
Unity: Experiences with a Prototype Autonomic Computing System

David M. Chess, Alla Segal, Ian Whalley, Steve R. White
IBM Thomas J. Watson Research Center
{chess,segal,inw,srwhite}@us.ibm.com

Abstract

The behavior of a system results from the behaviors
of its components, and from the interactions and
relationships among them. In order to create
computing systems that manage themselves, we will
need to design both the behaviors of the individual
elements, and the relationships that are formed among
them. This paper describes a research project called
Unity, carried out at IBM's Thomas J. Watson
Research Center, in which we explore some of the
behaviors and relationships that will allow complex
computing systems to manage themselves; to be self-
configuring, self-optimizing, self-protecting, and self-
healing. The four principle aspects of Unity that we
will examine are the overall architecture of the system,
the role of utility functions in decision-making within
the system, the way the system uses goal-driven self-
assembly to configure itself, and the design patterns
that enable self-healing within the system.

1. Introduction

The vision of autonomic computing [1] is of a world
in which computing systems manage themselves to a
far greater extent than they do today. It is a world, in
particular, where interacting sets of individual
computing elements regulate and adapt their own
behavior in order to respond to a wide range of
changing conditions with only high-level direction
from humans.

The behavior of a system results from the behaviors
of its components, and from the interactions and
relationships among them. In order to create computing
systems that manage themselves, we will need to design
both the behaviors of the individual components, and
the relationships that are formed among them. This
paper describes a research project called Unity, carried
out at IBM's Thomas J. Watson Research Center, in
which we explore some of the behaviors and

relationships that will allow complex computing
systems to manage themselves; to be self-configuring,
self-optimizing, self-protecting, and self-healing. The
four principle aspects of Unity that we will examine are
the overall architecture of the system, the role of utility
functions in decision-making within the system, the
way the system uses goal-driven self-assembly to
configure itself, and the design patterns that enable
self-healing within the system.

2. The structure of Unity

The essential structure of Unity follows that outlined
in [1] and [2]. The components that make up the Unity
system are implemented as autonomic elements; system
components that manage themselves and deliver
services to humans and to other autonomic elements. In
our approach, every component of a system is an
autonomic element. This includes computing resources
such as a database, a storage system, or a server. It also
includes higher-level elements with some management
authority, such as a workload manager or a provisioner.
And it includes elements that assist other elements in
doing their tasks, such as a policy repository, a sentinel,
a broker, or a registry. In the Unity project we are
particularly interested in the properties that all the
subtypes of autonomic elements have in common.

Each autonomic element is responsible for its own
internal autonomic behavior: for managing the
resources that it controls, and for managing its own
internal operations, including self-configuration, self-
optimization, self-protection, and self-healing. Each
element is also responsible for forming and managing
the relationships that it enters into with other
autonomic elements in order to accomplish its goals:
the external autonomic behavior that enables the
system as a whole to be self-managing.

The autonomic elements in Unity are implemented
as Java™ programs, using the Autonomic Manager
Toolset [3]. They communicate with each other using a
variety of Web Service interfaces, including both

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

standard OGSA [4] interfaces and additional interfaces
that we and other workers have defined for autonomic
elements. An important principle of the system is that
no other means of communication between the
elements is permitted; there are no back doors or
undocumented interfaces between the elements. This
principle allows us to completely specify the
interactions between the elements in terms of the
interfaces that they support, and the behaviors that they
exhibit through these interfaces.

Figure 1. Unity scenario

The IT scenario that the Unity system is currently
set up to address involves resource allocation between
application environments, as illustrated in Figure 1. A
finite pool of resources must be allocated between two
or more applications, where each application provides
some service for which there is a time-varying level of
external demand. The performance of each application
depends on the demand being placed on it, and the
amount of resources allocated to it. Each application is
governed by a Service Level Agreement (SLA), along
the lines described in [5], which describes the rewards
or penalties associated with various possible behaviors
of the system. The overall success of the system
depends on the performance of each application
relative to the governing SLA.

The various autonomic elements in the system must
cooperate in order to optimize the overall system
performance relative to the set of SLAs in effect. They
do this by discovering resources and forming and
maintaining relationships as we will describe, using the
defined Web Service interfaces.

3. The components of Unity

As described above, Unity is structured as a set of
individual autonomic elements. In this section we will
briefly describe each of these elements; later sections
will discuss important features of the elements in more
detail.

