
The C-Cube Framework: Developing Autonomic
Applications through Web Services

Gerardo Canfora1, Piero Corte2, Antonio De Nigro2,
Debora Desideri2, Massimiliano Di Penta1,

Raffaele Esposito1, Amedeo Falanga1, Gloria Renna1, Rita Scognamiglio1,
Francesco Torelli2, Maria Luisa Villani1, Paolo Zampognaro2

1 RCOST — Research Centre on Software Technology
Department of Engineering - University of Sannio

Viale Traiano - 82100 Benevento, Italy
{canfora, dipenta, amedeo.falanga, gloria.renna, r.esposito, ritasco, villani}@unisannio.it

2 Engineering SpA - Research & Development Lab

Via San Martino della Battaglia, 56 - 00185 Roma, Italy
{piero.corte, antonio.denigro, debora.desideri, francesco.torelli, paolo.zampognaro}@eng.it

ABSTRACT
Web services constitute a promising technology to support auto-
nomic computing. Automatic discovery of new services, their com-
position and binding based on Quality of Service (QoS) are just
some of the most promising features that can be provided using
web services. In other words, a service oriented system is able to
automatically discover, bind, and use, at run time, the services that,
among those available, offer a given piece of functionality with a
QoS compatible with the system non–functional requirements.

This paper describes our work–in–progress related to the develop-
ment of an electronic marketplace, named C3 (Creation, Certifica-
tion and Classification of Services) to enable the publication, se-
mantic discovery, service buying, SLA negotiation and QoS-aware
composition and replanning. The marketplace is mainly targeted to
corporate intranets, although its technologies and approaches can
be easily exported to a wider scenario.
Keywords: Service-oriented systems, automatic service discov-
ery, run–time binding, automatic service negotiation, service re-
planning

1. INTRODUCTION
Web services are rapidly changing the landscape of software en-
gineering, introducing interesting challenges and new, promising
scenarios. A relevant piece of this technology is represented by se-
mantic web services, that provide the capability of automatically
binding, even at run–time, a service specification with any service
capable to realize a given piece of functionality. In other words, se-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEAS 2005, May 21, 2005, St. Louis, Missouri, USA
Copyright 2005 ACM 1-59593-039-6...$ 5.00.

mantic web services allow us to (semantically) specify in our sys-
tem (or service) the requested feature (e.g., booking an hotel, get-
ting the temperature of a given city). Then, using a proper mech-
anism, it is possible to automatically select and bind the services
that fulfill the query.

The set of retrieved services (we refer to them as concrete services)
will be all functionally equivalent with respect to our query (we
refer to it as an abstract service). However, they could exhibit dif-
ferent Quality of Service (QoS) attributes: there may be faster ser-
vices, cheaper ones, or a compromise. The choice of the service
to be invoked is therefore based on some QoS constraint or even
optimization criteria. Moreover, when selecting the service, the
SLA is automatically determined applying a negotiation protocol
to provider offerings and user QoS constraints.

A complex service oriented system, or even a composite service
(i.e., a service obtained by orchestrating more services using a lan-
guage like BPEL4WS [2]) can contain one or more abstract ser-
vices. It is therefore necessary to determine the set of bindings
that meet some constraints (often established by means of a Service
Level Agreement (SLA)) and optimize some criteria (e.g., the cost).
Finally, at run–time, a service may not be available, or the over-
all QoS may deviate from the estimated one, thus leading to some
constraint violation. This makes necessary some form of run–time
replanning of bindings between abstract and concrete services.

All of the above described scenarios make web services a promis-
ing technology for building autonomic systems, in particular sys-
tems able to:

• discover services (or a composition of services) able to pro-
vide a specified piece of functionality needed for the system
itself;

• select, among the available services those able to satisfy QoS
requirements, possibly negotiating their SLA; and

106

1



Figure 1: C3 Physical Architecture

• replanning the binding between abstract and concrete ser-
vices whenever needed.

The existing Service Oriented Architecture (SOA) [17] and means
to describe service interfaces (WSDLs) [18] poses serious limits to
that. It is therefore necessary to introduce mechanisms to enable
late binding and replanning, and a means to semantically describe
services and then discover them.

