
Towards Self-Configuring Hardware for Distributed Computer Systems

Jonathan Wildstrom∗, Peter Stone, Emmett Witchel, Raymond J. Mooney, Mike Dahlin
Department of Computer Sciences
The University of Texas at Austin

{jwildstr,pstone,witchel,mooney,dahlin}@cs.utexas.edu

Abstract

High-end servers that can be partitioned into logical
subsystems and repartitioned on the fly are now becoming
available. This development raises the possibility of recon-
figuring distributed systems online to optimize for dynam-
ically changing workloads. This paper presents the initial
steps towards a system that can learn to alter its current
configuration in reaction to the current workload. In partic-
ular, the advantages of shifting CPU and memory resources
online are considered. Investigation on a publically avail-
able multi-machine, multi-process distributed system (the
online transaction processing benchmark TPC-W) indicates
that there is a real performance benefit to reconfiguration
in reaction to workload changes. A learning framework is
presented that does not require any instrumentation of the
middleware, nor any special instrumentation of the operat-
ing system; rather, it learns to identify preferable configura-
tions as well as their quantitative performance effects from
system behavior as reported by standard monitoring tools.
Initial results using the WEKA machine learning package
suggest that automatic adaptive configuration can provide
measurable performance benefits over any fixed configura-
tion.

1. Introduction

Recent advances in hardware devlopment have made
adaptive hardware configuration possible. For example,
processors and/or memory may be dynamically added to
or removed from a running system. This paper establishes
that such adaptive configuration can improve system perfor-
mance when workloads vary.

As an experimental testbed for this research, we con-
structed an implementation of the TPC-W1 benchmark us-

∗currently employed by IBM Systems and Storage Group. Any opin-
ions expressed in this paper may not necessarily be the opinions of IBM.

1TPC-W is a trademark of the Transaction Processing Performance
Council.

ing commonly available hardware and software. TPC-W
provides a well-defined simulation of an online store with
the capability to vary the workload and evaluate the system
under varying demands.

This paper reports on three important steps towards the
eventual goal of constructing a fully adaptive on-line sys-
tem. First, we establish that dynamically reconfiguring
hardware in response to workload changes has thepotential
to improve performance. That is, we show that there exists a
set of hardware configurations and a set of workloads such
that no configuration outperforms the others on all work-
loads and each configuration is best for at least one work-
load. We identify two configurations and five workloads for
which the first configuration outperforms the second by at
least 9% for two workloads and the second outperforms the
first by over 7% for one workload.2

Second, we establish that, using uninstrumented middle-
ware and given only raw, low-level system statistics, it is
possible topredictwhich of the two configurations will out-
perform the other at any given time. In a scenario where the
best constant guess gives about 60% accuracy, the system is
able to identify the best configuration with over 90% accu-
racy.

Third, we extend this prediction capability to make pre-
cise numerical predictions. While knowing the best config-
uration for the current conditions may be useful, it is more
beneficial to predict the quantitative change in performance
when the system is switched to each possible alternative
configuration. With such information, performance gains
can be traded off against inevitable reconfiguration costs. In
our experiments, we are able to predict performance change
with an average error of approximately 15%

The remainder of this paper is organized as follows. The
next section gives an overview of our experimental setup.
Section 3 details our work in establishing the importance
of autonomous reconfiguration. Sections 4 and 5 deal with
our results in learning to predict the best configuration and
the change in performance, respectively. Section 6 contains

2The remaining two workloads have statistically significant, but
smaller, differences.



some discussion of our results and the impact of our work.
Section 7 gives an overview of related work. Section 8 con-
cludes.

2. Experimental setup

Large servers are now available that can be partitioned
into one or more logical subsystems [12, 18, 24]. Each of
these logical systems has memory and processors available
to it, enabling it to operate as if it were an independent
physical machine. By allowing each logical subsystem to
run its own instance of the operating system, they are pre-
vented from interfering with each other through resource
contention.

Furthermore, these servers can be flexibly configured to
allocate different amounts of memory and processing re-
sources to the logical subsystems.

However, this newfound flexibility brings with it new
challenges. An allocation of resources to the subsystems
that maximizes performance for one set of workloads may
be suboptimal for other workloads. As a result, real-time
reconfiguration may be needed to maximize performance
under a variable workload.

