
Towards a Model-Driven Architecture for Autonomic Systems

Denis Gra anin, Shawn A. Bohner, Michael Hinchey

Virginia Tech
Department of Computer Science

7054 Haycock Road
Falls Church, VA 22043

USA
{gracanin,sbohner,mhinchey}@vt.edu

Abstract

Agent based systems and architectures provide a
firm foundation for design and development of an
autonomic system. The key challenge is the selection
and efficient use of effective agent architecture. A
model-driven approach accommodates the underlying
architecture to automate, as much as possible, the
development process. The Cognitive Agent
Architecture (COUGAAR) is a distributed agent
architecture that provides the primary components and
an implementation platform for this research.
COUGAAR has been developed primarily for very
large-scale, distributed applications that are
characterized by hierarchical task decompositions and
as such is well suited for autonomic systems. We
propose a framework for the agent-based, model-
driven architecture for autonomic applications
development. The framework consists of two main
parts, General COUGAAR Application Model
(GCAM) and General Domain Application Model
(GDAM). Some COUGAAR related performance
issues are also discussed.

1 1. Introduction

As society increasingly depends on software, the

size and complexity of software systems continues to

grow making them more difficult to understand and

evolve. Manifest dependencies between critical

elements of software now drive software architectures

and increasingly influence the system architecture.

Complexity and integration issues frequently dominate

modern computing. To respond to the sheer volume of

software and consequential complexity, the software

community has increasingly embraced architecture

principles. Software architecture provides a framework

to understand dependencies that exist between the

various components, connections, and configurations

reflected in the requirements. Agent-based software

architectures support autonomous systems and respond

to their integration and process needs. These emergent

technologies provide a reasonable basis for addressing

complexity issues by separating concerns (integration,

interoperability, decision support, and the like) and

allowing agents to provide the necessary processing.

Autonomic Systems as a discipline is emerging to

address these complex information and task-intensive

situations. The task orientation coupled with intelligent

agents provides a strategic and holistic environment

for designing large and complex computer-based

systems. These systems may support logistics

management, battlefield management, supply-chain

management to mention a few.

The Cognitive Agent Architecture (COUGAAR) is

an open source, distributed agent architecture [1].

COUGAAR is the result of approximately eight years

of development for the Defense Advanced Research

Projects Agency (DARPA) under the Advanced

Logistics Program (ALP) and the Ultra*Log program

[2]. The primary focus of development has been on

very large-scale, distributed applications that are

characterized by hierarchical task decompositions,

such as military logistics planning and execution. In

addition, during the last four years, particular attention

has been given to fault tolerance, scalability and

security.

To give the reader a sense of this technology, this

paper first provides a very brief, high-level overview

of COUGAAR. We discuss its primary capabilities and

some examples of its application. We then discuss the

current Model-Driven Architecture work in extending

this to better support autonomous systems

development.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

2 COUGAAR Overview

COUGAAR is an open-source Java-based agent

infrastructure that arose from the DARPA Advanced

Logistics and Ultra*Log programs. It is important to

note that while COUGAAR has been developed

primarily for large-scale, distributed applications, it is

certainly not limited solely to these kinds of

applications. Quantifying the amount of overhead

introduced by the COUGAAR software is an important

step in determining whether COUGAAR is a good fit

for the development of a new application [6].

2.1 Agents

COUGAAR agents [2,3] are arranged into a society

that collectively solves a problem or a class of

problems. The society consists of one or more

communities of agents that share the same functional

purpose or organizational commonality. The same

agent may belong to one or more of these

communities.

A COUGAAR node is a single Java Virtual

Machine (JVM) running on a single server that

contains one or more agents. The node is a concept,

not a class.

The society and communities are usually deployed

across several nodes. Figure 1 shows an example of a

society that is spread across three nodes.

Figure 1: Example of COUGAAR society [2,3]

Agents on the same node compete for resources like

CPU, memory, disk space, and network bandwidth.

An agent consists primarily of a blackboard and a

set of plugins (Figure 2). The blackboard is essentially

a container of objects that adheres to publish/subscribe

semantics. A plugin implements a piece of the core

business logic associated with a given agent. The agent

is characterized by one or more plugins that are

referentially uncoupled (i.e., they do not know about

each other). Plugins publish objects, remove objects or

publish changes to existing objects via the blackboard.

Plugins also create subscriptions to be notified when

objects are added, removed or changed in the

blackboard.

