
The Collective: A Common Information Service for
Self-Managed Middleware

Edward Curry
The Department of Information Technology
The National University of Ireland, Galway

Ireland

EdCurry@acm.org

Enda Ridge
The Department of Computer Science

The University of York
United Kingdom

ERidge@cs.york.ac.uk

ABSTRACT
As the deployment of self-managed reflective middleware
platforms increases, the process of collecting and examin-
ing information used within the reflective process becomes
ever more complex. The quality of such information is vi-
tal to ensure the successful outcome of the self-management
process. However, the cost associated with the collection of
this information plays a major role in influencing the success
of a self-managed system.

Within typical deployment environments it is not uncom-
mon for multiple self-managed systems to be deployed, each
collecting information for use within their respective reflec-
tive computations. In many cases, these systems will collect
the same information, replicating the effort required to re-
trieve the information. Such replication could be avoided by
sharing information between systems to reduce the overall
cost of collection within the deployment environments.

Current self-managed systems lack adequate support for
information collection and sharing. This work proposes the
use of an independent information service to assist in the col-
lection and management of information within self-managed
middleware systems.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.11 [Software Engineering]: Software Architectures

Keywords
Information Management, Self-management, Adaptive and
Reflective Middleware

Keywords

1. INTRODUCTION
Within self-managed systems, one of the most important

factors that influences a system’s ability to self-manage is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RM ’05, November 28- December 2, 2005 Grenoble, France
Copyright 2005 ACM 1-59593-270-4/05/11 ...$5.00.

the quality of information available to the reflective pro-
cess. A number of information sources may be used within
reflective computational logic to analyse the current operat-
ing environment including resource utilisation, performance
metrics and usage patterns. The sources that produce such
information are wide-ranging from performance interceptors
to Quality-of-Service (QoS) feedback from clients.

In general, the higher the quality of information given to
the reflective process, the greater the chance of a successful
self-management action. However, the task of collecting this
information is one of the more costly activities within the
self-management process. As systems increase in scale, the
quantity of potential information sources will also increase,
further complicating the task of information retrieval.

Given the increase in the range and quantity of informa-
tion sources, a need exists to provide support mechanisms
to assist in the management and analysis of such informa-
tion within the reflective process and to minimise the cost
associated with its collection. This work investigates the use
of an independent common information service to support
the collection and dispersion of information within groups
of self-managed middleware systems.

1.1 Paper Overview
This paper puts forward the case for an independent ser-

vice to assist in the collection, aggregation, maintenance,
and dispersion of heterogeneous information sources within
self-managed middleware. Section 2 presents a motivational
scenario; Section 3 provides the purposed design for an in-
dependent information service. Section 4 highlights related
works. In Section 5 an outline of future plans and directions
is provided.

2. MOTIVATIONAL SCENARIO
In order to demonstrate the motivation of this work, we

present the hypothetical scenario of two self-managed mid-
dleware services that use similar information within their
reflective computations. The two services in question are:

• A Multimedia Service: used for the provision of
multimedia content (such as streamed video and au-
dio)

• A Video Conferencing Service: provides real-time
audio and video between multiple locations.

Both of these services can be deployed on a variety of
networks with diverse operating conditions such as an office

Article 12

LAN, office wireless network, GPRS mobile connection or
home dial-up connection. In order to provide a suitable QoS
over this range of network connections, these services can be
enhanced with self-management techniques found within re-
flective platform such as OpenORB [1]. These techniques
provide adaptive capabilities to alter the services infrastruc-
ture to provide suitable connectivity within each of these
environments.

The local and remote information collection processes of
both of these services will now be examined.

2.1 Local Information Collection
Within the reflective process of both of these services, sim-

ilar information may be used to assess the QoS received by a
client of the service. This information includes network ac-
tivity (connection latency, reliability and bandwidth), user
feedback and performance metrics. Based on this informa-
tion an appropriate infrastructure will be chosen to provide
the best QoS for that client.

An example deployment scenario using current self-managed
reflective techniques is provided in Figure 1.

