount of a specific type of resource that is allocated
to Application Manageri.) Details of how the Application
Manager optimizesUi(Si ,Di) subject to fixed resource con-
straints are discussed in Section 3.2.

At the higher level, allocation of resources across dif-
ferent Application Environments is performed by a global
Resource Arbiter. The Resource Arbiter is not privy to de-
tails of how the individual Application Managers optimize
their utility, nor is it aware of any details of the services pro-
vided by the individual Application Environments. Instead,
prompted by its own perceived need for more resource, or
by a query from the Resource Arbiter, an Application Man-
ager sends to the Arbiter aresource-level utility function
Û(R) that specifies the value to the Application Environ-

ment of obtaining each possible levelR of resources.2 De-
tails of how the Application Manager computesÛ(R) from
Ui(Si ,Di) are discussed in Section 3.2.

Given the current functionŝUi(Ri) from the Application
Managers, the Resource Arbiter periodically recomputes
the resource allocationR∗ that maximizes the global util-
ity ∑i Ui(Si ,Di) = ∑i Ûi(Ri):

R∗ = argmax
R

∑
i

Ûi(Ri) s.t. ∑
i

Ri = R̄, (1)

whereR̄ indicates the total quantities of resources available.
Eq. (1) is generally an NP-hard discrete resource allocation
problem, and can be solved by a wide variety of standard
optimization algorithms, including mixed-integer program-
ming.

Our architecture is preferable to the more obvious cen-
tralized approach to global system optimization. It natu-
rally supports the coexistence of multiple application en-
vironments that offer heterogeneous and arbitrarily com-
plex services. The essential principle that enables this prop-
erty is that each application environment is responsible for
optimizing its own resource usage and for expressing its
resource needs in a common, comparable form. All of
the internal complexities of individual Application Environ-
ments, including representing and modeling a potentially
infinite variety of services and systems, are compressed by
the Application Manager into a uniform resource-level util-
ity function that relates value to resources, all in common
units. Our approach makes it easy to add, change or re-
move Application Environments—even differenttypesof
Application Environments—because the Resource Arbiter
requires no information about their internal workings. Any
reconfiguration required of other elements (e.g., making the
Arbiter aware of a new Manager’s existence) is handled au-
tomatically by the system, as described in greater detail by
Chess et al. [6]. In contrast, a centralized approach would
require constant updates to the Resource Arbiter.

Our two-level architecture also neatly handles the dif-
ferent time scales that are appropriate to different types of
optimization by treating them independently. Application
Managers adjust control parameters on a time scale of sec-
onds to respond to changes in demand, while the Resource
Arbiter typically operates on a time scale of minutes, which
is more commensurate with switching delays necessitated
by flushing out the current workload, changing connections,
and installing or uninstalling applications.

3.2 Application Manager Architecture

In this section we describe the internal architecture of an
Application Manager and show how it optimizes its utility

2If the resource-level utility function is sufficiently complex or expen-
sive to compute, it is possible to avoid sending the entire function by having
the Arbiter query each Application Manager for a limited setof R [2].

Ui(S,Di) subject to fixed resource constraints and computes
Ûi(Ri) from Ui(Si ,Di). Since we restrict our attention to a
single Application Manager here, we shall dispense with the
i subscripts.

Utility

Calculator

S, D

Application Manager

Data
Aggregator

S, D

Application Environment

Demand
Forecaster

D

D'

Controller

U(R
)

C

S, D

Modeler

Router

ServersServersServers
ServersServersServers

Resource
Arbiter

RtS(C, R, D)S(C, R, D)

(U S, D)

Figure 2. The modules and data flow in an Applica-
tion Manager. Symbols: S= service level/service
model, D = demand, D′ = predicted demand, C =
control parameters, Rt = current resource level,
U = utility function.

Figure 2 illustrates the major components and informa-
tion flows in an Application Manager. The Application
Manager receives a continual stream of measured service
Sand demandD data from the router and servers. TheData
Aggregatoraggregates these raw measurements, e.g. by av-
eraging them over a suitable time window. TheController
continually adjusts the router and server control parameters
C in an effort to optimize the utility in the face of fluctuat-
ing demand. These parameters may specify how workloads
from different customer classes are routed to the servers,
as well as any other tunable parameters on the servers (e.g.
buffer sizes, operating system settings, etc.).

