
Towards a Framework and a Design Methodology
for Autonomic SoC

Gabriel Lipsa1 Andreas Herkersdorf2 Wolfgang Rosenstiel3 O. Bringmann1 W. Stechele2

FZI, Microelectronic System
Design, Karlsruhe1

Technical University of Munich,
Institute for Integrated Systems2

University of Tuebingen,
Department of Computer

Engineering3

{lipsa, bringman}@fzi.de { a.herkersdorf, w.stechele}@ei.tum.de

rosenstiel@fzi.de

Abstract

This paper proposes autonomic or organic computing

principles to be applied to hardware design methods for
future SoC solutions. Incorporating self-calibration, fault
tolerance or even self-healing concepts into integrated
circuit systems represents a major conceptual shift, which
requires new design processes and tools. In the future,
guarantee of functional correctness at the chip level will
include self-configuration of adaptable components and
flexible interfaces supporting a flexible component
composition within complex SoC systems.

1. Introduction

The 2003 ITRS Roadmap [It03] projects micro- and
nanoelectronic integrated CMOS circuits to witness a
continued capacity growth rate corresponding to doubling
transistor count every two to three years (“Moore’s Law”).
Today and in the future the primary driver will no longer be
how to integrate even more transistors on a single chip, but
how to develop such complex ICs with affordable cost and
within reasonable time frames.

We propose autonomic or organic system properties
[Ho01], self-configuring, self-administrating and self-
healing, to be incorporated into future IC designs and be
supported by corresponding tools. So, our proposition is to
rededicate a fraction of the abundant transistor capacity of
future SoCs to implement organic computing principles for
the sake of higher fault tolerance, performance, power
efficiency, easier system diagnosis and the capability to
autonomously adapt to changing environmental conditions –
be it either externally imposed workloads or temperature
variations.

2. Overview of ASoC Framework

Our focus is on the chip level hardware layer of SoCs
(Systems on Chip) solutions. Translated into the world of
semiconductor IC systems, the future may look as follows:
with increasing, externally imposed workloads, the clock
frequency and supply voltage of individual processor cores
are increased to elevate processing performance. At the same
time, critical transactions on on-chip interconnect buses are
prioritized and the bus bandwidth of less critical transactions

is reduced. Redundant building blocks, being deactivated
under normal operating conditions, are activated on demand
to increase system performance.

Self-organization also has to deal with the phenomenon
of graceful degradation of SoCs, or said in other words, to
guarantee minimum SoC functionality and performance in
the event of entirely or partially failing system components
for which no redundant replacement is available. The self-
healing concepts attempt to replace a faulty processing unit
with an equivalent counter part which will adopt the
functionality of the failing element. The replacement unit can
either be an idle stand-by element, or a processing unit that
performs other tasks prior to the error occurrence.

The self-healing concept does not just mean to fix an
error, but also to prevent errors in cases where the system
risks getting into a critical state (e.g. performance wise due to
component overload, or temperature wise due to excessive
power consumption). The ASoC will supervise the behavior
of its constitutional components and build up fallback
scenarios, which are activated under certain trigger
conditions before system failure. Once a fallback solution has
been deployed, the self-organization process will again try to
improve performance and eventually switch back to the
original system configuration, so the fallback solutions have
to be good enough to respect the constraints.

The ASoC architecture platform related aspects are
closely interlocked with the ASoC design methodology. The
ASoC design methodology defines the scope and practices
within which both the functional and autonomic layers of the
ASoC are designed.

3. Autonomic SoC Architecture

Figure 1 shows the proposed ASoC architecture platform.
The ASoC is split into two logical layers: The functional
layer contains the IP component or Functional Elements
(FEs). The functional layer consists of today’s IP blocks,
which need just some small modification in order to be able
to communicate their status to the AEs, and then the AEs will
be able to control their voltage and frequency. The autonomic
layer consists of Autonomic Elements (AEs) and an
interconnect structure among the AEs. In analogy to the
functional layer IP library, the AEs shall eventually represent
an autonomic IP library (AE_lib).

Each AE contains a monitor or observer section, which
senses signal or state information from the associated FE, an
evaluator, which merges and processes the locally obtained
information with state from other AEs and/or memorized
local knowledge, and an actuator, which executes a possibly
necessary action on the local FE. The combined evaluator
and actuator can also be considered as a controller. Hence,
our two-layer Autonomic SoC architecture platform can be
viewed as distributed (decentralized) observer-controller
architecture.

There will also be a special type of AE, an autonomic

supervisor (AS), which has no counter part on the functional
layer. The AS will monitor the correct operation of and
interaction between other AEs. Very important will be the
AIConS (Autonomic Interconnect Structure), which will link
all the AEs with the central AS. The AEs take decisions
based on the local status plus the communicated information
from the other AEs. Since only local actions which are “in
harmony” with the local functional macro are allowed, this
approach implicitly guarantees controlled emergence.

4. Design Methodology for Autonomic SoC

The methodology has to consider fault tolerance as an
additional parameter beside, area, performance and power
consumption, and will provide a technique to build SoC
architecture with autonomic or organic properties. The design
flow accounted to this methodology, is depicted in the Figure
2.

In short, the methodology will consider the characteristics
of the architecture and the requirements from the application.
Making use of them, we will obtain a model, consisting of
AE and FE templates (AE/FE Model). Upon this model, the
reliability driven architectural optimization and evaluation
will be performed.

The reliability driven architectural optimization will
give notice of how many resources are needed in order for
the application to work. Because the system has to be able to
work under the required constraints, we propose to solve this
problem using redundancy and reorganization. This step of
the methodology will compute all the resources needed,
including the redundant ones.

After the selection of both the FE and the corresponding
AE, a FE/AE Model is obtained. Upon this model, an
evaluation has to be performed to see if it complies with the

requirements. The results of the evaluation will be used, if
the architecture will not be accepted, as evaluation
parameters for selecting another architecture. The
evaluation of the FE/AE model will contain three parts: the
exploration of the architecture, the change of the system’s
state after a certain failure and the evaluation of the new
state. Our proposal is to build a dynamic fault tree for
exploring the architecture. From the existing approach on
dynamic fault tree analysis [DuAs01], we bring two new
concepts. First, the obtaining of the new state or leaf, we
have to take into consideration the self-organizing algorithm
and the current state in order to obtain the new state. The
second concept that we are bringing is an analysis performed
over the state, which will be chosen.

5. Conclusions and Outlook

In order to prevent isolated, proprietary solutions, the
ASoC framework must seamlessly fit into the SoC design
methodology and form an open commonly available industry
standard. For the time being, our target is an ASoC
framework where the full spectrum of autonomic behavior is
considered by the designer prior and during system
architecture development. This will result in optimized AE
operations and inter-AE communication structures
developing towards truly emergent system behavior.

[DuAs01] Joanne Bechta Dugan and Tariq S. Assaf.
“Dynamic Fault Tree Analysis of a Reconfigurable Software
System”. The 19th International System Safety Conference,
Huntsville, Alabama, September, 2001.
[Ho01] Horn, P: “Autonomic Computing: IBM’s
Perspective on the State of Information Technology”, IBM
Corporation, Oct. 2001, http://www.research.ibm.com/
autonomic/manifesto
[It03] “International Technology Roadmap on
Semiconductors 2003”

Figure 2 Design Flow

Figure 1 Two-layer autonomic SoC platform