Because reconfigurable hardware is not (yet) easily
available, the research reported in this paper simulates re-
configuration of logical subsystems on multiple desktop
computers. The remainder of this section details the testbed
setup. An overview of the TPC-W benchmark can be found
in section 2.1. The software products used are given in
section 2.2. Finally, the hardware and simulation of sub-
processor partitioning are explained in section 2.3.

2.1. TPC-W

The TPC-W Benchmark [23, 26] is a standardized
benchmark put out by the Transaction Processing Perfor-
mance Council. It is designed to determine the relative per-
formance of a System Under Test (SUT) when used to run
an online bookstore. The benchmark operates by having an
external machine or set of machines, the Remote Browser
Emulators (RBEs), run a set of Emulated Browsers (EBs).
These browsers represent individual customers of an online
bookstore. The customers may browse through the store,
view products, perform searches, and sometimes place or-
ders.

The relative probabilities of the customers’ actions are
defined by the TPC-W specification. There are three work-
loads, calledmixes, defined:

1. Theshoppingmix, which represents normal operation
of the system, with 80% of the accesses being users
browsing the available catalog, and 20% of the ac-
cesses are orders being placed;

2. Thebrowsingmix, representing a slow commerce pe-
riod, in which 95% of the users are browsing, and only
5% are ordering; and

3. Theorderingmix, representing a rush on the latest hot
book, in which browsing and ordering users are evenly
split.

The differences between these mixes is summarized in Ta-
ble 1. There are a total of 14 web pages that can be re-
trieved. These pages are divided into six browsing pages
(Home, New products, Best sellers, Product detail, Search
request, Search results) and eight ordering pages (Shopping
cart, Customer registration, Buy request, Buy confirm, Or-
der inquiry, Order display, Admin request, Admin confirm).
The probability of a customer moving from a given page to
any other page is well defined by the specification, and each
page has its own expected response time.

Mix
Browsing Shopping Ordering

Browsing pages 95% 80 50
Ordering pages 5% 20 50

Table 1. Expected percentages of different
pages for the TPC-W mixes. The numbers
in this table are specified by Garcia [15].

Pages are generated dynamically in response to user
queries, and some pages require significantly more process-
ing than others. For example, because the admin pages up-
date the prices and stock in a highly-used database, they
consume more resources than simply pulling up the home
page. In order to give a single numeric result, results are
normally measured in Web Interactions per Second (WIPS).
WIPS are the average number of page requests that return in
a second (equivalent to the total number of pages retrieved
divided by the total time in seconds).

A commercially built, tested, and published system of-
ten has one main database server and many independant
web servers. Additionally, they often have distinct web
cache servers, image servers, and load balancers. For exam-
ple, the current WIPS record holder [25] reported 21,139.7
WIPS using 27 2-processor web servers, 21 2-processor im-
age servers (one of which is also a load balancer), 13 web
caches (11 2-processor, 2 1-processor), and 1 8-processor
database server. For simplicity, this work considers the situ-
ation where there is one database server (back-end) and one
web server (front-end), as illustrated in Figure 1. Our sys-
tem produces WIPS numbers that, though 3 orders of mag-
nitude less than such a commercial system (due largely to
the corresponding difference in processing power and mem-
ory), are not out of the ordinary for experimental systems.



Server

Front−end

Database
Server

Back−end

Image

EB

EB

EB

RBE

Application
Server

Figure 1. The 3 machines used in the physical setup. The thick, dashed rectangles represent physical
machines. The dotted rectangles are processes, and the innermost rounded rectangles are logical
units. Network connections are shown as lines and come together at the point where they are
managed; i.e., Tomcat handles routing of connections to the application and image servers, while
the physical machine coalesces the individual EBs’ network connections.

2.2. Software

A TPC-W implementation requires three software mod-
ules to support the SUT and drive the benchmark: a
database server, an application server, and an image server.
The implementation in this research uses PostGreSQL 7.4.6
as the database server. The front-end uses Apache Jakarta
Tomcat 5.5.4 as a combined application server and image
server. The Java code run by the application server to gen-
erate the web pages (and interface with the database) is de-
rived from the code freely available from the University of
Wisconsin PHARM project [6]. This code implements both
the servlets and a Java RBE, which is used to run the bench-
mark. Slight modifications were necessary to work with
Tomcat and PostGreSQL [22]; additionally, the RBE was
modified to retry any inabilities to connect to the front-end,
rather than treating them as fatal errors.