Each application environment in Unity is
represented by an application environment manager
element, which is responsible for the management of
the environment, for obtaining the resources that the
environment needs to meet its goals, and for
communicating with other elements on matters relevant
to the management of the environment. One key
responsibility of an application manager is to be able to
predict how an increase or decrease in the resources
allocated to the application environment would impact
the environment’s ability to meet its goals.

In the current Unity implementation, we have
written application environment managers for typical
web service requests directed to a set of servers by a
workload driver or by IBM’s WebSphere Edge Server,
for applications parallelized through IBM’s Topology
Aware Grid Services Scheduler, and for our own test
applications.

The resource arbiter element is responsible for
deciding which resources from the finite pool should be
assigned to which application environment. It does this
by obtaining from each application environment an
estimate of the impact of various possible allocations,
and calculating an optimum (or probable optimum)
allocation, as described in more detail below.

In the current Unity configuration, the resources
being allocated are individual servers. Each server is
represented by a server element, which is responsible
for (among other things) announcing the server’s
address and capabilities in such a way that possible
users of the server can see them.

Each host computer that is capable of supporting
autonomic elements is represented by an OSContainer
element, which accepts requests from other elements to
start up certain services, certain further autonomic
elements. In the current system, a host computer that is
capable both of functioning as an application server
and a host for other autonomic elements is represented
by both a server element and an OSContainer element;
it may eventually turn out to be sensible to merge these
two into one.

The registry element, based on the Virtual
Organization Registry defined in [4], enables each
element to locate the other elements with which it
needs to communicate, as described below. Its function
is analogous to registries in multi-agent systems (see
for instance [6]).

The policy repository element supports interfaces
that allow the human administrators of the system to
enter the high-level policies that guide the operation of
the system. We will describe utility-function based
policies below; other policies control simpler aspects of

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

the system’s operation, such as whether a particular
server is available for use or reserved for testing.

The sentinel element supports interfaces that allow
one element to ask the sentinel to monitor the
functioning of another. If the monitored element is ever
found to be unresponsive, the sentinel notifies the
element that requested the monitoring. The sentinel
takes part in the self-healing cluster pattern described
below.

Finally, the solution manager element represents
the “solution” as a whole (the entire set of application
environments, resources, and so on) to the outside
world, and is responsible for any bootstrapping and
maintenance issues that apply to the entire solution.

3.1 User interface

In addition to the autonomic elements listed above,
Unity also has a user interface that allows an
administrator to observe and direct the system. The
user interface is a web application consisting of a
number of servlets, portlets, and applets, built using
IBM’s Integrated Solutions Console, an interface
framework that is itself built on WebSphere Portal
technology. It communicates with the autonomic
elements in the system through the usual defined
programming interfaces; it has no privileged access to
any component. It would therefore be possible to create
replacement or alternative user interfaces for Unity
without altering any other part of the system.

The Unity user interface allows the user to define
high-level policies and utility functions and enter them
into the policy repository. It polls the registry and the
autonomic elements at regular intervals to obtain
current performance values for each application
environment, and allows the user to examine the
performance of the application environments in the
system and the current state of each autonomic
element.

Rather than a user interface for any single
autonomic element, the Unity UI is a system-wide
management interface; if necessary or desirable, it
would also be possible to construct user interfaces to
specific autonomic elements in the system. One of the
goals of Unity is to explore user-interface design
patterns in autonomic systems and to study, for
instance, the relationship between element-specific user
interfaces and broader system interfaces.

4. Utility functions for resource allocation

When the Unity resource arbiter needs to consider
changing the current allocation of resources, it queries

the known application environment managers. The
content of the query is essentially “There are N units of
resource that could potentially be allocated to you; for
each possible number of units 0 to N, please estimate
how well you would do if allocated that many units of
the resource”.

In order to accurately reply to this query, the
application environment manager must have two
things: it must have a model of itself that allows it to
predict with some accuracy how its behavior and
performance would change if it were given various
counterfactual amounts of resource, and it must be able
to assign a single numerical quantity to the value of that
behavior and performance.

The first of these things, the system model, is not a
current focus of Unity; we use a relatively simple ad
hoc system model most of the time, although we are
beginning to experiment with more sophisticated ones.

The second of these things, the assignment of a
value to a particular behavior and performance of the
application, uses the utility function methodology
described in [7]. Using a general utility function to
compute the value of the application performance
allows us to express a wider range of desired system
behaviors than simpler approaches using fixed goals,
and additionally allows us to choose between multiple
possible system states all of which satisfy the same set
of service level targets or agreements.