This paper describes a service marketplace, originally targeted to
corporate intranets, but that can be possibly opened to a wider com-
munity. The marketplace, named C3 (Creation, Classification and
Certification of Services) permits the publication, certification, dis-
covering, buying of services. The paper is organized as follows.
Section 2 briefly introduces the architecture and the features of C3.
Then, Section 3 and Section 4 focus on the feature enabling au-
tonomic computing, namely semantic discovery, SLA negotiation
and, finally, QoS aware composition and replanning. Section 5 con-
cludes.

2. ARCHITECTURE
This section describes the architecture of C3. As shown in Fig-
ure 1, C3 is basically a distributed system composed of several
nodes communicating via SOAP through the Internet.

From a functional perspective, the C3 system is composed of three
software layers, Core, API and Presentation, depicted in Figure 2
and described in the following subsections.

2.1 Core
The Core layer realizes the basic set of features of the C3 market-
place, as described below. Clearly, the Core layer is built upon a
data layer not shown in this architecture for sake of simplicity.

2.1.1 Administration
The administration module provides all the features concerning the
system configuration, such as handling users, privileges, contracts
between users and the system, defining monitoring policies and
performing backup operations.

Browsing
Activity

Administration
Activity

User Workspace

Session Management

Access Control Management

Federation Management

Administration

Monitoring 
Data

Service
Description

Service Service 
Certification

Buying
Service
Wrapper

Service 
Execution

Core

API

Presentation

Service
Tool

WSDL & Mapping
Tool

Semantic Descr.
Tool

Roles,Users & Perm.
Tool

Orchestration
Tool

QoS Descripton
Tool

Editing & Browsing Tools

Execution
Activity

Monitoring
Activity

Publication
Activity

Market
Activity

Certification
Activity

...

Service Ontology
Tool

Service Certification
Tool

Textual Description
Tool

Figure 2: C3 Logical Architecture

2.1.2 Service Description
This module manages the service descriptions. In particular, it han-
dles the following description categories:

• natural language descriptions, used to early querying the
service repository (i.e., searching for services using free-text,
requirements or use cases as queries);

• functional descriptions, that semantically describe the ser-
vices. As detailed in Section 3, these descriptions enable the
run–time automatic service discovery.

• QoS descriptions, that are: i) related to simple services; ii)
used to compute the QoS of composite services; and iii) used
to handle additional, user–defined QoS attributes.

Also, the service description module handles WSDLs associated
with both simple and composite services, workflow descriptions of
composite services, and service SLA Templates [12].

2.1.3 Service
This module contains all the core features to support service pub-
lishing, maintenance and removal from the marketplace. Also, it
provides a support for the service discovery features.

107

2



2.1.4 Service Certification
This module handles service certificates, declaring the degree of
trust for service QoS and functional behavior. In particular, the
module allows the users to request QoS certifications and the certi-
fiers to grant or revoke certificates.

2.1.5 Buying
This module manages the service acquisition process, and the SLA
negotiation between a service buyer and a service provider. As
described in Section 4.1, the service provider offers several possible
SLA Template for a given service. At buying time, the buyer may
instantiate his/her own SLA from one of the possible templates, or
even negotiate a customized SLA.

2.1.6 Monitoring
This module provides monitoring capabilities. In particular, it col-
lects service monitoring data (QoS values, paths followed inside
composite services, statistics on bindings) that can be used to en-
able QoS-aware composition and replanning (see Section 4), but
also to continuously check the consistency and correctness of the
different system activities (discovery, composition, binding, etc.).

Also, the monitoring module keeps track of user accesses to the
system and to services. The latter information can be used to com-
pute the amount a user should pay for to use some services.

2.1.7 Service Execution
Service execution is managed and controlled through special ser-
vices, or wrappers, with the aim of:

• monitoring each service execution. In particular, the QoS
values of some attributes, like response time or availability,
for that execution of the service are updated.

• binding between abstract and concrete services. For each ab-
stract service, the wrapper service allows to apply the auto-
matic discovery mechanisms, described in Section 3, to de-
termine the list of services matching that description and that
respect some quality constraints. Whenever invoked, for ex-
ample in the context of a composition, the wrapper service
will forward the invocation message to the chosen service.