Click to add sub-title

Blackboard (PLAN)

PlugInPlugIn PlugInPlugIn PlugInPlugIn

Lo
gi

c
P

ro
vi

de
r

Lo
gi

c
P

ro
vi

de
r

Lo
gi

c
P

ro
vi

de
r

Lo
gi

c
P

ro
vi

de
r

Click to add sub-title

Blackboard (PLAN)

PlugInPlugIn PlugInPlugIn PlugInPlugIn

Lo
gi

c
P

ro
vi

de
r

Lo
gi

c
P

ro
vi

de
r

Lo
gi

c
P

ro
vi

de
r

Lo
gi

c
P

ro
vi

de
r

Figure 2: Agent internal structure [2]

2.2 Inter-agent communications

Agents collaborate with other agents, however the

do not send messages directly to each other. Instead, a

task is created. Each task creates an “information

channel” flowing through the society for requirements

passing down, and responses going back [2]. In order

to send an object, A, to another agent, one must first

associate A with the task. The problem is that only

instances of the Asset class may be associated with a

task. Thus, all multi-agent objects must be defined as

assets. In other words, a multi-agent object must be an

instance of a class that extends the Asset class.

One must then locate the agent to which to allocate

the task. This is typically done by creating a

subscription that examines the roles or property groups

of organizations in the local blackboard. Once the

proper organization is found, the task containing the

object to be sent to the other agent is allocated to that

organization by creating an allocation and publishing it

to the blackboard. The COUGAAR communication

infrastructure then ensures that the task is sent to the

specified organization’s and the specified agent’s

blackboard.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

A relationship between two agents which can either

be a superior/subordinate or customer/provider

relationship. The superior/subordinate relationship

supports long-standing orders where a superior gives

high-level tasks to the subordinate which then

performs the task and then report back aggregate and

trend information back to the superior on a periodic

basis. A customer/provider relationship on the other

hand is for task-order services between agents on a

peer-to-peer basic and may result in large scale

discrete data flows between the agents.

2.3 Agent mobility

COUGAAR provides agent mobility service

whereby an agent can move from one node to another

through the process of serialization [10]. A special

agent plugin provided by COUGAAR initiates the

transfer by using the mobility services to suspend the

agent, retrieve the agent state, serialize the state, and

move the agent to the new node (using the messaging

services and a special blackboard object). This object

is received and then de-serialized, initialized, re-bind

to required services, set the state, load and restart the

agent. Once this process has completed successfully

then an acknowledgement is sent back to the sending

agent which is stopped, unloaded and eventually

garbage collected. Services and other resources used

by the agent are not moved and must be reestablished

and rebound on the new node.

3 Performance Measurement

COUGAAR is designed as a workflow manager for

hierarchical task decomposition problems. Tasks are

decomposed into sub-tasks and distributed between the

plugins, or even between agents on the same or other

nodes.

COUGAAR provides facilities to measure and

propagate performance metrics collected at all levels of

the architecture [5,7]. This includes sensors which are

simple and efficient modules that collect information at

critical points in the system execution and typically

maintains simple data structures such as statistics

counters. These sensors are polled out-of-band from

the main processing thread by clients who then bear

the burden of information processing.

Performance measurements can affect the

performance of the system [8] and different clients

have different metrics and information delivery

requirements. In order to provide varying Quality of

Service (QoS) multiple channels are provided that

provide different delivery times and quality of metrics.

Figure 3: Metrics service

Figure 3 shows a schematic of the metrics service

architecture [2]. Metrics writer and reader services

provide sensor values to and read data from the

QoS/RSS metrics data model. As values are collected

this data model is updated in real-time and provides a

comprehensive view of the society as a whole.

This data is used by metrics servlets that provide a

web-based view, and the Adaptivity Engine which is

used to adapt the execution of the agents in the society,

and is explained in more detail below.

Platform specific measurements are taken by the

computer system level instrumentation and are

translated into device-independent values. These

include CPU and memory usage statistics, and can be

additionally aggregated across agents to provide

community or node level statistics.

Measurements captured from the agent architecture

level include blackboard metrics such as timestamps of

published objects, counts of particular types of object,

and the rate at which particular objects change, and

message transport metrics such as message queue

length, total number of bytes sent, and total messages

sent.

3.1 Adaptive Control

COUGAAR provides adaptive control [9] through

the Adaptivity Engine that makes use of the

measurements collected by the metrics service. Each

agent can have several modes of operation that provide

increased QoS with increased resource consumption.

The Adaptivity Engine can use the operating

conditions indicated by the metrics to select the agent

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

modes of operation. Figure 4 shows the adaptive

control infrastructure based on the Adaptivity Engine.

Each component publishes one or more operating

modes. Each mode represents the allowed values for

one of the degrees of freedom of component as well as

the current value. The component in this case is a

plugin and the degrees of freedom represent the

tunable parameters used by that plugin. Metric Service

(sensors) publishes conditions indicating the state of

the system. Aggregation agents can also publish

conditions that indicate the state of a collection of

agents, a community, or the society as a whole.