Multimedia
Service

In
fo

rm
at

io
n

C
on

su
m

er
s

In
fo

rm
at

io
n

P
ro

du
ce

rs

Video
Conferencing

P
er

fo
rm

an
ce

In
te

rc
ep

to
rs

C
lie

nt
Fe

ed
ba

ck

N
et

w
or

k
A

ct
ic

vi
ty

P
er

fo
rm

an
ce

In
te

rc
ep

to
rs

C
lie

nt
Fe

ed
ba

ck

N
et

w
or

k
A

ct
ic

vi
ty

Figure 1: Current Information Collection Process

Using current techniques, both of these self-managed ser-
vices gather information for QoS assessment independently.
The effort required to collect information that is common to
both of these services is replicated by each service; resulting
in unnecessary and costly overheads.

2.2 Remote Information Collection
The example scenario presented within Figure 1, is a sim-

ple straightforward deployment environment. However, within
real world deployments, self-managed middleware platforms
encounter considerably more complex environments with greater
diversity of information sources distributed over larger scales.
Within such environments, middleware platforms are of-
ten deployed in interconnected groups to service the envi-
ronment, as illustrated in Figure 2. Each Broker or node
within this deployment could contain multiple local middle-
ware platforms as illustrated in Figure 1.

When examining the role of the information gathering and
sharing within such deployments, similar issues are shared
with the collection of information as expressed within the
node-level local information collection process. However, the
level of overhead within these environments is much greater
as multiple systems may replicate similar information col-
lection tasks.

The key obstacle here is the effective collection and dis-
persion of information over large distributed deployments.

Broker A

Broker D

Broker B

Broker C

Figure 2: Sharing Information between Brokers

Current self-managed systems do not provide adequate
support for information collection and dispersion. Providing
an effective solution to these problems is a key challenge to
gain the maximum benefits from self-managed middleware
platforms.

3. THE COLLECTIVE: A COMMON INFOR-
MATION SERVICE

Ideally, common information should only be collected once
to minimise the cost of the reflective process (Equation 1)
and so maximise the potential benefits of using self-management.
This can be achieved with the use of an independent in-
formation service that is responsible for the collection and
distribution of such information.

Cost = Monitoring Cost
+Reflective Computation Cost

+Adaptation Cost
(1)

The Collective is an independent information service for
self-managed middleware platforms. The service provides an
effective support service for the collection and management
of reflective information, minimising the cost associated with
these activities. The Collective is designed to reduce the
effort needed to collect information from an environment
and to allow this information to be shared between reflective
systems.

Given the role of The Collective, it has been designed
as an independent entity within the middleware stack that
is easily accessible by multiple services. The Collective is
introduced into the motivational deployment within Figure
3.

Multimedia
ServiceIn

fo
rm

a
ti

o
n

C
o

n
su

m
e

rs

In
fo

rm
a

tio
n

P
ro

d
u

c
er

s

P
er

fo
rm

a
nc

e

In
te

rc
e

pt
o

rs

Video
Conferencing

C
li

e
n

t
F

ee
d

b
ac

k

N
e

tw
o

rk

A
ct

ic
v

ity

P
er

fo
rm

a
nc

e

In
te

rc
e

pt
o

rs

C
li

e
n

t
F

ee
d

b
ac

k

N
e

tw
o

rk

A
ct

ic
v

ity

In
fo

rm
a

ti
o

n
C

o
ll

e
ct

io
n

T
h

e
 C

o
lle

c
tiv

e

Figure 3: The Collective within the Information
Collection Process

By relocating the task of information collection to an in-

Article 12

dependent service, the effort required to gather information
is minimized. Information collection tasks that are com-
mon to both platforms are assimilated into The Collective.
This reduces the effort required to implement self-managed
systems, as the duplication of these common information
services is no longer required.

It should be noted that not all tasks are appropriate for
common collection and sharing, this point is illustrated within
the scenario using client feedback monitoring; such informa-
tion is often highly specialized to the relevant middleware
service.

With the role of the service defined, the next issue is to
identify the mechanism used by the service for the effective
collection of information.

3.1 Overview

Common Information Collection Service

Information
Consumer

Web Service
Information

Source

Remote Source Container

MOM
RPC
API

Local Service Container

Remote Source
Controller

C
on

su
m

er
 A

P
I Resource

Registry

Local
Service

Container Services

Persistance
Transactions
Distribution

...