2.3. Hardware

The physical setup of the system uses 3 identical Dell
Precision 360n machines. Each machine has a 2.8 GHz
procesor and 2 GB RAM. The machines are networked us-
ing built-in gigabit ethernet interfaces and a gigabit ethernet
switch. As illustrated in Figure 1, one machine acts as the
back-end database machine, one machine is the front-end
web server, and one machine drives the benchmark by host-
ing the RBE.

Though these computers are physically distinct in prac-

tice, they are meant to represent logical partitions of a single
reconfigurable computer with a total of 2.8 GHz process-
ing power and 2 GB RAM. To simulate partitioning of one
such machine into a front-end and back-end machine, mem-
ory and CPU power are artificially constrained on each ma-
chine so that, overall, one full 2.8 GHz processor and 2GB
of RAM are available for use by the front-end and back-end
combined.

For example, when the front-end is allowed to use 1.8
GHz, the back-end has 1.0 GHz available. The processors
are constrained through the use of a highly favored process
that spins in a busy loop for a short, fixed period of time. By
actively spinning for a given percentage of the time, only the
remaining idle processor time can be used for benchmark-
related work. For exmple, if the processor is actively spin-
ning for 75% of the available cycles, this simulates a 0.7
GHz machine. In order to avoid overly bursty performance,
the process yields the processor at least once every 160 ms.

Similarly, memory is constrained by using the Linux
mlock()subroutine to pin a certain percentage of memory.
A separate process is run that allocates and pins a configu-
ratble amount of memory. When this process is told to pin
1.5 GB of memory, this simulates a machine with only 0.5
GB of memory available for use.

By using both of these constraining processes simulta-
neously, simulation of any desired hardware configuration
is possible. Additionally, the processes are designed to be
reconfigurable on the fly, so we can simulate reconfiguring
the system to give more memory to one machine by first



constraining the other to the new requirement, and then un-
constraining the newly available memory on the target ma-
chine. In this way, we never use more than a total of 2 GB
memory. CPU reconfiguration is done similarly.

3. Adaptive configuration matters

At first appearance, it is not clear that adaptive configu-
ration is necessary to maximize the throughput of a TPC-W
system: it is possible that the best configuration is indepen-
dent of workload. In order to verify that the best configu-
ration is a function of workload, we identify two workloads
and two configurations such that when running workloadx,
configurationA gives better results, but when running work-
loady, configurationB gives better results. This property is
illustrated abstractly in Figure 2.

One way to achieve the dynamic resource allocation for
workloads and configurations with the relationship shown
in Figure 2 is to run both the web server and database in
the same virtual machine and let the operating system man-
age the processor and memory. Such a system is unlikely to
outperform our split system unless great care is taken with
the CPU and memory allocation priorities of the database
and web server processes. Commercial systems isolate their
database on a single machine because database performance
is sensitive to resource availability. When the OS takes re-
sources from the database, it usually harms its performance,
because it does not have sufficient information to choose
just exactly the resources that will not harm performance.
We plan to run an experiment to verify this effect as part of
future work.

ConfigurationA ConfigurationB
workloadx q > r
workloady s < t

Figure 2. q, r, s, and t are the WIPS results for
the given configuration and workload. Notice
that configuration A is better for workload x,
while configuration B is better for workload y

For all workloads in TPC-W, the database does more
processing than the web server. Our initial experiments
showed that the configurations which maximized through-
put dedicated much of the CPU to the database back-end
machine. Detailed experimentation on the shopping mix in-
dicated that with about78 of the CPU (about 2.5 GHz) on the
back-end, and the remaining18 on the front-end, the system
is roughly in balance.

After high-level analysis of 15 workloads run on 15 con-
figurations with roughly78 of the CPU on the back-end and
various splits of memory, 5 likely workloads and 2 config-

urations were identified for further investigation.3 The first
configuration had2732 of the CPU and3

8 of the memory on
the back-end (referred to as “27

32 CPU, 3
8 Mem”) and maxi-

mized the throughput of the workload with 200 EBs running
the ordering mix, as well as workloads of 250 and 300 EBs
running the shopping mix. The second configuration had30

32
of the CPU and58 of the memory on the back-end (referred
to as “3032 CPU, 5

8 Mem”), and led to higher performance for
workloads of 350 and 400 EBs running the browsing mix.

In order to establish conclusively that configuration mat-
ters in this case, each configuration and workload was tested
independently 53 times. To eliminate any interference be-
tween tests, the database and servlet engine were started
before and shut down after each test, and the database
files were copied over from originals. This eliminated any
growth in the databases or servlet persistence issues from
having an impact on the results.