The Operating Mode Policy Manager takes the

conditions and operating modes and uses these to

restrict the available Plays from the Playbook

Manager. Each Play has a logical expression. The

expressions are tested in succession to determine

which Plays apply to the current conditions.

A Play specifies the restrictions and constraints on

one or more operating modes and the conditions under

which they are applied. A Play may specify a single

value for an operating mode or it may give an ordered

range of values that specify constraints on the

operating mode value. This allows multiple plays to be

specified that jointly control an operating mode. The

constraints from all the applicable plays are combined

by intersection to compute an effective value which is

the minimum of the first range in the list.

Each agent contains an Adaptivity Engine that

controls the agent and responds to the conditions and

changes to the Playbook The component TechSpecs

are combined with the system behavior to adapt the

agent to optimize performance.

An example is given in Kleinmann [9] comprising

of task generator agent and a provider agent that

allocates tasks. The sensor conditions are the available

CPU resources and the rate of arrival of new tasks at

the provider agent. An operating mode tunes the

allocation algorithm to control the quality of

allocations which depends on the number of iterations

that the algorithm can afford given the available CPU

resources.

The playbook contains a play that uses the heuristic

rule that if the incoming task rate is low and CPU

resources are available then task allocation can be done

more precisely using more iterations of the allocation

algorithm. The play accomplishes this by dividing task

rate by CPU availability and then mapping the result

into the operating mode that determines the algorithm

iterations. The selected plays in a playbook may not

always result in the maximization of a performance

measure.

There may be conditions affecting the performance

that are not available to the Adaptivity Engine, or some

assumptions of independence between different

conditions and operating modes can cause some

problems.

Figure 4: Adaptive control infrastructure [2]

The described performance characteristics and

control infrastructure are used as a basis for efficient

implementation of common application modules using

the COUGAAR platform.

4 Proposed Framework

Figure 5 shows the proposed framework. The

COUGAAR Model-Driven Architecture prescribes

certain kinds of models to be used, how those models

may be prepared and the relationships of the different

kinds of models. It encompasses the key dependencies

between software artifacts.

Figure 5: Model driven architecture framework

The implementation platform is described using a

General Cougar Application Model (GCAM) and is,

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

therefore, based on the existing COUGAAR

architecture [2]. The GCAM provides representation in

its model of the COUGAAR basic constructs [2].

The core representation includes Agents,

Communities, Societies, Plugins, Assets, Preferences,

Knowledge Rules, Policies, Rules, Constraints, Events,

Facts, Services, Service Providers, Tasks, Nodes,

Subscriptions, Predicate, Messages, Directives, Logic

Providers, Hosts, Domains, and Configuration.

General Domain Application Model (GDAM)

builds upon the foundation of GCAM; therefore, the

requirements and detailed designs collectively define

the GDAM. For instance, the design may be captured

through written requirements, use case analysis

models, diagramming, etc. This specification must be

sufficient to enable a successful proof-of-concept

prototype.

GDAM provides representation in the model for

general COUGAAR application concepts. The GDAM

representations may include the following components:

Generic GUI Plugin

Planning Plugin

General Business Processes and Rules

General types of roles

Common set of tasks

Common types of relationships

Communities of interest for information

The specific domain application requirements are

translated into related GDAM and GCAM model

components and stored in a corresponding database.

Transformations module contains representation/

description of how to transform model components

into model products as well as key transformation rules

governing the Model Product Generator.

The developed platform has to support different

views into the model from some required viewpoints

on the system. A viewpoint on a system is a technique

for abstraction using a selected set of architectural

concepts and structuring rules, in order to focus on

particular concerns within the system. A view is the

representation of the system from the perspective of a

chosen viewpoint.

4.1 Initial Implementation

A fully functional model driven architecture

approach for application development is a daunting

task. We are approaching this problem in incremental

fashion by creating a proof-of-concept prototype.

Within a domain a selected set of application case

studies (examples) has been selected to determine

platform specific implementation issues. COUGAAR

patterns, i.e. “combinations” of COUGAAR agents for

a specific task, are being developed and used in the

development of the proposed framework.

Figure 6 demonstrates “stacking” of the models.

The COUGAAR architecture model provides a

foundation for the GCAM, GDAM and domain

models. The initial, “light-weight” implementation

focuses on GDAM and its interface to domain

requirements. As a consequence, domain requirements

are directly mapped to the COUGAAR architecture

which provides a foundation for the GCAM, GDAM

and domain models.