• realizing the QoS-aware composition and replanning describ-
ed in Section 4.

The main advantage of using wrapper services for compositions
is that there is no need to perform any change in the BPEL4WS
language nor in the workflow engine to support the use of abstract
services in the workflow and to extend it with monitoring facilities.

2.2 API
The API layer provides the system business logic to the upper Pre-
sentation layer. Therefore, all the C3 features are available as ser-
vices accessible through SOAP, thus they can be potentially used
by external systems without relying on the Presentation layer.

In addition to that, the API layer guarantees some additional fea-
tures, horizontally to all the specific-purpose modules. In particu-
lar, the following features are provided:

• Session management: this module permits the concurrent ac-
cess of users to the system. For each access, a user session
is created. The session retains all the privileges the user has
with respect to the system and to the published services.

• Authentication: the system provides support for two differ-
ent levels of authentication: i) a basic authentication level,
based on username and password and ii) a strong authentica-
tion level, based on digital certificates that are provided by a
proper Certification Authority aiming to identify the user.

• Authorization: it handles the policies that grant or revoke a
user’s access to specific resources. The authorization module
has been developed according to the RBAC [8] model.

• Federation: as stated above, the C3 marketplace has been
conceived as a network of distributed nodes communicating
via the SOAP protocol. The federation module realizes the
policies of task distribution and delegation to the different
nodes. This aims to make the whole system both scalable
and fault–tolerant.

2.3 Presentation
The Presentation layer provides a set of tools accessible to users to
interact with the system. These tools are basically web–applications,
and offer the set of features also exported as API by the underlying
layer. In particular, the Presentation layer provides:

1. A set of tools that enable the editing and browsing of dif-
ferent service–related artifacts. For example, there exists a
tool to browse and edit service semantic descriptions, a tool
to edit and browse ontologies, a tool to design composite ser-
vice orchestrations, a tool to describe a service QoS, etc. Fig-
ure 2 reports a complete list of the available tools. Clearly,
more tools can be easily added to extend the system.

2. A user workspace, in which the user can access to specific
activities. Basically, each activity defines an interaction sce-
nario between the user and one or more tools to realize the
service marketplace activities.

The remainder of this section briefly describes the main activities
provided by the C3 presentation layer.

2.3.1 Publication Activity
The publication activity supports the description and the publica-
tion of services, with the aim to make their discovery possible. As
also mentioned in Section 2.1, each service needs to be annotated
with three different types of description:

• The Textual Description consists of any textual document
that can be attached to a service. These documents are in-
dexed to support the service free-text discovery.

• The Functional Description, i.e., semantic annotation, based
on ontologies, describes the service from a functional point–
of–view (see Section 3 for further details).

• The QoS Description, useful to support discovery activities
and, above all, to enable QoS–aware composition and bind-
ing (see Section 4).

108

3



Finally, the publication module permits to specify/change all the
other information related to the service, namely:

• the WSDL associated with simple and composite services;

• workflow descriptions (orchestration) associated with com-
posite services;

• SLA Templates;

• QoS certificates.

All the information tied to a service is summarized in Figure 3.

ServiceFunctionalDescription

QoSDescription

SLATemplate

MonitoringData

Certificate

OrchestrationTextualDescription

WSDL

1

1

1 1 1

1

1
1

11

1

declaredQoS
0..*

0..*

0..11

1..n

Figure 3: Service information model

2.3.2 Browsing Activities
The browsing activity offers various ways to search for a service,
i.e.:

• textual search;

• semantic search based on precise queries (see Section 3);

• QoS search (i.e., search for services exhibiting QoS values in
a given range); and

• a combination of the above.

2.3.3 Certification Activity
This activity allows the customers to ask for service certification,
and the certifier to grant or revoke certificates.

2.3.4 Market Activity
This activity constitutes the way a buyer interacts with the C3 mar-
ketplace to acquire services. Interestingly, a buyer can also sup-
ply descriptions of simple or composite services that have not been
published yet. This may raise a sort of demand that some service
provider can decide to fulfill. Finally, in the context of the market
activity, the buyer negotiates the SLA with the service provider.