Analysis of these data confirmed that there were signif-
icant differences between the configurations (see Table 2).
A Student’s t-test was used to analyze the results, show-
ing that all differences between means are very statistically
significant. The probability that the differences were due to
random chance was less than10−10 in all cases. Particularly
of note are the large differences in the workloads with 250
and 300 EBs running the shopping mix (both over 1.25), as
well as the difference in the workload with 400 EBs run-
ning the browsing mix (over 0.80). These large differences
conclusively confirm that neither considered configuration
is optimal in all situations. This result establishes the need
for adaptive system configuration in order to take advantage
of the optimal allocation of resources for the current work-
load.

4. Learning the best configuration

The results reported in Section 3 suggest that the sys-
tem can improve its performance if it is able to adapt its
configuration as the workload changes. However, in prac-
tice, the workload is not an observable quantity to the sys-
tem. This section presents results indicating that the opti-
mal configuration can be determined fromlow-level oper-
ating system statisticswith no customized instrumentation.
The lack of instrumentation allows this approach to work
for any TPC-W implementation, regardless of the particular
software used to implement the database, web server, etc.

In addition to collecting WIPS results during experi-
ments, the individual front-end and back-end machines also
collect low-level system statistics. These statistics are col-
lected in parallel on both machines through thevmstatcom-

3We were not able to run all 225 pairings sufficiently many times to
establish statistically significant results, as each complete run took about
100 hours. The high-level analysis was done on data from 1 complete run
and approximately 5 partial runs.



Workload
configuration 200 ordering 250 shopping 300 shopping 350 browsing 400 browsing

27
32 CPU, 3

8 Mem 19.61(0.39) 16.30(0.22) 16.46(0.26) 12.73(0.27) 12.22(0.51)
30
32 CPU, 5

8 Mem 18.79(0.35) 14.96(0.12) 14.86(0.21) 13.10(0.22) 13.10(0.25)

Table 2. Mean WIPS for chosen configurations over a variety of workloads. The better configuration
is in bold. All tests involved 53 runs; standard deviations are in parentheses.

processes (number) runnable blocked
memory (KB) VM used idle

inactive active
swapping (KB/s) swapped in swapped out

I/O (blocks/s) received sent
System (per second) interrupts context switches

CPU (%) user system
idle waiting

Table 3. Statistics reported by vmstat

mand, a commonly available system activity reporting util-
ity (see Table 3). In order to determine the currently opti-
mal configuration, we aim to create a model mapping cur-
rent system state, as represented byvmstat, to the optimal
configuration. Using the experiments reported in Table 2
as training data, standard machine learning methods can be
used to learn such a model.

The WEKA [29] package implements many machine
learning algorithms for exactly this purpose. In order to
obtain human-understandable output, the JRip [11] rule
learner was applied to the training data. As a baseline for
analyzing the learned rules, accuracy can be compared to
the model that always predicts the most likely outcome, in
this case the2732 CPU, 3

8 Mem configuration (optimal for 3
of the 5 workloads in Table 2). The accuracy of this base-
line learner is 61.9%.4 By comparison, JRip learned the
rules shown in Figure 3, yielding a prediction accuracy of
93.0%. The evaluation of JRip’s rules was performed using
stratified 10-fold cross validation, in which results are av-
eraged over 10 separate trials where the learning algorithm
is training on 90% of the data and tested on the remaining
10% held out as independent test cases.

As desired, the rules learned by JRip are human-
interpretable. The first 4 rules indicate cases in which the
30
32 CPU, 5

8 Mem case is the preferred configuration, while
the last rule classifies all remaining cases as being in the27

32
CPU, 3

8 Mem case. These four rules can be divided into two
sets: the first two rules help identify situations where the

4This baseline accuracy ought to be exactly 60% if all occurrences of
each workload conformed exactly to the expected optimal configuration.
Due to occasional outliers in the WIPS reported for a given configuration
and workload, there were a few situations where the expected outcome was
reversed.

front-end system has excess CPU available that the back-
end could use, while the second two rules determine that
the back end is over-utilized.