The Application Manager maintains at least three kinds
of knowledge: the service-level utility functionU(S,D), the
current resource levelRt , and a modelS(C,R,D) of system
performance. The model specifies the vector of service lev-
els that is obtained if the control parameters are set toC,
the resources allocated to the Application Environment is
R, and the demand isD. The model yields a vector of ex-
pected service attribute measurements, which could, for ex-
ample, represent one or more performance values for each
customer class.

The Controller is responsible for optimizing the utility
U(S,D) subject to fixed resource constraints. It receives the
aggregated demandD from the Data Aggregator. When this
quantity changes sufficiently, or other specified conditions
occur, the Controller recomputes the control parametersC∗

that optimizeU(S,D) based on the performance model and
current resource level:

C∗ = argmax
C

U(S(C,Rt ,D),D) (2)

and resets the control parameters toC∗.
TheUtility Calculator is responsible for computing the

resource-level utility function̂U(R) from the service-level
utility function U(S,D). Since shifting resources among
different Application Environments may entail substantial
delays, the Application Manager uses aDemand Forecaster
to estimate the average future demandD′ over an appropri-
ate time window (e.g., up until the next reallocation), based
on the historical observed demandD received from the Data
Aggregator. The Demand Forecaster may use time series
analysis methods, supplemented by special knowledge of
the typical usage patterns of the application. The Utility
Calculator computes the optimal resource-level utilityÛ(R)
that could be obtained based on the forecasted demandD′.
In other words, given the performance modelS(C,R,D),
and the service-level utility functionU(S,D), the Utility
Calculator computes

Û(R) = max
C

U(S(C,R,D′),D′) (3)

for all possible resource levelsR. Observe the similarity be-
tween Equations (2) and (3). To computeÛ(R) essentially
requires repeated computation of (2) using each possible re-
source levelR, rather than just the current resource levelRt ,
and with the predicted demandD′, rather than the current
demandD.

With complex applications, it may be difficult for human
developers to determine an accurate performance modela
priori . To address this problem, the Application Manager
can have aModeler module that employs inference and
learning algorithms to create, update, and revise the perfor-
mance model based upon joint observations of(S,C,Rt ,D).

3.3 The Prototype System

With our colleagues at IBM Research [6], we imple-
mented a prototype of our data center in a general software
architecture for autonomic systems called Unity. Unity pro-
vides a variety of autonomic elements written in Java us-
ing the Autonomic Manager ToolSet [1], and provides fa-
cilities for communication among elements so that differ-
ent elements may run on different machines connected to a
LAN or the Internet. The communication is based on stan-
dard OGSA [9] interfaces; other standard Web interfaces

are currently under development. We used Unity to cast the
Resource Arbiter, the Application Managers, and individual
servers as autonomic elements.

Unity also provides other autonomic elements not shown
in Figure 1. These include a Registry, based on the Virtual
Organization Registry [24], which enables elements to reg-
ister and locate each other at run-time, and a Policy Reposi-
tory, which stores the service-level utility functions foreach
Application Manager and provides an interface for modify-
ing utility functions during run-time.

Unity has been implemented on a cluster of identical
IBM eServer xSeries 335 machines running Redhat Enter-
prise Linux Advanced Server. The experimental results pre-
sented in Section 4.1 were generated by running two Ap-
plication Managers and the Resource Arbiter on one ma-
chine; three other dedicated servers were made available as
resources.

4 Examples of Utility-Based Allocation

To demonstrate the efficacy of our utility-function archi-
tectural scheme in a realistic system, we present examples
of how it can be used to allocate and tune resources. First,
in Section 4.1, we demonstrate resource allocation in the
context of a data center prototype in which there are two
Application Environments, each with a single transaction
class. Each Environment has different service-level utility
functions based on completely different metrics. The Appli-
cation Managers respond to locally changing demand, and
even changes in their service-level utility functions, by con-
tinually recomputing their resource-level utility functions,
resulting in optimal dynamic resource allocation from the
Resource Arbiter. Then, in Section 4.2, we illustrate how
we would use utility functions to optimally tune resource
parameters within a single Application Environment with
multiple transaction classes; this approach has yet to be im-
plemented within the prototype.