Figure 4: The Collective Architecture

As illustrated in Figure 4, the internal architecture of The
Collective is broken into the following parts:

• Resource Registry – Listing of available information
sources

• Local Service Container – Information collection and
analysis entities located within the platform

• Remote Source Container - Offers facilities to hook-in
external and legacy information sources to the plat-
form

• Container Services – Support services for both local
and remote containers within The Collective. Services
include persistence, transaction and distribution.

3.2 Information Services
The Collective can be used to achieve a number of in-

formation requirements within a self-managed middleware
platform and is designed to allow the creation of new infor-
mation services and to provide support for legacy informa-
tion sources. In order to support these capabilities two types
of information service are provided within The Collective,
local information services and remote information sources.
It is envisaged service administration may be directed via a
configuration file or runtime API.

3.2.1 Local Information Service
Local information services are primarily executed locally

within The Collective platform. Local information services
provide a platform for the construction of information-only

collection services. This opens the possibility for the devel-
opment of a wide variety of information services that can as-
sist within the self-management process. It should be noted
that ‘local’ refers to the location of the service execution
with respect to The Collective, the information collected is
not limited to local sources.

One interesting use for a local information service is as
a mechanism to perform operations on other information
sources within the platform. Such actions could include
information source aggregation, information formatting, or
analysis. By locating such activities within The Collective,
the cost of common information processing tasks may also
be reduced.

3.2.2 Remote Information Sources
Remote Information Sources provide a mechanism to hook-

in information produced from remote locations or from legacy
information collection within current reflective platforms.
Remote information sources may interact with The Col-
lective in a number of manners, from a direct API call to
an asynchronous Message-Oriented Middleware (MOM) or
Web Service interaction. Flexibility within the interaction
mechanism is vital to allow diverse information sources to
interact successfully and seamlessly with The Collective.

Remote Information Sources comply with a simple service
interface to allow The Collective to pull information from
the remote source or for the source to push information to
The Collective. Each remote information source has a con-
troller present on The Collective platform that can be used
to access the information source. The controller can also en-
hance the information source with post collection operations
such as information formatting or analysis activities. The
controller may also utilize container services to improve the
QoS of the information source such as using the local per-
sistence service as a cache to improve the responsiveness of
the remote source.

It should be noted that contributing information to The
Collective does not need to affect the current role of a legacy
information source; the source should be able to continue to
supply its current consumers directly and not interfere with
the operation of the donating platform.

3.3 Information Consumer Interaction
Information consumers retrieve information from the ser-

vice using the Information Consumer API. This API will
allow information to be retrieved from the service in both a
synchronous and asynchronous manner. The basic informa-
tion retrieval operations needed from the API are described
in Table 1.

In addition to these operations an information selection
mechanism is required to allow the information consumer to
be selective about the information it receives from a service.
A filtering capability is vital to avoid information overload
for consumers. Within the Message-Oriented Middleware
domain the Java Message Service (JMS) specification [10]
uses message selectors, a form of attributed-based filtering,
to filter the messages received by a message consumer. The
message consumer will only receive messages whose headers
and properties match the selector. Message selectors con-
sist of a string expression based on a subset of the SQL-92
conditional expression syntax.

A similar techniques could be utilised within The Col-
lective, however, in order such an approach to be useful a

Article 12

Action Description
RETRIEVE

(BLOCKING)

Retrieve information from the ser-

vice. If no information is currently

available, the call will block until

information is available.

RETRIEVE

(NON-BLOCKING

POLL)

Retrieve information from the ser-

vice. If no information is available,

do not block.

LISTEN (NOTIFY) Allows the information service to

inform the client of the arrival of a

information using a call-back func-

tion on the client. The call-back

function is executed when new in-

formation arrives.

Table 1: Information Consumer API

standardised structures for information available within The
Collective would need to be developed. The five generic mes-
sage types within the JMS are currently under consideration
for this role.

Additional issues the consumer API will need to deal with
include controlling the rate of information flow from services
to consumers and the Quality of Service (QoS) related to the
information flow.