Of the first two rules, the first rule indicates a situation
where the front system appears to be being underutilized.
WEKA finds thresholds for the number of system interrupts
taken by the front-end and how many blocks it is sending to
assorted block devices (most likely the network sockets). If
the front end falls under both thresholds, the back-end is the
bottleneck. The second rule chooses a different method for
determining if the front end is under-loaded; in this case it
is the number of context switches per second. However, it
also uses a threshold on the back-end machine to determine
that there are more processes runnable than can be handled
with the current configuration and that the additional CPU
would be helpful.

The third rule indicates that the back end is receiving
blocks (both from the network and the disk) at a fast enough
rate that it would benefit from more CPU and memory. Fi-
nally, the fourth rule indicates that the CPU is spending
very little time handling kernel-level work. This rule is a
little odd. However, WEKA is likely determining that the
back-end does not have enough CPU to handle the neces-
sary system-space work, and is trying to handle too many
things in user-space code simultaneously.

Notice that the above rules yield accurate prediction
based entirely on low-level system data that is readily avail-
able independent of the system’s software components.
This feature of our approach allows it to generalize to a wide
variety of scenarios, including to different implementations
of TPC-W, and potentially to more varied distributed com-
puter system scenarios.

Cross-validation as implemented by WEKA takes care
to test prediction power on independent hold-out sets. How-
ever, it does not take care to keep data from the same work-
load out of the training and test sets. We plan future exper-
iments to test the generalization power to completely new
workloads.

5. Learning the benefit of switching configura-
tions

While it is useful to predict the best configuration,
even more useful is an ability to predict the actual benefit



1. If (Number of front-end system interrupts≤ 1392.8)
and (Number of blocks sent by the front-end to devices≤ 201.2)
then Best configuration=3032 CPU, 5

8 Mem

2. If (Number of front-end context switches≤ 422.0)
and (Number of runnable processes on the back-end≥ 18.4)
then Best configuration=3032 CPU, 5

8 Mem

3. If (Number of blocks received by the front-end from devices≥ 499.5)
then Best configuration=3032 CPU, 5

8 Mem

4. If (Percentage of CPU time spent by the back-end in the kernel≤ 12.4%)
then Best configuration=3032 CPU, 5

8 Mem

5. elseBest configuration=2732 CPU, 3
8 Mem

Figure 3. JRip rules learned by WEKA.

of switching configurations in terms of increased (or de-
creased) WIPS. This ability is important as there will al-
ways be some cost involved in switching configurations.
This cost needs to be taken into account when considering
a configuration change.

For example, consider moving a CPU from one logical
machine to another. Even when this move can be done with-
out impacting the actual current work, the CPU will still be
unavailable for a period of time. A similar problem applies
to moving memory between machines. In a worst-case sce-
nario, the machine may be temporarily unavailable while
the system reallocates the hardware.

The WEKA package includes an algorithm for M5P
model trees [28], which are able to learn function approxi-
mations. This algorithm was used to predict the changes in
WIPS when changing configuration. As before, the learner
only had access to the averaged raw system-level data from
both systems and the current configuration. The change in
WIPS was defined to be 0 for a change to the current con-
figuration. Accuracy of the M5P trees was compared to a
baseline learner that always predicted a constant change in
WIPS equal to the overall average.

The complete M5P trees are too complex to display.
However, the relative errors of the two methods can be seen
in Table 4. The mean absolute error is the average of the
absolute values of the prediction errors, and the root mean
squared error is the square root of the average of the squares
of the prediction errors. These results were determined us-
ing 10-fold cross validation, as before.

There is a sizeable improvement over the baseline
learner; this indicates that the change in WIPS is a learn-
able function, without the need for internal instrumentation
in the middleware. Although the differences that we are try-
ing to predict are fairly small (around 1 WIPS), the accuracy

given by the M5P trees is not only good enough that it can
be used to predict if a configuration switch would help, but
is even smaller than most of the standard deviations asso-
ciated with the training data, implying that the error in the
WIPS prediction could easily be masked by normal noise.

Target Learner Mean abs. Root mean sq.

27
32 CPU, 3

8 Mem
Baseline 0.61 0.78

M5P 0.18 0.37

30
32 CPU, 5

8 Mem
Baseline 0.61 0.78

M5P 0.18 0.49

Table 4. Error results of predicting the change
in WIPS from one configuration to another.