2.3.5 Execution Activity
As said in Section 2.1, the execution activity is supported by means
of service wrappers. Despite that, the Presentation layer provides
some web based facilities for invoking services (for testing pur-
poses) during the discovery phase.

2.3.6 Monitoring Activity
The monitoring activity provides a user–interface support to easily
access monitoring data, allowing the user to query the monitoring
repository and compute some statistics on it.

2.3.7 Administration Activity
This activity basically constitutes a sort of front–end for the ad-
ministration API. It has been conceived to easily manage the C3

configuration.

3. SEMANTIC SERVICE DISCOVERY
As stated in the introduction, one of the most interesting features
of C3 is the possibility to automatically search for, bind to, and
execute services. To this aim, it is necessary to unambiguously
describe services, and carry out service discovery with a precision
of 100%. This possibility can be supported by the new standards
for the Semantic Web [1], and languages based on formal logic
and with a precisely–defined semantic (e.g., OWL and OWL-S [7]).
Amazingly, various projects (e.g., [10], [11], [13], [14], and [15])
seem to suggest that the adoption of these standards is not sufficient
to achieve a 100% precision anyway.

Similarly, C3 introduces a new discovery approach aiming to achieve
a 100% precision in the search phase (unless of human mistakes in
the services description or in the ontology definition). The seman-
tic description of a service represents the functional aspects of the
service expressed in a logical language and by means of formal
ontologies.

Figure 4: C3 Service semantic description

As shown in Figure 4, each service operation is described in terms
of types of information for each input and output. In particular,
we distinguish between ontological categories that we call concep-
tual types (or entity types) whose instances represent entities of the
application domain (e.g., ”Person”) and categories that we call in-
formation types. Instances of information types represent informa-
tion. Intuitively, an information type can be thought of as a col-
lection of attributes chosen from an ontology. For example, the in-
formation type AnagraphicInformation could be composed
of the attributes firstName, lastName and birthDate. A
conceptual type may correspond to different information types. For
example, a person can be described through personal details, but
also by information related to the person’s health. Clearly, two ser-
vices can be semantically equivalent, but they may differ in their
implementation or in the data format adopted to represent the in-
formation. For example, a month may be represented, as a date
input parameter, using an integer or strings like “Jan”, “Feb”, etc.
Therefore, the C3 discovery engine requires to specify the repre-
sentation format to adopt for each service, in order to support the
matching/integration of services adopting different representations
of the same information.

The effect of an operation is modeled in terms of events ([6], [16])
produced after its execution. The pre and post conditions, used in
other approaches for service description, constitute a special case
of event category. The use of events ensure a better scalability than

109

4



the use of pre and post conditions. For instance, it may suffice to
say that a service produce a flightTicketBooking (that is a primi-
tive category of events). Clearly, writing the corresponding pre and
post conditions may result as by far more difficult. The capability
of publishing services is limited to the possibility of developing a
complete ontology thoroughly describing the application domain.
During the service publication, a service provider can, if necessary,
update the ontology following a collaborative process that involves
the ontology administrator.

The service semantic description is expressed through a formal lan-
guage based on description logic [3], extended in order to distin-
guish between the concepts of entity and information associated
with the entity itself. The language supports the distinction be-
tween subsumption (i.e., generalization between conceptual types)
and specialization (i.e., generalization between information types).
This distinction constitutes the basis for the C3 service discovery
algorithm.

The C3 reasoning algorithms used to discover services constitute a
further point of strength. Most of the recent systems aim to guar-
antee the completeness of the reasoning mechanisms, sacrificing in
some measure the expressiveness of the description language. On
the contrary, the C3 approach tends to privilege the query expres-
siveness. While this could reduce the discovery algorithm recall, it
does not constitute a serious problem. In fact, having a more ex-
pressive query mechanism permits to adequately describe services
and to guarantee a precision of 100% (that is a necessary condition
to enable the run–time service discovery and binding).