3.4 Deployment Options
The Collective can be deployed in a number of fashions.

The most straightforward deployment is as a standalone ser-
vice to manage information consumers and producers within
self-managed systems. Within such a deployment, as illus-
trated in Figure 5, The Collective acts as a medium to ex-
change information between platforms providing a single lo-
cation to send and receive information.Broker ABroker D Broker BBroker CTheCollective
Figure 5: A The Collective within a Broker Network

While The Collective is useful within such an environ-
ment, the true power of such services are revealed once
the deployment environment scales to multiple physical sites
each containing large collections of self-managed systems. A
key benefit of the service is its capability to interconnect to
share information between multiple services and locations.
Within such environments, The Collective may be intercon-
nected to provide a streamlined exchange of information be-
tween inter-site brokers, self-managed systems at each site
can retrieve information from sources at each site within the
deployment. This is illustrated in Figure 6.

A Collective network can be connected in a hierarchi-
cal and peer-to-peer topology to meet the needs of the de-

Site A Site B

Site C

Broker
Broker

Broker

The
Collective

The
Collective

The
Collective

Figure 6: A Collective Network

ployment environment, allowing the creation of informa-
tion networks to exchange information relevant to the self-
management process.

4. RELATED WORKS
While no self-managed or reflective platform claims to

possess an independent information service, a number of
projects do possess comprehensive information capabilities
and represent and manage it in a variety of manners.

K-Components [4] is a component framework designed to
support autonomic components with the use of reflective
techniques. K-Components is one of the first platforms to
investigate the coordination of decentralized reflective sys-
tems with the use of Collaborative Reinforcement Learning
(CRL). K-Components also facilitates communication be-
tween decentralized runtime deployments by exploiting the
event-communication paradigm.

The sharing of information between K-Component run-
times is possible by subscribing to feedback events from re-
mote runtimes; these are known as remote feedback events
[3]. Remote feedback events demonstrate a basic ability to
share information between systems. However, the type of
information that can be exchanged between K-Component
runtimes is limited to feedback events and the transfer of
known component definitions with no support available to
extend this mechanism.

OpenORB 2 [1] is an adaptive and dynamically recon-
figurable Object Request Broker (ORB) supporting appli-
cations with dynamic requirements. Open ORB utilizes a
resource meta-model to allow access to underlying system
resources, including memory and threads, via resource ab-
straction, resource factories and resource managers [1]. This
model provides control and accounting facilities for a re-
sources to simplify QoS management [12]. OpenORB does
not provide any support for sharing information within its
meta-level with external entities.

Platforms such as OpenORB provide a good example of
systems that could benefit from integration with The Col-
lective. The resource meta-model could provide a promis-
ing candidate for a remote information source within The
Collective, allowing its information to be shared with other
self-managed systems that share its environment.

The Quality Objects (QuO) framework [15] is designed to
assist in the development of QoS stringent distributed sys-
tems. Within QuO “System condition objects (sysconds)
provide interfaces to monitor and control low-level details
of the system.” [5]. SysCond objects can expose the QoS
state in a number of ways from simple values probes to pe-
riodical polls and sliding window counters. Once an QuO

Article 12

application is running its runtime kernel is responsible for
the coordination and evaluation of contracts and monitor-
ing of SysCond objects. SysCond objects provide an exam-
ple of shared information between two reflective systems, in
this case the client and servant for QuO. While not a first
class information service in themselves, SysCond objects do
illustrate the potential for sharing information within an en-
vironment. In a similar fashion to the OpenORB resource
meta-model, the information from certain SysCond objects
may also be a candidate for integration with The Collective.

The Simple Network Management Protocol (SNMP) is a
straightforward protocol used to interact with the manage-
ment aspects of networked devices (bridges, hubs, routers,
etc). Many similarities exist between the role of SNMP for
network management and the role of The Collective for in-
formation management within self-managed systems. In a
similar fashion to The Collective’s separation of informa-
tion infrastructure from self-managed, SNMP also separates
management activities from the architecture of network de-
vices.