6. Discussion

This work is a step toward building a self-configuring
system. As indicated earlier, it is possible to use the CPU
and memory constraining processes to simulate moving re-
sources from one machine to the other. While an imple-
mentation of this approach on real configurable hardware
is still part of our future work, it is possible to analyze its
potential impact. For example, consider a workload that al-
ternated evenly between 300 EBs running the shopping mix
and 400 EBs running the browsing mix. The data in table
2 indicates that the2732 CPU, 3

8 Mem system would have an
approximate throughput of 14.34 WIPS, while the30

32 CPU,
5
8 Mem system would have an approximate throughput of
13.98 WIPS. By comparison, a system running adaptively,
using the JRip learner, would have a throughput of 14.69
WIPS, if switching time is negligible. This computation



assumes that 93.0% of the time, the winning WIPS value
is attained, and 7.0% of the time, the losing WIPS value
is attained. These numbers represent a 2.4% performance
gain over the27

32 CPU, 3
8 Mem system and a 5.1% gain over

the 30
32 CPU, 5

8 Mem system. As the disparities between the
configurations grow (if the differences were 5 WIPS instead
of 1), this gain will also grow.

This work makes two main contributions. First, it
demonstrates that there is a need for self-configuring sys-
tems. While some systems may have a clear optimal divi-
sion of resources to maximize the throughput of the system,
there are certain situations where this division is workload-
dependent. Because of this reliance on the workload, the
learners we have outlined here appear to have a real use in
distributed systems.

Second, having learners able to predict the change in
WIPS is a critical step toward a fully functional self-
configuring system able to maximize performance on the
TPC-W benchmark. Because the cost involved in changing
configurations may vary, this prediction allows a threshold
to be set that would control when enough benefit would re-
sult from a configuration change to overcome the temporary
cost of moving resources around.

A key feature of this work is that no instrumentation of
any code is necessary. All learning was done based upon
easily-available raw system statistics. Because no middle-
ware instrumentation is necessary, it is possible to change
any or all parts of the system, including the front-end and
back-end software, the TPC-W implementation, or even the
operating system or physical hardware. While retraining
would be necessary, no additional code modifications would
be needed. Finally, the entire system could be replaced with
another benchmark, such as Sun’s PetStore [21] web-based
store simulation.

In contrast, most other adaptive systems appear to need
instrumentation built into the applications and operating
system; adaptive systems that work without any instrumen-
tation seem to be rare. One other example of a system that
works without instrumentation is Aguilera et al. [3], who
investigated locating paths through a large distributed sys-
tem by examining only the RPC headers of network packets.
These paths could then be analyzed to identify high latency
nodes.

As noted earlier, the differences between the results
of the winning and losing configurations are fairly small
(about 1 WIPS). Two design decisions made in the orig-
inal PHARM code hamper its ability to get high perfor-
mance out of a system and lead to these small disparities
in the current implementation. First, the specification for
the TPC-W benchmark defines a maximum length of time
to keep certain pages cached. This bound is designed to
force periodic updates of common pages, such as the “Best
sellers” page. In order to avoid handling this scenario, the

code always searches the database, rather than returning a
previously generated copy. These searches place an undue
amount of workload on the database, particularly for the
browsing and shopping mixes.

The second important design decision involves the code
that handles the processing of an order. The code, as writ-
ten, does not allow for the database to assign a unique iden-
tifier to each new record and implements its own unique
identifier algorithm. It therefore serializes all code that
writes to the database using the Javasynchronizedkeyword.
This serialization prevents the database from being prop-
erly loaded (or overloaded) when running the ordering mix.
These two properties of PHARM contributed to the diffi-
culty of locating the breaking point for the CPU. They also
make some results counterintuitive.

For example, the ordering mix is designed to be far more
back-end intensive than the the browsing mix. However,
because the browsing mix constantly accesses the database
in parallel to retrieve records, while the front-end serializes
many ordering accesses to the database in the ordering mix,
the back-end is stressed much more in the browsing mixes.
This property explains why the3032 CPU, 5

8 Mem config-
uration wins on the two browsing workloads, when intu-
ition says that that is where it should lose. Modifying the
PHARM code to eliminate these two problems is an area of
future work.

7. Related Work

The concept of adaptive performance tuning has only
recently become conceivable, so few papers address it di-
rectly. This section reviews the most related work to that
reported here.

Diao et al. [13] analyze how to set certain parameters
of the Apache web server in order to keep CPU and mem-
ory usage near a pre-set parameter. The authors make the
assumption that there is an optimal setting for those param-
eters, and make no claim that the parameters impact the per-
formance of the web server in a known way.