For instance, if each of two application
environments is governed by a simple SLA that
specifies a single performance-level goal, then there is
no principled way to choose between resource
allocations that result in both SLAs being met, or both
being violated. In practice, the owner of the system will
often have more detailed preferences. For instance if
the “customer” for one application is an automated
process that will work correctly as long as the minimal
SLA goal is met, whereas the customer for the other
application is a set of humans doing Web transactions,
then if there are two or more possible allocations that
are likely to meet both goals, the owner would prefer
the one that gives the best possible response time to the
human users. This is easy to represent with utility
functions; without them, it would likely require special-
purpose code in the resource arbiter.

The fact that utility functions are essentially
mathematical objects carries additional benefits. When
a high-level system policy is expressed in terms of
actions to take or specific goals to be achieved, it can
be challenging to decompose it into lower-level
policies to be used by the components of the system.
There may be no natural or automatable way to
translate actions or goals at the high level into actions

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

or goals at the next level down. When the higher-level
policy is a utility function, however, it may be possible
to decompose that function mathematically into utility
functions for the lower-level elements which, when
appropriately summed, yield the desired utility function
at the high level.

5. Goal-driven self-assembly

One of the goals of the autonomic computing vision
is self-configuration; autonomic elements should
configure themselves, based on the environment in
which they find themselves and the high-level tasks to
which they have been set, without any detailed human
intervention in the form of configuration files or
installation dialogs.

Within Unity, we are experimenting with a
technique that we call “goal-driven self-assembly”.
Ideally, each autonomic element, when it first begins to
execute, knows only a high-level description of what it
is supposed to be doing (“make yourself available as an
application server”, or “join policy repository cluster
17”), and the contact information (Grid Service
Handle) of the registry. In a commercial-grade version
of the technique, each element would also be provided
with the security credentials needed to prove its
identity to the other elements in the system.

When each element initializes, it contacts the
registry and issues queries to locate existing elements
that are able to supply the services that the new element
requires in order to operate. It contacts the elements
thus located, and enters into relationships as required to
obtain the needed services. Once the element has
entered into all the relationships and obtained all the
resources that it needs to function, it registers itself in
the registry, so that elements that later need the services
that it provides can in turn contact it. This process is
not confined to initialization time; if an element comes
to need a certain service later on in its lifecycle, during
operation or termination, it similarly contacts the
registry to find available suppliers.

One of the key services that elements locate through
the registry is the policy repository. The policy
repository contains, in principle, everything that an
element needs to know beyond the registry address and
its own high-level role. As one of its first actions, a
newly-initialized element locates and contacts a policy
repository, queries it for the policies governing
elements acting in its role, and uses the result of the
query to make decisions about further configuration
and subsequent operation. In the current Unity
implementation, only some of these policies are
actually stored in and retrieved from the policy

repository; we intend to increase that fraction in the
coming year.

Concretely, within Unity, the first elements to start
are the OSContainers and the registry, which are
necessary to the starting of the other elements. A
bootstrap process then starts the resource arbiter, which
(acting in its role as solution manager) decides what
other elements need to be started and contacts
OSContainers (found in the registry) to arrange for
their starting. The policy repository and sentinel
elements register with the registry immediately upon
coming up. The resource arbiter registers with the
registry, locates the existing policy repositories and
sentinels, and hires a sentinel to watch each policy
repository (as described below). Server elements locate
and contact the resource arbiter to announce
themselves as available for use, and application
environment managers contact the arbiter in order to
have servers allocated to them. None of the elements
knows in advance where the others are located, or even
in most cases how many other elements of a given kind
will prove to exist.

5.1 Issues in self-assembly

This relatively simple explanation glosses over
some potentially complex issues of bootstrapping and
circular dependency. Our current system “cheats”, in
that the resource arbiter acts as a solution manager,
contacting OSContainers to bring into being those
other elements required by the system. In a more
thoroughgoing version of self-assembly, which we
hope to achieve in the next year, each element would
be responsible for causing the instantiation of any other
elements that it requires to function, if none are already
available. This would allow for a dynamic and
decentralized bootstrapping, more in concert with the
autonomic vision. Another interesting approach would
be to retain the solution manager function, and define a
language for solution recipes which would tell the
solution manager which elements (or at least which
initial elements) to bring up to start the system
operating.

A smaller-scale bootstrapping issue is that when the
first OSContainer element comes up, there is not yet a
registry running, so it cannot perform the registration
steps described above. In our current design, each
OSContainer consults its information about where the
registry should be, and if that address turns out to be
the address of a registry that the OSContainer could
create, it creates it.