SNMP is commonly used in conjunction with a Network
Management System (NMS). The goal of a these systems
is to provide a single point of monitoring and administra-
tion of all SNMP enabled devices, often providing a console
through which the network administrator performs network
management functions. The consolidation of network man-
agement activities achieved by NMS and SNMP is analogous
to the goal of self-management information consolidation of
The Collective.

5. FUTURE PLANS
Immediate plans for this research focus on the implemen-

tation and evaluation of The Collective information service.
A number of research opportunities also exist with the devel-
opment of common information services at both the infras-
tructure and application levels. Future research directions
within both of these areas are now briefly discussed.

5.1 Empirical Evaluation
Once the implementation of The Collective is complete, an

extensive evaluation process is needed to verify and validate
the benefits of an independent information collection service
when compared to their traditional alternative. Benchmarks
within the empirical evaluation must be performed under
conditions as close to a production environment as possible.
This is vital to find out the actual savings achieved with the
use of a common information service.

5.2 Infrastructure Standardisation
In order for services like The Collective to be universally

accessible, a standard mechanism is needed to govern inter-
action with the service. Service interaction can be broken
down into two parts, the interface used to interact with
the service and the semantics of the information exchanged
through the service. Standardisation of interfaces and se-
mantics is needed to achieve streamlined accessibility by in-
formation consumers.

5.2.1 Interface
Definition of a standardised consumer API is an important

step in the development of a universal information service.
A standardised interface similar to the Java Message Service
Specification [10] or JDBC Specification [6] would stream-

line the integration process, allowing information consumers
to easily connect to multiple information sources in a con-
sistent manner. It is important that any interface does not
constrain potential information sources or limit their inclu-
sion within The Collective.

5.2.2 Semantics
The second obstacle with a standardization effort is the

need to reconcile semantic differences between diverse infor-
mation producers and consumers. Successfully integrating
two systems requires that the semantics of both systems
must be reconciled or bridged. Within a large-scale hetero-
geneous integration effort, this is one of the greatest chal-
lenges faced. In order to achieve a successful integration, all
participants must have a common conceptualisation of the
problem domain.

Semantics have an affect on a number of areas of applica-
tion development. Most prominently from the perspective
of this work, they effect the definition of information within
the service. In order for a common information service to
work, it is vital that all participants understand what the
information means and how it is expressed. One promis-
ing approach for this problem is the use of ontologies and
semantic technologies such as Resource Description Frame-
work (RDF) [8] or OWL Web Ontology Language [11].

5.3 Information Services
With the infrastructure in place, a great deal of poten-

tial exists for the development of application-level informa-
tion services to improve the quality and reduce the cost of
information available to self-managed systems. Two such
services are highlighted to illustrate the research potential
within this area.

5.3.1 Global Information Services
Global Information, one that relates to the entire deploy-

ment environment, is an area of particular interest within
self-managed middleware platforms [9]. Limited strategies
exist for the collection, analysis and management of infor-
mation that provides a global perspective a wide-scale de-
ployment.

The Collective allows for the exchange of information be-
tween middleware platforms within a large-scale deployment.
However, many open research issues exist with the handling
of this information. How can this information be collected
and presented in a simple and straightforward manner?

Pheromone trails within natural environments, such as
ant and bee colonies, have been successfully transferred to
provide a simple and effective communication between large
numbers of participants within decentralised environments
[14]. To this end, work is underway on the development
of a nature-inspired pheromone-based information service
to provide an effective mechanism to gather and compose
global information in a simple concise format.

5.3.2 Publish / Subscribe Services
The publish/subscribe messaging model is a very pow-

erful mechanism used to disseminate information between
anonymous message consumers and producers. This one-to-
many and many-to-many distribution mechanism allows a
single producer to send a message to one user or potentially
hundreds of thousands of consumers. A publish subscribe
service routes the messages to consumers based on the top-

Article 12

ics to which they have subscribed as being interested in.
Given the increasing amount of information available to

self-managed systems, publish/subscribe offers a powerful
mechanism for the dissemination of information between in-
formation sources and information consumers. Integration
of a publish/subscribe engine [7], [2], [13] within The Col-
lective would not only improve the capability of the service
to provide consumers with relevant information, but also
provide an effective mechanism to interconnect Collective
networks as discussed in Section 3.4.