Gomez et al. [16] use neuroevolution learning methods
to dynamically reallocate hardware resources for high pro-
cessor performance. Their learning is at an intra-chip level,
intending to maximize the performance of an individual
processor, while our learning is on a system level and is
intended to maximize the performance of the entire dis-
tributed system.

Other prior work addresses performance-tuning with the
intention of maintaining a fixed level of service. For ex-
ample Abdelzaher et al. [1] outline a system that maintains
multiple complete content trees, each with a different qual-
ity setting. As workload increases, quality can be decreased
in order to satisfy the maximum number of users. Addition-
ally, Cohen et al. [10] use Tree-Augmented Naive Bayesian



Networks to correlate system statistics to a high-level per-
formance metric (compliance or non-compliance with re-
quired service levels). Unlike our work, this work relies on
a specialized instrumentation layer, a reliance that we ac-
tively and successfully avoid.

Additional work has also been done with offline analy-
sis of a system. Aguilera et al. [3] worked on discovering
the latency of individual nodes in a network. This work
was done with no additional instrumentation to the system
and was designed to determine the causal paths through the
network and analyze the total response time as to how much
time was spent in each node. Hellerstien et al. [17] analyzed
the performance of a system over large spans of time with
statistical models, which could then determine online when
unexpected changes occurred. Brown et al. [4] analyzed the
dependency of each page in the TPC-W benchmark on each
database table.

More broadly, this work falls within the emerging field
of autonomic computing, which deals with self-managing,
self-configuring, self-protecting, and/or self-healing sys-
tems. Brown et al. [5] have argued the need for a new
benchmark to determine the performance of each of these
categories, and put forward initial ideas as to how this could
be accomplished. Other work within the field of autonomic
computing focuses on failure diagnosis [8, 9], bug identifi-
cation [19], file system organization [20], adaptive branch
prediction [14], autonomous network creation [7], installa-
tion and configuration analysis [2] and utility function opti-
mization [27].

8. Conclusion

The rapid development of reconfigurable servers indi-
cates that they will become more commonly used. As this
hardware is deployed, it may be used for distributed appli-
cations where isolating the front-end and back-ends is desir-
able, but where extra hardware is unneeded. In these cases,
the server will need some form of adaptability to deal with
changing workloads.

This paper has presented preliminary research into meth-
ods to handle variable workloads by dynamically reallocat-
ing hardware resources between the machines. In addition
to showing that autonomous reconfiguration has the poten-
tial to improve performance, two learners were presented
that predict preferable configuration changes with high ac-
curacy. Our ongoing research agenda includes fully au-
tomating the adaptive process under dynamically changing
workloads, first on our simulated reconfigurable machines
and eventually on true reconfigurable hardware.

Acknowledgments

This research was supported in part by NSF CAREER
award IIS-0237699, a DARPA ACIP grant, and an IBM fac-
ulty award.

References

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Perfor-
mance guarantees for web server end-systems: A control-
theoretical approach.IEEE Transactions on Parallel and
Distributed Systems, 13(1), January 2002.

[2] G. Aggarwal, M. Datar, N. Mishra, and R. Motwani. On
identifying stable ways to configure systems. InProceedings
of the 1st International Conference on Autonomic Comput-
ing, May 2004.

[3] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. InProceedings of the 19th ACM
Symposium on Operating Systems, October 2003.

[4] A. Brown, G. Kar, and A. Keller. An active approach to
characterizing dynamic dependencies for problem determi-
nation in a distributed application environment. InSeventh
IFIP/IEEE International Symposium on Integrated Network
Management, May 2001.

[5] A. B. Brown, J. Hellerstein, M. Hogstrom, T. Lau, S. Light-
stone, P. Shum, and M. P. Yost. Benchmarking autonomic
capabilities: Promises and pitfalls. InThe 1st International
Conference on Autonomic Computing, May 2004.

[6] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An
architectural evaluation of Java TPC-W. InThe 7th Inter-
national Symposium on High-Performance Computer Archi-
tecture, January 2001. Code available athttp://www.
ece.wisc.edu/˜pharm/tpcw.shtml .

[7] Y.-H. Chang, T. Ho, and L. P. Kaelbling. Mobilized ad-hoc
networks: A reinforcement learning approach. InProceed-
ings of the 1st International Conference on Autonomic Com-
puting, May 2004.