Similarly, no element will be able to contact a
policy repository until both a registry and a policy

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

repository have come up; this means that at a minimum
both the OSContainers and the registry must be able to
function at least temporarily without a policy
repository, and in fact all elements should have a
minimal set of default policies that suffice at least to
get them through the process of waiting for a policy
repository to appear, and correctly reporting the error if
none ever does.

Circular dependencies, and the registry as an
undesirable single point of failure, are described below,
under Future Work.

5.2 Steps toward self-assembly

The phrase “self-assembly” in “goal-driven self-
assembly” is meant to bring to mind the image of a box
of parts, which, when thrown into the air and allowed
to fall, spontaneously organize themselves into a
computer, or a motorcycle, or a toaster, according to
the expressed desires of the thrower. This is a relatively
lofty ambition; in the near term, customers may be
willing to accept, and the commercially viable
technology may support, only a milder form, in which a
human operator still specifies the essentials of the
system’s functions and relationships, and the autonomic
aspects of the system are responsible only for self-
configuration rather than for full self-assembly. But we
consider self-assembly to be the goal, and we anticipate
that eventually both customer acceptance and
technological maturation will get us there.

6. Self-healing for clusters

As we mention above, one of the goals of Unity is to
demonstrate and study self-healing clusters of
autonomic elements. For the first version of Unity, we
have implemented this style of self-healing in a single
element: the policy repository.

The purpose of a self-healing system is to provide
reliability and data integrity in the face of imperfect
underlying software and hardware. In order to provide
this reliability and integrity, we have added
functionality to the policy repository to support joining
an existing cluster of synchronized policy repositories,
and replicating data changes within that cluster.

It is also necessary for the system as a whole to
detect the failure of one of the elements making up a
cluster, and to create a new element in order to replace
the failed one. Care and consideration must be given to
where (that is to say, upon which host machine) this
new element should be create—Unity currently
assumes, for example, that two elements in the same
cluster should not be hosted on the same machine, and

that elements in a cluster should not be instantiated on
machines that have previously hosted failed elements in
that same cluster.

6.1. Policy repository clustering features

In order to support clustering, certain new
operations were added to the policy repository element.
The first of these changes is the most obvious—
whenever a new or modified piece of policy data is
received by one of the policy repositories in the cluster,
it is sent to all the other repositories in that same
cluster. In this way, each policy repository always has a
consistent (to within a few seconds) view of the
policies. It should be noted that the algorithm currently
employed for this process does not have transactional
integrity, and race conditions can lead to
desynchronization in rare conditions; we intend to
address this in the near future, probably either by
applying known algorithms for transactional integrity
and data synchronization, or by backing the policy
repository with a pre-existing product that already
features this type of data replication.

Another feature required for this self-healing pattern
is less immediately apparent—elements in the Unity
system ensure that they are apprised of changes to their
policies by subscribing to those policies in the policy
repository. In the standard OGSI [8] notification
pattern, a single OGSA service (the subscriber)
subscribes to a given Service Data Element on a single
other OGSA service (the publisher)—in our case, the
publisher would be the policy repository. In the event
of that policy repository failing, while its data is still
safe and available from the other policy repositories in
the cluster, the subscriber is left with no subscription,
and will never be notified of subsequent policy
changes. Consequently, a modified subscription system
was created, in which the subscriptions themselves
(including the identity of the subscriber, the class of
data subscribed to, and the member of the cluster
currently responsible for servicing the subscription) are
part of the data replicated between elements of the
cluster. When a member of the cluster fails, all the
subscriptions that it was servicing are still recorded in
the state data of the surviving cluster members, and by
reassigning those subscriptions to a surviving member,
the system can continue providing notifications to the
subscribers.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

6.2. Sentinel features

The sentinel used in Unity is fairly simple, and is
designed explicitly for monitoring OGSA services.
When the sentinel is asked to monitor a target service,
the sentinel will thereafter periodically read some of
the standard (mandatory) Service Data Elements from
that target service in order to determine whether or not
that target service is still functioning. The sentinel
makes this discovered information (whether or not the
target is still available) available to the requesting
service via Service Data. The requesting service is
expected to either subscribe to the Service Data
Element in question, or to read it periodically by some
other means.

6.3. Creating and using the self-healing cluster

When the Unity system is initialized, the resource
arbiter determines how many policy repositories are
required (this determination is nominally made by
consulting the system policy, but due to the obvious
bootstrapping problem this policy is not stored in the
policy repository). The resource arbiter then deploys,
using the techniques described above, the required

number of policy repositories (each on different hosts,
as mentioned above). Each one is supplied with the
address of the registry, and the role that it is to perform
(including the identifier of the cluster that it should
join). As each one initializes, it consults the registry to
locate and contact the already registered members of
the cluster and thereby join the cluster itself, using a
simple serial algorithm that avoids most race
conditions. The resource arbiter also contracts with the
sentinel to monitor these policy repositories, and
subscribes to the sentinel in order to be notified of
changes to the state of the policy repositories.

From this point, whenever one of the policy
repositories receives changes to the set of policies,
those changes are communicated, as discussed above,
to the other policy repositories in the cluster. Similarly,
and also as discussed above, the policy repositories
comprising the cluster exchange information about
which elements are subscribers to the policy data, and
to which policy data those subscribers are subscribed.

Now let us assume that the sentinel determines that
one of the policy repositories in the cluster has failed—
perhaps the software has suffered a failure, perhaps the
network connection has been severed, perhaps the
machine has simply ceased to exist. The resource
arbiter will be notified (via its subscription to the

Figure 2. Part of the Unity user interface, showing the autonomic elements in the system after one member
of the policy-repository cluster has failed and been replaced.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

sentinel) of this failure, and will decide what to do.
First, it will choose one of the still-functioning policy
repositories to take over the subscriptions previous
handled by the failed one, and notify all cluster
members of this reassignment of subscription
ownership. Then, typically, it will determine that it
should replace the failed policy repository—in this
case, it will examine the available hosts, and select one
upon which to deploy a replacement policy repository
(by sending a request to the corresponding
OSContainer). The policy repository is so deployed;
upon initialization it consults the registry to locate the
appropriate cluster, and joins the cluster by the process
described above—this process includes the new policy
repository receiving a copy of the current cluster state
data, including all currently stored policies and
subscriptions.

It will be evident that such clusters are not the final
word on the subject. For example, the data replication
problem is significant; a more complete solution would
likely be assisted by the use of the failover and data
replication features of a database management system.
The method is also most effective in the case of simple
single-element failures; it is not robust against network
partitions or similar problems. However, even
clustering patterns as simple as the one presented here
offer benefits beyond failure recovery.

For example, by appropriate manipulations of the
resource arbiter’s decision-making routines, all the
policy repositories in the cluster can be migrated to
new hardware and/or software using this system. By
introducing the new hardware and software, and then
causing each of the legacy policy repositories to
terminate in turn, new policy repositories will be
created on the new hardware and/or software. This
allows for routine maintenance of the underlying
operating system and hardware with no interruption in
service.

7. Properties of autonomic elements

From our experiences with Unity and our work on
the architecture of autonomic systems, we have
identified a number of properties that autonomic
elements, considered as service providers, must have to
enable system self-management. While we expect that
our understanding of these properties will grow with
further experience, we offer them here as a working
draft.

First, each autonomic element must be self-
managing—it must be responsible for configuring itself
internally, for healing over internal failures where
possible, for optimizing its own behavior, and for

protecting itself from external probing and attack. This
is fundamental to the approach that we use in Unity.

Second, each autonomic element must handle
problems locally, where possible. If one of its input
services fails to satisfy the agreed-upon SLA, it must
solve the problem by requesting resolution from the
input service or by finding another, more suitable
service.

Third, each autonomic element must be capable of
establishing relationships with the other autonomic
elements whose services it uses or who use its service,
and must abide by the relationships it establishes. As
part of this, it must advertise its own service accurately.
Otherwise, components like those we use in Unity will
be unable to form correct service dependencies.

Fourth, an autonomic element must abide by its
policies. It must refuse any proposed relationship that
would violate its existing relationships or policies.

Further details, as well as behaviors that are
recommended but not required, are available in [2].

8. Future work

Many of the features that we have implemented
once, or for a single purpose, in the current Unity
system could be usefully generalized. We currently
support a small number of application environments;
we plan to expand that number, and learn what
extensions to the existing interfaces will be required by
that wider range.

The Unity components currently self-assemble into
only one overall system; we plan to add flexibility to
the system so that the box of parts can come down to
form various different useful wholes, closer to the
ultimate dynamic vision of self-assembly. That ultimate
vision will also require standard languages and
taxonomies for services offered, dependencies, registry
queries, and so on. We would like to evaluate other
potential registry models (such as the UDDI model) for
their suitability to autonomic systems. It would also be
interesting to develop ways to do hypothetical self-
assembly, so that the box of parts could be asked “if I
were to toss you into the air and ask for an automobile,
what would the result be like?”. There are interesting
issues in self-assembly in complex environments that
may involve circular dependencies; avoiding deadlock
during self-configuration will be important.

The self-healing cluster pattern that we currently use
to increase the reliability of the policy repository
should be able to accomplish the same goal for the
other potential single points of failure in the system; the
resource arbiter, for instance, or the registry. It should
be noted that making the registry into a self-healing

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

cluster will require some new invention to avoid the
bootstrapping problems inherent therein.

Utility functions are a powerful and flexible way to
allow systems to manage themselves. We plan to
extend the use of utility functions in Unity from
resource allocation to the rest of the system. The self-
assembly process, for instance, could use utility
functions to decide between various alternate
configurations of the system. For instance, an element
that could potentially form a relationship with multiple
other elements to acquire a needed service could use a
utility function to decide which relationships to actually
form. System properties like the sizes of self-healing
clusters could be derived from higher-level goals (in
terms of estimated reliability, say), rather than specified
directly by policy. Behaviors, such as bringing up each
member of a self-healing cluster on a different host
system, could similarly be derived from higher-level
principles rather than hardcoded into the algorithms.

Because utility functions are so powerful and
general, there are challenges in designing user
interfaces that give human users and administrators
useful information about them and intuitive control
over them. The typical user should probably not be
given the ability to sketch an arbitrary utility curve, or
be expected to determine which of several possible
curve shapes correctly express the value of various
outcomes. Existing work on preference elicitation, such
as [9], could be usefully applied to the problem of
determining the right utility function in an autonomic
system.

Similarly, the space of possible policies and utility
functions is potentially very large, and users may need
the ability to explore, with whatever degree of accuracy
is possible, the likely effects of policy changes before
those changes are actually made. We are working with
other researchers on advanced policy and utility
function tooling that would allow this sort of
exploration.

Finally, we plan to replace some of the ad hoc
algorithms in Unity with more robust methods. The
optimization algorithm that we use in the resource
arbiter, for instance, currently assumes that switching
costs are zero: that moving a resource from one
application to another is free. This assumption is valid
only in some environments; we plan to explore more
powerful algorithms that can deal with non-zero
switching costs. And as noted above, the algorithms
that we use for state synchronization between members
of a self-healing cluster are not robust against various
race conditions, and do not have transactional integrity;
we plan to replace them with algorithms that do.

Unity has been a valuable platform for studying and
validating our ideas about autonomic systems. We
intend to expand its scope to include a wider range of
functions and products, and to illuminate more of the
large and interesting space of self-managing systems.

10. References

Java is a trademark of Sun Microsystems, Inc.

[1] Jeffrey O. Kephart, David M. Chess, “The Vision of
Autonomic Computing”, IEEE Computer 36(1): 41-50
(2003)

[2] Steve R. White, James E. Hanson, Ian Whalley, David M.
Chess, and Jeffrey O. Kephart, “An Architectural Approach
to Autonomic Computing,” submitted to International
Conference on Autonomic Computing (ICAC-04), 2004.

[3] David W. Levine et al., “A Toolkit for Autonomic
Computing”, IBM Developerworks Live, 2003.

[4] J. Nick I. Foster, C. Kesselman and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration,” Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002.

[5] Avraham Leff, James T. Rayfield, Daniel Dias, “Meeting
Service Level Agreements In a Commercial Grid,” IEEE
Internet Computing, July/August, 2003.

[6] E. H. Durfee,D. L. Kiskis, and W.P. Birmingham, "The
Agent Architecture of the University of Michigan Digital
Library", IEE/British Computer Society Proceedings on
Software Engineering (Special Issue on Intelligent Agents)
144(1), February 1997.

[7] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart,
and Rajarshi Das, “Utility Functions in Autonomic Systems,”
submitted to International Conference on Autonomic
Computing (ICAC-04), 2004.

[8] Open Grid Services Infrastructure (OGSI) Version 1 at
http://www-unix.globus.org/toolkit/draft-ggf-ogsi-
gridservice-33_2003-06-27.pdf

[9] V. S. Iyengar, J. Lee, and M. Campbell, “Q-Eval:
Evaluating Multiple Attribute Items Using Queries,”
Proceedings of the ACM Conference on Electronic
Commerce EC'01, October 2001.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