4. QOS-AWARE COMPOSITION AND RE-
PLANNING

Automatic service discovery and late binding features require that
the current SOA be also extended with QoS management mech-
anisms, that is, components to estimate, monitor and control the
quality of the services being provided. In fact, the service selec-
tion is usually determined by some quality constraints that are part
of the query by the user, such as a limit for the cost of the ser-
vice or its security level. For composite services, their overall QoS
needs to be computed from that of the component services, accord-
ing to how they are orchestrated. Also, as the availability of ser-
vices may change over time, and different services may exist with
the same functionality (i.e. corresponding to the same abstract ser-
vice), replanning mechanisms are used to reach and maintain the
target QoS-level. Monitoring tools allow to control whether the ac-
tual QoS is compliant with what formalized in SLAs with the cus-
tomers, so that risks of penalties may be prevented through recov-
ery actions, e.g. a service substitution in case of non-availability,
or service re-planning.

4.1 SLA negotiation
The QoS guarantees of the service provider to a buyer are formal-
ized in a SLA document, as part of the contract. This document is
usually created out of a schema, named SLA Template, that is sub-
mitted by the provider at service publication time. A SLA Template
document contains a clear QoS description of the service offered
and some customizable parts to be finalized after negotiation with
potential buyers. A negotiation process with a customer would es-
sentially lead to a compromise between the cost of the service and
its quality. For example, higher costs may be asked for better per-
formances or service availability.

To support SLA negotiation in C3, a protocol has been defined,
whose main steps are described below.

1. The SLA negotiation is usually opened by the service buyer,
who expresses his/her QoS requests by providing QoS values
(or ranges of values) to the negotiable attributes of the SLA
Template.

2. The service provider may: i) either accept the buyer’s pro-
posal, and in this case a SLA is automatically created out
of the customized SLA Template; ii) or propose a new SLA
Template just for that customer on the basis of his/her indi-
cations.

3. If a new SLA Template is created, the buyer may: i) either
accept; ii) or make a new proposal on that template, so that a
new cycle of the process starts.

4. The negotiation process ends if an agreement is reached on
some version of the SLA Template, and so a SLA is signed
out of it, or no agreement is reached between the parts.

Clearly, different SLAs may co-exist with respect to the same ser-
vice, and so they have to be managed singularly. Instead, in the
context of a composite service, SLAs of the component services
are, most probably, automatically created out of the respective SLA
Templates without negotiation.

4.2 QoS-aware composition
The QoS-aware composition requires that the following two prob-
lems be solved: i) determine the QoS of a composite service as a
function of the QoS of its components; and ii) determine the set of
concrete services that maximize the QoS of the composite service.

To estimate the QoS of a composite service, we use the aggre-
gation formulae proposed by Cardoso [5] for each pair QoS at-
tribute/control statement (e.g., sequence, switch, loop or flow). Thus,
the QoS is computed by recursively applying these formulae to
compound nodes of the service workflow. The model uses stochas-
tic information indicating the probability of transitions being fired
at run-time, in the case of a switch, and estimations on the number
of iterations for loops. This information may be initially set by the
designer, wherever possible, and then periodically adjusted, based
on data on previous executions stored in the monitoring database.

Determining the best concretization of a composite service is an
optimization problem, aiming to i) maximize a fitness function of
the available QoS attributes; and ii) meet the constraints speci-
fied for some of the attributes. For this, different strategies can
be adopted, for example integer programming [19] or Genetic Al-
gorithms (GA) [4]. Clearly, the fitness function may need to maxi-
mize some QoS attributes (e.g., reliability), while minimizing oth-
ers (e.g., cost). When user–defined, domain–specific QoS attributes
are used, the specification of the fitness function is left to the work-
flow designer.

4.3 Replanning
At run-time, the actual QoS values of the individual services may
deviate from the estimations and the execution path in the work-
flow may not be the one foreseen. These changes could have a
drastic impact on the expected overall QoS of the composite ser-
vice. Thus, the risk of breaking SLAs and obtaining a poor QoS

110

5



could be avoided by re-planning the service bindings of the work-
flow part still to be executed. In fact, the new binding could com-
pensate the observed workflow QoS loss, or simply lead to a subop-
timal solution still within the SLAs. To this aim, we have defined a
re-planning triggering algorithm (described in Canfora et.al [4]), to
try to detect re-planning needs as soon as possible during execution.
The idea is to re-estimate the workflow QoS whenever new infor-
mation is available, e.g. the number of times a loop will be iterated,
by observing the variables of the conditional statement, or the case
followed after a decision point, or the QoS values measured when a
service is invoked. In fact, changes of these parameters may cause
a big deviation from the QoS initially predicted and/or lead to the
non satisfaction of some global constraints. Whenever replanning
is triggered, the slice of the workflow that still has to be executed
must be computed, and the optimization problem be solved again
on that slice. Once (acceptable) new bindings are identified, the
service execution may restart.