[8] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer.
Failure diagnosis using decision trees. InProceedings of
the 1st International Conference on Autonomic Computing,
May 2004.

[9] M. Y. Chen, E. Kıcıman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic internet
services. InProceedings of 2002 International Performance
and Dependability Symposium, Washington, DC, June 2002.

[10] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S.
Chase. Correlating instrumentation data to system states: A
building block for automated diagnosis and control. In6th
Symposium on Operating Systems Design and Implementa-
tion (OSDI), December 2004.

[11] W. W. Cohen. Fast effective rule induction. InProceeding
of the 12th International Conference on Machine Learning
(ICML-95), pages 115–123, 1995.

[12] K. DeLira, A. Garcia, R. Hendrickson, L. Macedo,
and R. Patel. LPAR heterogeneous workloads on
the IBM R©eServer pSeriesTM 690 system. Interna-
tional Business Machines Corporation, February 2002.



http://www.redbooks.ibm.com/redpapers/
pdfs/redp0425.pdf .

[13] Y. Diao, J. L. Hellerstein, S. Parekh, and J. Bigus. Managing
web server performance with autotune agents.IBM Systems
Journal, 42(1), 2003.

[14] A. Fern, R. Givan, B. Falsafi, and T. N. Vijayku-
mar. Dynamic feature selection for hardware predic-
tion, 2004.http://web.engr.oregonstate.edu/
˜afern/papers/jsa-submission.pdf .

[15] D. F. Garcia and J. Garcia. TPC-W e-commerce benchmark
evaluation.Computer, 36(2):42–48, February 2003.

[16] F. Gomez, D. Burger, and R. Miikkulainen. A neuroevolu-
tion method for dynamic resource allocation on a chip mul-
tiprocessor. InProceedings of the INNS-IEEE International
Joint Conference on Neural Networks, pages 2355–2361.
IEEE, 2001.

[17] J. L. Hellerstein, F. Zhang, and P. Shahabuddin. Characteriz-
ing normal operation of a web server: Application to work-
load forecasting and problem detection. InProceedings of
the Computer Measurement Group, 1998.

[18] hp-ux virtual partitions (vPars). Hewlitt-Packard
Company, January 2003. http://www.hp.com/
products1/unix/operating/manageability/
partitions/library/vpars_wp203.pdf .

[19] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InProgramming
Languages Design and Implementation (PLDI), June 2003.

[20] M. Mesnier, E. Thereska, G. R. Ganger, D. Ellard, and
M. Seltzer. File classification in self-* storage systems. In
Proceedings of the 1st International Conference on Auto-
nomic Computing, May 2004.

[21] Java pet store demo. Sun Microsystems, Inc.http:
//developer.java.sun.com/developer/
releases/petstore/ .

[22] C. Plattner. Getting java tpc-w to work with postgresql and
tomcat. http://www.inf.ethz.ch/personal/
plattner/work/tpcw-postgresql.html .

[23] W. D. Smith. TPC-W: Benchmarking an ecommerce so-
lution. Technical report, Intel Corporation, 2000.http:
//www.tpc.org/tpcw/TPC-W_Wh.pdf .

[24] Sun EnterpriseTM 10000 server: Dynamic system domains.
Sun Microsystems, Inc., February 1999.http://www.
sun.com/datacenter/docs/domainswp.pdf .

[25] TPC BenchmarkTMW Full Disclosure Report for IBM
eServer xSeries 440 with IBM eServer xSeries 330
using Microsoft SQL Server 2000 Enterprise Edition.
Transaction Processing Performance Council, Decem-
ber 2002. http://www.tpc.org/results/FDR/
tpcw/ibm.x440.w.fdr.02091201.pdf .

[26] Transaction Processing Performance Council. TPC
BenchmarkTM W (Web Commerce) Specification, February
2002. Version 1.8.

[27] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility
functions in autonomic systems. InProceedings of the 1st
International Conference on Autonomic Computing, May
2004.

[28] Y. Wang and I. H. Witten. Induction of model trees for pre-
dicting continuous classes. InProceedings of the Poster
Papers of the European Conference on Machine Learning,
pages 128–137, 1997.

[29] I. H. Witten and E. Frank.Data Mining: Practical machine
learning tools with Java implementations. Morgan Kauf-
mann, San Francisco, 2000.