6. CONCLUSION
The quality of information available to a self-managed sys-

tem is a vital factor in ensuring successful self-management
activities. However, a significant cost associated with self-
management is the collection of such information.

Current self-managed systems do not provide adequate
support for information collection and sharing. Given the
broad range of available information sources and their in-
creasing quantity, a need exists to provide support mecha-
nisms to assist in the management and analysis of informa-
tion within the self-managed systems.

This work proposes the use of The Collective, a common
independent information service to assist in the collection,
aggregation, maintenance, and dispersion of heterogeneous
information sources within self-managed middleware, min-
imising the cost associated with these tasks.

Common information collection tasks within self-managed
systems are assimilated into The Collective, reducing the ef-
fort required to implement self-managed systems by remov-
ing the need to duplicate common information infrastruc-
ture.

7. ACKNOWLEDGEMENTS
The authors would like to thank the reviewers for their

constructive comments

8. REFERENCES
[1] G. S. Blair, G. Coulson, A. Andersen, L. Blair,

M. Clarke, F. Costa, H. Duran-Limon, T. Fitzpatrick,
L. Johnston, R. Moreira, N. Parlavantzas, and
K. Saikoski. The Design and Implementation of Open
ORB 2. IEEE Distributed Systems Online, 2(6), 2001.

[2] A. Carzaniga. Architectures for an Event Notification
Service Scalable to Wide-area Networks. Phd,
Politecnico di Milano, 1998.

[3] J. Dowling. The Decentralised Coordination of
Self-Adaptive Components for Autonomic Distributed
Systems. Phd, University of Dublin, Trinity College,
2004.

[4] J. Dowling and V. Cahill. The K-Component
Architecture Meta-model for Self-Adaptive Software.
In A. Yonezawa and S. Matsuoka, editors, Metalevel
Architectures and Separation of Crosscutting
Concerns, Third International Conference, Reflection
2001, volume 2192 of Lecture Notes in Computer
Science, pages 81–88. Springer, Kyoto, Japan, 2001.

[5] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and
J. Zinky. Building adaptive distributed applications
with middleware and aspects. In 3rd international
conference on Aspect-oriented software development,
pages 66 – 73. Lancaster, UK, 2004.

[6] J. Ellis, L. Ho, and M. Fisher. JDBC 3.0 Specification,
2001.

[7] L. Fiege, F. C. Grtner, O. Kasten, and A. Zeidler.
Supporting Mobility in Content-Based
Publish/Subscribe Middleware. In M. Endler and
D. C. Schmidt, editors, ACM/IFIP/USENIX
International Middleware Conference (Middleware
2003), volume 2672 of Lecture Notes in Computer
Science, pages 103–122. Springer, Rio de Janeiro,
Brazil, 2003.

[8] FIPA. RDF Content Language Specification, 2001.

[9] K. Geihs. Middleware Challenges Ahead. IEEE
Computer, 34(6), 2001.

[10] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Stout. Java Message Service Specification v1.1,
2002.

[11] D. L. McGuinness and F. v. Harmelen. OWL Web
Ontology Language Overview, 2004.

[12] N. Parlavantzas, G. Blair, and G. Coulson. A Resource
Adaptation Framework for Reflective Middleware. In
2nd Workshop on Reflective and Adaptive Middleware,
Middleware 2003. Springer-Verlag Heidelberg, Rio de
Janeiro, Brazil, 2003.

[13] P. R. Pietzuch. Hermes: A Scalable Event-Based
Middleware. Ph.d., Queens’ College, University of
Cambridge, 2004.

[14] E. Ridge, D. Kudenko, D. Kazakov, and E. Curry.
Moving Nature-Inspired Algorithms to Parallel,
Asynchronous and Decentralised Environments. In
Self-Organization and Autonomic Informatics,
Frontiers in Artificial Intelligence and Applications.
IOS Press, 2006.

[15] R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E.
Schantz, and D. E. Bakken. QuO’s Runtime Support
for Quality of Service in Distributed Objects. In IFIP
International Conference on Distributed Systems
Platforms and Open Distributed Processing
(Middleware’98). The Lake District, England., 1998.

Article 12