5. CONCLUSION AND WORK IN PROGRESS
This paper has described the work–in–progress in the development
of C3, a service marketplace to enable the publication, discovery,
certification, buying and execution of services. Such a marketplace
aims to provide to corporate intranets, and possibly to a wider pop-
ulation, many features that will enable the building of autonomic
systems. In particular, a system developed in this scenario will be
able to discover, at run–time, the services realizing a given piece
of functionality. This implies the development of a complex se-
mantic service discovery mechanism, based on ontologies. Then, it
will be possible to automatically select services offering the desired
level of QoS, and even to negotiate them. For composite services, a
mechanism based on Genetic Algorithms will automatically deter-
mine the best combination of service bindings. Finally, at run–time,
a replanning mechanism adjusts the bindings whenever a service is
not available or the QoS level deviates from the required one.

Work–in–progress is devoted to complete the development of the
marketplace, refining at the same time the algorithms and approaches
that constitute its main added value, possibly adopting some tech-
niques inspired to autonomic computing [9].

6. ACKNOWLEDGMENTS
This work is partially supported by the project “C-CUBO” prot.
n. 10941, co–founded by the Italian “Ministero dell’Instruzione,
dell’Università, e della Ricerca”.

7. REFERENCES
[1] Semantic Web http://www.semanticweb.org/.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, S. T. D. Smith, I. Trickovic,
and S. Weerawarana. Business process execution language
for web services.
http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[4] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. A
lightweight approach for QoS-aware service composition. In
Proc. 2nd International Conference on Service Oriented

Computing (ICSOC’04) - short papers, New York, USA,
Nov. 2004. IBM Technical Report.

[5] J. Cardoso. Quality of Service and Semantic Composition of
Workflows. PhD thesis, Univ. of Georgia, 2002.

[6] R. Casati and A. Varzi. Events. The Stanford Encyclopedia of
Philosophy, 2002.

[7] M. B. David Martin, G. Denker, J. Hobbs, L. Kagal,
O. Lassila, D. McDermott, S. McIlraith, M. Paolucci,
B. Parsia, T. Payne, M. Sabou, E. Sirin, M. Solanki,
N. Srinivasan, and K. Sycara. OWL-S: Semantic markup for
web services.

[8] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed nist standard for role-based
access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274,
2001.

[9] J. Kephart and D. Chess. The vision of autonomic
computing. IEEE Computer, 2003.

[10] M. Klein and A. Bernstein. Towards high-precision service
retrieval. IEEE Internet Computing, 8(1):30–36, January
2004.

[11] L. Li and I. Horrocks. A software framework for
matchmaking based on semantic web technology. In WWW
’03: Proceedings of the twelfth international conference on
World Wide Web, pages 331–339. ACM Press, 2003.

[12] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web
service level agreement (WSLA) language specification.
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf.

[13] M. Mecella, B. Pernici, and P. Craca. Compatibility of e
-services in a cooperative multi-platform environment. In
TES, pages 44–57, 2001.

[14] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.
Semantic matching of web services capabilities. In ISWC02,
volume 2348 of Lecture Notes In Computer Science, pages
333–347. Springer-Verlag, June 2002.

[15] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma.
METEOR-S web service annotation framework. In WWW
’04: Proceedings of the 13th international conference on
World Wide Web, pages 553–562. ACM Press, 2004.

[16] S. Russell and P. Norvig. Artificial Intelligence: A modern
approach (2nd edition). Prentice-Hall, Upper Saddle River,
NJ, USA, 2003.

[17] W3C Working Group. Web services architecture.
http://www.w3.org/.

[18] W3C Working Group. Web services description language
(WSDL).
http://www.w3.org/.

[19] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middleware for
web services composition. IEEE Transactions on Software
Engineering, 30(5), May 2004.

111

6