4.1 Single Transaction Class Per Environment

In this section we show examples of utility-based allo-
cation run on the prototype Unity system with two Appli-
cation Environments, each containing a single transaction
class. Here, sinceS, D andR are all single-valued, we shall
replace them with the scalar notationS, D, andR.

Application EnvironmentA1 handles a transactional
workload that provides a realistic simulation of an elec-
tronic trading platform. This transactional workload runson
top of WebSphere and DB2, both of which are installed on
all the servers in Unity. The service-level utility function for
A1 is defined solely in terms of the average response timeS1

of the customer requests. More precisely, its service-level

utility function U1(S1,D1) = U1(S1) alternates between the
two sigmoid functions shown in Figure 3b.

The customer demand for the transactional workloadD1

is generated by repeated requests for the login web page
at a variable rate. Each time the page is accessed, the ap-
plication retrieves the portfolio information of a randomly
selected customer from its database, and displays the cur-
rent values of the holdings, updated according to simulated
market fluctuations. To provide for a realistic simulation of
periodic and bursty web traffic, we use a time-series model
developed by Squillante et al. [21] to reset the demand gen-
erated by the transactional workload every∼ 5 seconds.

Given the service-level utility functionU1(S1), A1 uses
a simple system performance modelS1(C1,R1,D1) to es-
timate the resource-level utility function̂U1(R1) for each
possible number of serversR1. Here, we hold the con-
trol parameters of the servers constant, allowing us to sim-
plify S1(C1,R1,D1) to S1(R1,D1). (In Section 4.2 we shall
reinstateC1, permitting us to adjust the relative resource
consumption of two different transaction classes.) Prior to
our main experiment, we obtained the performance model
S1(R1,D1) (illustrated in Figure 3a) by measuring the aver-
age response time at each of several values ofD1 for 1, 2,
and 3 servers. Each data point was sampled for 15 minutes,
allowing us to average over several hundred to a few thou-
sand transactions, and all non-sampled points were gener-
ated by linear interpolation. In these experiments, the De-
mand Forecaster simply returns the current demand.

Application EnvironmentA2 handles a long-running
batch workload. The service levelS2 is measured solely in
terms of the number of serversR2 allocated toA2. We took
the utility functionU2(S2,D2) = U2(R2) = Û2(R2) to be the
piecewise linear function ofR2 shown in Figure 3c. Note
that Figure 3c is on a different utility scale than Figure 3b,
reflecting the lower value placed on the batch workload.

Results from a typical experiment with the two Applica-
tion Environments and three servers are shown in Figure 4.
The figure shows seven time-series plots over a period of
575 seconds. From top to bottom, they are: (1) Average de-
mandD1 on A1; (2) Average response timeS1 in A1; (3)
Resource-level utilityÛ1(R1) for R1 = {1,2,3} servers for
A1; (4) Total utility from the two applications (solid plot)
and the utilityU1(S1) obtained fromA1 (dashed plot); (5)
Utility U2(R2) obtained fromA2; (6) Number of serversR1

allocated toA1; and (7) Number of serversR2 allocated to
A2. Notable times are indicated by vertical dashed lines and
labeled by letters at the top.

Initially, we setU1(S1) to be the relatively sharp sigmoid
labeledU1 in Figure 3b, with a transition from maximum
to minimum utility centered around 30ms. The transaction
rateD1 begins low, allowingA1 to obtain a low response
time and utility of nearly 1000 with one server; the other
two servers are allocated toA2. At time a, D1 rises, and the

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150 180

R
es

po
ns

e
T

im
e

(m
ill

is
ec

on
ds

)

Demand (requests per second)

(a) 3 Servers
2 Servers
1 Server

,

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70

U
til

ity

Response Time (milliseconds)

(b) A1

U1 U1’

,

 0

 100

 200

 300

0 1 2 3

U
til

ity

Servers Allocated

(c)
A2

Figure 3. (a) The system model, (b) Service-level utility fu nctions for Application Environment A1, and (c) Utility
function for Application Environment A2.

 0

 1

 2

 3

 0 100 200 300 400 500

S
er

ve
rs

Time (Seconds)

A27

 0

 1

 2

 3

S
er

ve
rs

A16

 0

 100

 200

 300

U
til

ity

A2

5

 0

 500

 1000

U
til

ity

A1

Total

4

 0

 500

 1000

R
es

. U
til

.

A1

3 R=3

R=2R=1

 0

 50

 100

R
es

p.
 T

im
e A12

 0

 50

 100

D
em

an
d

Time

A11

a b c d e f

Figure 4. Times series plots, during a sample Unity
experiment, of 1) D1, 2) S1, 3) Û1(R1) 4) mea-
sured total utility U1+U2 (solid plot) and measured
U1(S1) (dashed plot), 5) U2(S2,D2) = Û2(R2), 6) R1,
and 7) R2.

Manager ofA1 changeŝU1(R1) so that two or more servers
are needed to get a high utility. Upon receiving this utility
information, the Arbiter computes a new optimal allocation,
giving two servers toA1. Just after timec, the demand rises

considerably, and even three servers are not enough to re-
duceS1 enough to giveA1 nonzero utility. Since no amount
of the available servers can helpA1, they are all allocated
to A2. After the demand drops from its peak atd, Û1(R1)
for R1 = 3 jumps to nearly 1000 and all three servers are
transferred back toA1. As demand continues to decrease,
the servers become less valuable toA1, hence the Arbiter
reallocates the extra servers toA2, until timeeat whichA1
has only one server. Note that the spikes in response time
for A1 at timeb and just prior to 300 seconds, which are
too transitory to trigger reallocation, are not caused by an
increase in demand. Investigation reveals that they are due
to Java garbage collection in WebSphere.

At time f, the policy repository interface is used to alter
U1(S1) to the curve labeledU1′ in Figure 3b, which has its
transition centered at 40ms. This is communicated to the
manager ofA1, which determines that it can obtain high
utility with fewer servers. Even at the demand peak after
time f, the Manager ofA1 computesÛ1(R1) to reflect that
three servers are sufficient to giveA1 positive utility.

Our experiments demonstrate that utility functions can
form an effective and consistent basis for self-optimization
in autonomic computing systems. Each Application Envi-
ronment has a different utility function based on completely
different measures. Nevertheless, our system automatically
responds to changes in both demand and utility functions.
Adding or removing Environments would result in simi-
lar autonomic behavior. The key is that most of the de-
tailed knowledge and control complexity is managed by the
individual Application Managers, while system-wide op-
timal behavior emerges from communication of common
resource-level utility functions.

4.2 Multiple Transaction Classes In an Environ-
ment

Introducing multiple transaction classes in an Applica-
tion Environment requires a more complex service-level

0

100

200

300

Gold RT
0

100

200

300

400

500

Silver RT
0

50
100
150

Utility

0

100

200

300

Gold RT

Figure 5. Utility as a function of joint response time
for Gold and Silver transaction classes.

utility function and model, and also provides the opportu-
nity for resource tuning within an Environment. Figure 5
shows an example service-level utility function, specifying
value as a function of the joint response time for Gold and
Silver transaction classes. In this case, we chose a function
that is simply the sum of two independent utility functions
for each class, each a function of the response time for its
respective class only (again, for simplicity, we assume that
the utility functions do not depend on demand).

To optimize U(S,D) for multiple transaction classes,
given current demandD for both transaction classes and
fixed number of homogeneous servers, the Application
Manager can adjust parameters in the router and servers to
control the relative rate at which Gold and Silver transac-
tions are processed (e.g., by decreasing the rate that trans-
actions from one class are admitted relative to the other).
Figure 6 shows a portion of a hypothetical performance
model based on an M/M/1 queue that accounts for this con-
trol tradeoff. For numbers of serversR∈ {5,10,15}, the
associated hyperbolic curve is the boundary ofS(C,R,D),
the feasible region for fixed number of serversR. The fea-
sible regions are to the top and right of the curves. Any
particular valueC for the control parameters gives a point
S, specifying both Gold and Silver response time in the fea-
sible space. BecauseU(S,D) in Figure 5 specifies a pref-
erence for lower response times, the optimal utility for a
fixed R must lie on the hyperbolic curve forR. Inspection
of U(S,D) will confirm that optimal, feasible service levels
are indicated by empty dots on each curve. This optimiza-
tion must be performed for all possibleR to computeÛ(R).

5 Conclusions and Research Challenges

We have argued that utility functions provide a general
and elegant basis for self-optimization in autonomic com-
puting systems, and we have illustrated their practicalityby
means of a realistic data center prototype. Utility functions

0

100

200

300

400

500

0 100 200 300 400 500

S
ilv

e
r

re
s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
)

Gold response time (msec)

15 servers

10
5

Figure 6. Feasible response times for different
numbers of servers.

provide principled criteria for trading off between multi-
ple competing system objectives. Moreover, used in con-
junction with appropriate modeling and optimization algo-
rithms, utility functions provide a basis for translating high-
level business objectives based on service level consider-
ations into lower level dynamic resource allocation deci-
sions. Our distributed two-level architecture supports flexi-
bility, modularity, and self-management in a heterogeneous
system by encapsulating local complexity while still sup-
porting global resource allocation. It does so by having each
local environment express its resource needs to an arbiter in
a uniform, comparable form. Although we demonstrated
the principle in the context of a data center, we believe our
approach will prove to be broadly useful in autonomic com-
puting systems.

There is additional work to be done to allow our sys-
tem to handle more of the complexities of real-world data
centers. We must develop techniques to handle scaling
in multiple dimensions, including: number of transaction
classes, number of Application Environments, quantities of
resource, and number of resource types. Scaling to multiple
transaction classes or complex multi-tier resource configu-
rations will increase the service model complexity. Clearly,
table-based modeling derived from offline measurements
(which we employed in Section 4) will be infeasible, and
alternative modeling techniques will be necessary. Models
based on queuing theory approximations or simulation will
be required in the more complex environments, and further-
more these models will have to be learned and refined on-
line, during the operation of the system. Thus the Modeler
component of an Application Manager will require a fairly
sophisticated learning component.

Another area for further investigation is how to account

for switching costs—the business value lost when resources
are in the process of being reallocated between Applica-
tion Environments. Switching costs are likely to introduce
considerable complexity into the modeling and optimiza-
tion procedures.

Finally, although utility functions are the natural way to
represent value, humans will often find it difficult to express
their utility for various components of a large, complex sys-
tem. Carefully designed interfaces and preference elicita-
tion techniques are needed to represent human notions of
value accurately.

Overall, despite the significant work remaining to be
done, we believe that our architecture is sufficiently gen-
eral to accommodate most of the main innovations required
to handle the above-mentioned complications.

References

[1] W. C. Arnold, D. W. Levine, and E. C. Snible. Autonomic
manager toolkit. http://dwdemos.dfw.ibm.com/
actk/common/wstkdoc/amts, 2003.

[2] C. Boutilier, R. Das, J. O. Kephart, G. Tesauro, and W. E.
Walsh. Cooperative negotiation in autonomic systems using
incremental utility elicitation. InNineteenth Conference on
Uncertainty in Artificial Intelligence, pages 89–97, 2003.

[3] A. Byde, M. Sallé, and C. Bartolini. Market-based resource
allocation for utility data centers. Technical Report HPL-
2003-188, HP Laboratories Bristol, Sept. 2003.

[4] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource al-
location for shared data centers using online measurements.
In International Workshop on Quality of Service, pages 381–
400, 2003.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vahdat.
Managing energy and server resources in hosting centers. In
18th Symposium on Operating Systems Principles, 2001.

[6] D. Chess, A. Segal, I. Whalley, and S. White. Unity: Ex-
periences with a prototype autonomic computing system. In
International Conference on Autonomic Computing, 2004.

[7] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vah-
dat. Model-based resource provisioning in a web service
utility. In Fourth USENIX Symposium on Internet Technolo-
gies and Systems, 2003.

[8] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst. Utilis-
ing the event calculus for policy driven adaptation on mobile
systems. In3rd International Workshop on Policies for Dis-
tributed Systems and Networks, pages 13–24, 2002.

[9] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
physiology of the Grid: An Open Grid Services Ar-
chitecture for distributed systems integration. Tech-
nical report, Open Grid Services Architecture WG,
Global Grid Forum, https://forge.gridforum.
org/projects/ogsa-wg, 2002.

[10] T. Kelly. Utility-directed allocation. InFirst Workshop on
Algorithms and Architectures for Self-Managing Systems,
2003.

[11] J. O. Kephart and D. M. Chess. The vision of autonomic
computing.Computer, 36(1):41–52, 2003.

[12] S. Lalis, C. Nikolaou, D. Papadakis, and M. Marazakis.
Market-driven service allocation in a QoS-capbable environ-
ment. InFirst International Conference on Information and
Computation Economies, 1998.

[13] H. Lutfiyya, G. Molenkamp, M. Katchabaw, and M. Bauer.
Issues in managing soft QoS requirements in distributed sys-
tems using a policy-based framework. In2nd International
Workshop on Policies for Distributed Systems and Networks,
2001.

[14] L. Lymberopoulos, E. Lupu, and M. Sloman. An adap-
tive policy based management framework for differentiated
services networks. In3rd International Workshop on Poli-
cies for Distributed Systems and Networks, pages 147–158,
2002.

[15] A. Mas-Colell, M. D. Whinston, and J. R. Green.Microeco-
nomic Theory. Oxford University Press, 1995.

[16] S. Pampal, D. S. Reeves, and I. Viniotis. Dynamic resource
allocation based on measured QoS. Technical Report TR
96-2, North Carolina State University, 1996.

[17] A. Ponnappan, L. Yang, and R. Pillai.R. A policy based QoS
management system for the IntServ/DiffServ based internet.
In 3rd International Workshop on Policies for Distributed
Systems and Networks, pages 159–168, 2002.

[18] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek.
Practical solutions for QoS-based resource allocation prob-
lems. InIEEE Real-Time Systems Symposium, pages 296–
306, 1998.

[19] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak. Statistical ser-
vice assurances for applications in utility grid environments.
In Tenth International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Sys-
tems, pages 247–256, 2002.

[20] S. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice Hall, second edition, 2003.

[21] M. S. Squillante, D. D. Yao, and L. Zhang. Internet traffic:
Periodicity, tail behavior and performance implications.In
System Performance Evaluation: Methodologies and Appli-
cations, 1999.

[22] I. E. Sutherland. A futures market in computer time.Com-
munications of the ACM, 11(6):449–451, 1968.

[23] P. Thomas, D. Teneketzis, and J. K. MacKie-Mason. A
market-based approach to optimal resource allocation in
integrated-services connection-oriented networks.Opera-
tions Research, 50(4), 2002.

[24] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, and
D. Snelling. Open Grid Services Infrastructure (OGSI)
version 1.0. Technical report, Open Grid Services In-
frastructure WG, Global Grid Forum,https://forge.
gridforum.org/projects/ogsi-wg, 2002.

[25] S. Wang, D. Xuan, R. Bettati, and W. Zhao. Providing ab-
solute differentiated services for real-time applications in
static-priority scheduling networks. InIEEE Infocom, 2001.

[26] H. Yamaki, M. P. Wellman, and T. Ishida. A market-based
approach to allocating QoS for multimedia applications. In
Second International Conference on Multi-Agent Systems,
pages 385–392, 1996.

[27] J. Yoon and R. Bettati. A three-pass establishment protocol
for real-time multiparty communication. Technical Report
97-006, Texas A&M University, 1997.