A requirements is expressed in terms of GAM

components which are the directly implemented in

COUGAAR as a collection of agents. Those agents are

added to the “run-time environment” which is

monitored and maintained dynamically.

domainexamples

Cougaar

GDAM

GCAM

Figure 6: Model "stack"

The existing tools, such as CSMART [4], are

designed “… to provide an integrated toolset for
building, running, monitoring, and analyzing all
Cougaar societies, and for performing experiments on
those societies by systematically varying their
properties and comparing the resulting behaviors.”
They are static in nature and do not take advantage of

dynamic capabilities of the COUGAAR architecture.

Dynamic construction and integration of the

components, combined with the persistency support

for COUGAAR applications, enables effective

“recording” and “storage” of the developed application

while taking into account the performance metrics

discussed in Section 3.

The requirements are modeled in the computation

independent viewpoint describing the situation in

which the system will be used and the environment in

which it will operate. The requirements should be

traceable to the platform specific viewpoint constructs

that implement them, and vice versa.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

The next phase of implementation will determine

the “line of separation” between GCAM and GDAM

and the corresponding models. The outcome will be a

“multi-faceted” model (Figure 7) with a programmer

viewpoint that will conform to the framework

described in Figure 5.

Eclipse
Tools

Multi-faceted
Model

Cougaar Systems

Support
Documentation

Test
Suites

Revisions

Figure 7: Implementation goals

The programmer viewpoint focuses on specifying in

detail the functions and properties for the parts of the

model created through the design process using the

platform specific viewpoint. This viewpoint should

support the ability to modify and create fine grained

details within individual components of the models and

trigger code and configuration file generation.

5 Conclusions

The COUGAAR architecture inherently supports an

autonomic view of systems. Performance metrics and

continuous analysis by agents allow the system to be

self-aware, to recover from problems, or avoid other

problems. This enables the system to be both self-

healing and self-preserving. By adapting the existing

metrics and adaptability mechanisms combined with

the agent mobility a resource reservation protocol can

be constructed that can be used to pre-allocate

resources to optimize the performance of a society.

This would require the addition of, and modifications,

to services to the existing COUGAAR architecture.

We are in the early stages of work funded by DARPA

on developing a model-driven architecture which will

support the agent-based architecture of COUGAAR,

and which in turn can be used as the basis for system

composition and automatic code-generation of

Autonomic Systems. The outcome of this work should

provide answers to the following questions:

How do we build a model for large-scale

distributed intelligent agent systems?

How do we use the MDA approach on a mature

architecture framework?

How do we insure “stable” behavior?

How do we leverage the library nature of the

component approach to make each successive

development faster and easier?

By answering those questions we can determine a

closure on the model to understand what is missing,

where there are design flaws and where there are

inconsistencies in the domain logic.

Acknowledgment: This work has been supported, in

part, by the DARPA STTR grant “AMIIE Phase II –

Cougaar Model Driven Architecture Project,”

(Cougaar Software, Inc.) subcontract number CSI-

2003-01.

6 References

1. BBN Technologies, “BBN Technologies,” Retrieved

December 4, 2003, from http://www.bbn.com.

2. BBN Technologies, “COUGAAR Architecture

Document,” Retrieved November 21, 2003, from
http://cougaar.org/docman/view.php/17
/56/CAD_10_0.pdf, February 1, 2003.

3. BBN Technologies, “COUGAAR Developers’ Guide,”

Retrieved November 21, 2003, from
http://cougaar.org/docman/view.php/17
/57/CDG_10_0.pdf, February 1, 2003.

4. A. Connors, “QoS in COUGAAR and a proposed

resource reservation protocol,” CS 5204 course project

report, Virginia Tech, Dec. 2003.

5. B. Hartman and V. Chougule, “An Introduction to

COUGAAR and Beginning to Quantify its Overhead,”

CS 5204 course project report, Virginia Tech, Dec.

2003.

6. A. Helsinger, W. Ferguson, R. Lazarus, “Exploring

Large-Scale, Distributed System Behavior with a Focus

on Information Assurance,” DISCEXII Proceedings,

2001.

7. A. Helsinger, R. Lazarus, Richard, W. Wright, and J.

Zinky, “Tools and Techniques for Performance

Measurement of Large Distributed Multiagent

Systems,” Proceedings of the Second International Joint

Conference on Autonomous Agents and Multiagent

Systems, ACM Press, New York, NY, 2003, pp. 843-

850.

8. K. Kleinmann, R. Lazarus, and R. Tomlinson, “An

Infrastructure for Adaptive Control of Multi-Agent

Systems,” IEEE KIMAS’03, October 2003.

9. M. Thome “Multi-Tier Communication Abstractions for

Distributed Multi-Agent Systems,” KIMAS’03

Proceedings, 2003.

10. BBN Technologies, “COUGAAR Society Monitoring,

Analysis and Reporting Tool,” Retrieved December 4,

2003, from http://cougaar.org/docman/
view.php/14/12/csmart-usersguide.pdf.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

	footer1:

