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Novel user-oriented networked systems will simultaneously ex-
ploit a variety of wired and wireless communication modalities to
offer different levels of quality of service (QoS), including relia-
bility and security to users, low economic cost, and performance.
Within a single such user-oriented network, different connections
themselves may differ from each other with respect to QoS needs.
Similarly, the communication infrastructure used by such a network
will, in general, be shared among many different networks and users
so that the resources available will fluctuate over time, both on the
long and short term. Such a user-oriented network will not usually
have precise information about the infrastructure it is using at any
given instant of time, so that its knowledge should be acquired from
online observations. Thus, we suggest that user-oriented networks
should exploit self-adaptiveness to try to obtain the best possible
QoS for all their connections. In this paper we review experiments
which illustrate how “self-awareness,” through online self-moni-
toring and measurement, coupled with intelligent adaptive behavior
in response to observations, can be used to offer user-oriented QoS.
Our presentation is based on ongoing experimental work with sev-
eral “cognitive packet network” testbeds that we have developed.

Keywords—Adaptive networks, autonomic systems, Internet, IP
protocols, quality of service (QoS).

I. INTRODUCTION

At the periphery of the Internet, novel networked systems
are emerging to offer user-oriented flexible services, using
the Internet and LANs to reach different parts of the same
systems, and to access other networks, users and services.
Examples include enterprise networks, home networks (Do-
motics), sensor networks, and networks for military units or
emergency services. The example of home networks is sig-
nificant in that a family may be interconnected as a unit with
PDAs for the parents and children, the health monitoring de-
vices for the grandparents, the video cameras connected to
the network in the infants’ bedroom, with connections to
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smart home appliances, the home education server, the en-
tertainment center, the security system, and so on.

A home network will simultaneously use different wired
and wireless communication modalities, including wireless
LANs (WLAN), 3G, wired Ethernet, etc. It will tunnel
packets through the IP in and out of the Internet and try to
satisfy the distinct quality-of-service (QoS) requirements of
different connections. Such systems must allow for diverse
QoS requirements, which can be implicit due to the nature of
the application (e.g., alarm system connection to the security
service, or video-on-demand or voice-over-IP) or which may
be explicitly formulated by the end users of the network.

Networks of this kind raise interesting issues of
intelligence and adaptation to user needs and to the net-
working environment, including routing requirements,
possibly self-healing, security, and robustness. Thus, online
adaptation, in response to QoS needs, available resources,
perceived performance of the different network infrastruc-
ture elements, instantaneous traffic loads, and economic
costs, would, therefore, be a very attractive feature of such
networks. However, learning algorithms and adaptation have
seldom been practically exploited in networks because of
the lack of a practical framework for adaptive control, in
particular for packet networks. There is also a conviction
among many practitioners that feedback controls are too
slow in the presence of the massive traffic peak rates which
occur at the core of a communication network. However, the
systems we are considering operate “on top” of network in-
frastructures and typically carry low traffic rates. Thus, they
can potentially act to adaptively optimize their use of the
communication infrastructure through judicious observation
and fast decisions.

In this paper, we describe several experiments with a
network architecture centered upon a QoS-driven routing
protocol called a cognitive packet network (CPN). CPN is
an experimental system which is implemented using PCs
as routers. The CPN code is implemented on top of the
Linux operating system. CPN nodes can be organized as a
cloud within the IP world, and multiple CPN clouds can be
interconnected via IP. The CPN nodes together route packets
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across a mixed CPN/IP network to offer the best QoS, where
QoS is defined by the users via QoS Goals.

CPN packets do not carry code, and CPN routers are
not programmable by the network end user or application.
This choice has been made to avoid creating excessive
complexity in the network, and also to avoid increasing
the risk of insecurity in the network. On the other hand,
CPN uses smart packets (SPs) to collect measurements as
they travel through the network. SPs carry QoS informa-
tion related to the end users; they are routed using neural
network algorithms which are resident in the nodes and
which use both the SPs’ QoS information and data which
is locally resident at the nodes. This local data in the nodes
is updated with information brought by acknowledgment
(ACK) packets, which return to nodes on an SP’s path, as a
result of the SP’s successful arrival at its destination. After
briefly summarizing the principles and mechanisms of CPN
routing, this paper illustrates how network self-awareness
can be exploited in favor of user QoS by presenting three
experiments we have conducted on the CPN testbeds that
we have designed and implemented.

II. THE CPN

In order to investigate the potential of using self-aware-
ness and adaptiveness to offer QoS to users, we have de-
veloped a practical packet-switching architecture that allows
a network with an arbitrary topology to observe its state in
a distributed manner. These observations are then used by
an online algorithm running autonomously at each node to
make routing decisions based on an estimate of QoS. How-
ever, these routing decisions are restricted to certain “smart”
packets, which then inform the source about the paths they
have found which offer the best QoS. These paths are then
used by the payload carrying packets until a better path is
found by the SPs.

Thus, CPN [6], [7], [8], [10] is a packet routing protocol
which addresses QoS using adaptive techniques based on
online measurement. Although most of our work on CPN
concerns wired networks, we have also developed a wireless
extension of which can operate seamlessly with wired CPN
or IP networks [9].

In CPN, users are allowed to declare QoS Goals such as
“Get me the data object Ob via the path(s) of highest band-
width which you can find,” where Ob is the handle of some
data object [2], or “Find the paths with least power consump-
tion to the mobile user Mn,” or “Get the video output Vi to
my PDA as quickly as possible” (i.e., with minimum overall
delay).

CPN is designed to accept direction by inputting Goals
prescribed by users. It exploits self-observation with the
help of SPs so as to be aware of the network state including
connectivity of fixed or mobile nodes, power levels at mobile
nodes, topology, paths, and path QoS. It performs self-im-
provement, and learns from the experience of SPs using
neural networks and genetic algorithms [11] to determine
routing schemes with better QoS. It will deduce hitherto
unknown routes by combining or modifying paths which

have been previously learned so as to improve QoS and
robustness.

CPN makes use of three types of packets: SPs for dis-
covery; source-routed dumb packets (DPs) to carry payload;
and ACK packets to bring back information that has been
discovered by SPs. Conventional IP packets tunnel through
CPN to seamlessly operate mixed IP and CPN networks. SPs
are generated by a user 1) requesting that a path having some
QoS value be created to some CPN node or 2) requesting to
discover parts of the network state, including location of cer-
tain fixed or mobile nodes, power levels at nodes, topology,
paths, and their QoS.

SPs exploit the experience of other packets using random
neural network (RNN)-based reinforcement learning (RL)
[3], [7]. RL is carried out using a Goal which is specified
by the user who generated a request for the connection. The
decisional weights of an RNN are increased or decreased
based on the observed success or failure of subsequent
SPs to achieve the Goal. Thus, RL will tend to prefer
better routing schemes, more reliable access paths to data
objects, and better QoS. In an extended version of the
CPN network, which is presented in [11], but which we
do not discuss in this paper, the system deduces new paths
by combining previously discovered paths, and using the
estimated or measured QoS values of those new paths to
select better paths. This is similar conceptually to a genetic
algorithm which generates new entities by combination
or mutation of existing entities, and then selects the best
among them using a fitness function. These new paths
can be tested by probes so that the actual QoS can be
evaluated.

When an SP arrives to its destination, an ACK is generated
and heads back to the source of the request. It updates
mailboxes (MBs) in the CPN nodes it visits with information
which has been discovered, and provides the source node
with the successful path to the node. All packets have a
lifetime constraint based on the number of nodes visited, to
avoid overburdening the system with unsuccessful requests
or packets which are in effect lost. A node in the CPN
acts as a storage area for packets and MBs. It also stores
and executes the code used to route SPs. It has an input
buffer for packets arriving from the input links, a set of
MBs, and a set of output buffers which are associated
with output links. CPN software is integrated into the
Linux kernel 2.2.x, providing a single application program
interface (API) for the programmer to access CPN. CPN
routing algorithms also run seamlessly on ad hoc wireless
and wired connections [9], without specific dependence
on the nature (wired or wireless) of the links, using QoS
awareness to optimize behavior across different connection
technologies and wireless protocols.

A. Routing Using SPs

The SP routing code’s parameters are updated at the
router using information collected by SPs and brought back
to routers by the ACK packets. Since SPs can meander and
get lost in the network, we destroy SPs which have visited
more than a fixed number of nodes, and this number is set
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to 30 in the current testbeds. This number is selected based
on the fact that it will be two to three times larger than the
diameter of any very large network that one may consider in
practice.

For each incoming SP, the router computes the appropriate
outgoing link based on the outcome of this computation. A
recurrent RNN [1] with as many “neurons” as there are pos-
sible outgoing links is used in the computation. The weights
of the RNN are updated so that decision outcomes are rein-
forced or weakened depending on how they have contributed
to the success of the QoS goal. In the RNN the state of
the th neuron in the network is the probability that the th
neuron is excited. Each neuron is associated with a distinct
outgoing link at a node. The satisfy the system of nonlinear
equations

(1)

where

(2)

is the rate at which neuron sends “excitation spikes” to
neuron when is excited, is the rate at which neuron
sends “inhibition spikes” to neuron when is excited, and

is the total firing rate from the neuron . For an neuron
network, the network parameters are these by “weight
matrices” and which
need to be “learned” from input data.

RL is used in CPN as follows. Each node stores a specific
RNN for each active source–destination pair and each QoS
class. The number of nodes of the RNN are specific to the
router, since (as indicated earlier) each RNN node will rep-
resent the decision to choose a given output link for an SP.
Decisions are taken by selecting the output link for which
the corresponding neuron is the most excited, i.e.,
for all . Each QoS class for each source–des-
tination pair has a QoS Goal , which expresses a function
to be minimized, e.g., transit delay or probability of loss, or
jitter, or a weighted combination, and so on. The reward
which is used in the RL algorithm is simply the inverse of
the goal: . Successive measured values of are
denoted by ; these are first used to compute
the current value of the decision threshold

(3)

where , typically close to one. Suppose that we
have now taken the th decision which corresponds to neuron
, and that we have measured the th reward . We first

determine whether the most recent value of the reward is
larger than the previous value of the threshold . If that
is the case, then we increase very significantly the excitatory
weights going into the neuron that was the previous winner
(in order to reward it for its new success), and make a small
increase of the inhibitory weights leading to other neurons.

If the new reward is not greater than the previous threshold,
then we simply increase moderately all excitatory weights
leading to all neurons, except for the previous winner, and
increase significantly the inhibitory weights leading to the
previous winning neuron (in order to punish it for not being
very successful this time). Let us denote by the firing rates
of the neurons before the update takes place

(4)

We first compute and then update the network weights
as follows for all neurons :

• if
—
— ;
• else

—
— .

Since the relative size of the weights of the RNN, rather
than the actual values, determines the state of the neural net-
work, we then renormalize all the weights by carrying out the
following operations. First, for each we compute

(5)

and then renormalize the weights with

Finally, the probabilities are computed using the nonlinear
iterations (1) and (2). The largest of the ’s is again chosen
to select the new output link used to send the SP forward.
This procedure is repeated for each SP for each QoS class
and each source–destination pair.

B. Evaluation of the Percentage of SPS Needed During a
Connection

An important question is whether the scheme we have pro-
posed can only function if the number, or percentage, of SPs
(and, hence, ACKs) used is very high. This is a question that
we have examined attentively, both by examining the actual
length of SPs, and with numerous experiments [6]. The re-
sults of one of these experiments for a heavily loaded net-
work is summarized in Fig. 1, where we report the round-trip
delay experienced by SPs and DPs and by all packets, when
the percentage of SPs added on top of DP traffic was varied
from 5% to 100% in steps of 5%. In these experiments, the
user specified QoS Goal is “delay” so that what is being mea-
sured is the quantity that the user would like CPN to mini-
mize. The top curve shows the round-trip delay for SPs, while
the bottom curve is the round-trip delay for DPs, with the
average delay of all packets being shown in the middle. As
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Fig. 1. Average round-trip delay for smart (top) and dumb (bottom) packets, and average delay for
all packets (center) as a function of the percentage of SPs. These measurements were obtained for an
end-to-end connection in the presence of obstructing traffic on several links of the network.

expected, when there are 100% of SPs, the average delay for
SPs is the same as the average delay for all packets. The in-
teresting result we observe is that as far as the DPs are con-
cerned, when we have added some 15% or 20% of SPs, we
have achieved the major gain in delay reduction. Going be-
yond those values does not significantly reduce the delay for
DPs. In effect, DPs are typically full-sized Ethernet packets
(as are IP packets in general), while SPs and ACKs are 10%
of their size. Thus, if 20% of SP traffic is added, this will re-
sult in 14% traffic overhead, if ACKs are generated by both
DPs and SPs, and only 4% of traffic overhead if ACKs are
only generated in response to SPs. Note also that ACKs and
DPs do not require a next hop to be computed at each node,
contrary to IP packets. Both in CPN and IP we can of course
reduce next-hop computations using appropriate caching and
hardware acceleration.

III. COLD START SETUP TIME MEASUREMENTS

One of the major requirements of CPN is that it should
be able to start itself with no initial information, by first ran-
domly searching, then progressively improving its behavior
through experience. Since the major function of a network
is to transfer packets from some source to some destina-
tion , CPN must be able to establish a path from to
even when there is no prior information available in the net-
work. The network topology we have used in these experi-
ments is shown in Fig. 2, with the source and destinations at

Fig. 2. CPN network topology for cold start experiments.

the top left and bottom right ends of the diagram. The net-
work contains 24 nodes, and each node is connected to four
neighbors. Because of the possibility of repeatedly visiting
the same node on a path, the network contains an unlimited
number of paths from to . However, the fact that SPs are
destroyed after they visit 30 nodes, does limit this number
though it still leaves a huge number of possible paths. In this
set of experiments, the network is always started with empty
MBs, i.e., with no prior information about which output link
is to be used from a node, and with neural network weights
set at identical values, so that the neural network decision
algorithm at nodes initially will produce a random choice.
Each point shown on the curves of Figs. 3 to 5 are a result
of 100 repetitions of the experiment under identical starting
conditions.

Let us first discuss Fig. 3. An abscissa value of ten indi-
cates that the number of SPs used was ten, and—assuming
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Fig. 3. Average network setup time from cold start, as a function of the initial number of SPs.

that the experiment resulted in an ACK packet coming back
to the source—the ordinate gives the average time (over the
100 experiments) that it elapse between the instant that the
first SP was sent out, and the first ACK comes back. Note
that the first ACK will be coming back from the correct des-
tination node and that it will be bringing back a valid for-
ward path that can be used by the subsequent useful traffic.
We notice that the average setup time decreases significantly
when we go from a few SPs to about ten, and after that, the
average setup time does not improve appreciably. Its value
somewhere between 10 and 20 ms actually corresponds to
the round-trip transit time through the hops. This does not
mean that it suffices to have a small number of SPs at the be-
ginning, simply because the average setup time is only being
measured for the SPs which are successful; unsuccessful SPs
are destroyed after 30 hops.

Thus, Fig. 4 gives a more complete understanding of
what is happening. Again for an -axis value of over ten
packets, we see that the probability of successfully setting
up a path is one, while with a very small number of packets
this figure drops down to about 0.65. These probabilities
must of course be understood as the empirically observed
fraction of the 100 tests which result in a successful
connection. The conclusion from these two data sets is that
to be safe, starting with an empty system, a fairly small
number of SPs, in the range of 20–100, will provide almost
guaranteed setup of the connection, and the minimum
average setup time. Fig. 4 provides some insight into the

dynamics of the path being set up. Inserting SPs into the
network is not instantaneous, and they are fed into the
network sequentially by the source. The rate at which
they are fed in is determined by the processing time
per packet at the source, and also by the link speeds.
Since here the link speed is 100 Mb/s and because SPs
are only some 200 B long at most, the limiting factor
appears to be the source node’s processing time. Since
the previous curves show that connections are almost
always established with as few as ten SPs, and because
the average round-trip connection establishment time is
quite short, we would expect to see that a connection
will generally be established before all the SPs are sent
out by the source. This is exactly what we observe in
Fig. 5. The axis shows the number of SPs sent into
the network, while the axis shows the average number
sent in (over the 100 experiments) before the first ACK
is received. For small numbers of SPs sent out by the
source, until the value ten or so, the relationship is linear.
However, as the number of SPs being inserted into the
network increases, we see that after (on the average)
13 packets or so have been sent out, the connection is
already established (i.e., the first ACK has returned to the
source). This again indicates that a fairly small number
of SPs suffice to establish a connection. In addition to
the experiments on the testbed, simulations have been
conducted for a 1000-node network with results which
are significantly similar.
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Fig. 4. Probability of successful connection from cold start, as a function of the initial number
of SPs.

Fig. 5. Average number of SPs needed to obtain a path to the destination.
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Fig. 6. Experimental setup for dynamic QoS control.

IV. DYNAMIC QOS-BASED TRAFFIC ROUTING FROM A WEB

SERVER OVER THE INTERNET

In this section, we present an experiment in which a CPN
“cloud” or subnetwork, operating within the Internet, is used
to dynamically route traffic which is being sent by a web
server WS back to a web user through different Internet
ports so as to minimize the delay from the WS back to the
user .

In the system layout shown in Fig. 6, a web user at work-
station accesses to a web server WS via the Internet. The
WS is connected to a CPN cloud which acts as an adaptive
flow control system, and the CPN cloud is in turn connected
to the Internet via two distinct ports which are implemented
with conventional IP routers: A30, which connects into ISP
ISP , and A40, which connects into another provider, ISP .

User requests that transfers from WS back to via the
Internet arrive with minimum delay. Thus, in this experiment,
“delay” is the QoS Goal that has selected. Thus, in order
to evaluate whether the CPN adaptive controller is indeed
able to satisfy the user’s QoS Goal, we artificially introduced
additional delay values at the two alternate ports A30 and
A40 so that the difference in delay between the two can be
varied in a controlled manner.

WS responds to these requests by generating standard In-
ternet IP packets, which enter into the CPN shown at the top
of the figure; these packets then tunnel through the CPN,
which dynamically directs them back into the Internet via
two alternate ISP ports A30 and A40 shown at the right side
of the figure. From there they merge into the Internet and re-
turn to the as shown.

Figs. 7 and 8 show the fraction of traffic taking A30 (L)
and A40 (R) as this delay is varied, and demonstrate that the
CPN subsystem is indeed dynamically directing traffic quite
sharply in response to the user’s QoS goal. Figs. 9 and 10
show that when the delay through either port is identical, the

instantaneous traffic via both ports is very similar. On the
other hand, Figs. 11 and 12 clearly show that the instanta-
neous traffic strongly differs depending on which port has a
higher measured delay, as do Figs. 13 and 14, but for the op-
posite imbalance in delay. Figs. 11–14 also clearly show that
the dynamic control provided by CPN requires an adaptation
time (seen at the left of the figures, and roughly of the order
of 100 ms) before most of the traffic actually takes the best
output port in each case.

V. CONCLUSION

In this paper, we have discussed the concept of a net-
work that uses online measurement and probing as a means
to estimate the QoS that may be expected from different
routing choices, and then uses the outcome to forward pay-
load along the resulting paths. The system we propose car-
ries out probing with SPs continuously during a connection.
ACK packets coming back from the destination nodes to the
intermediate and source nodes bring back the results of the
probing, and provide information about the paths which have
been selected based on user QoS Goals. We have summarized
experimental data showing that a relatively that a compar-
atively small fraction of SPs and ACKs, compared to total
user traffic, is needed to serve the users’ QoS Goals, and that
a small number of SPs can suffice to initially set up paths.
We have also shown how a CPN subsystem can be inserted
into the Internet to carry out traffic engineering functions
based on QoS. Other results we have not reported on here
have discussed critical applications such as voice-over-CPN
[10]. Future work will consider the experimental insertion of
multiple CPN clouds into the Internet so as to address the
QoS needs of selected groups. We will also study the use of
mechanisms derived from CPN to provide protection against
denial-of-service attacks to network nodes.
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Fig. 7. Percentage of traffic flowing through port A30 as a function of the difference in delay
between the two ports.

Fig. 8. Percentage of traffic flowing through port A40 as a function of the difference in delay
between the two ports.
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Fig. 9. Instantaneous traffic flow through port A30 when delays are identical.

Fig. 10. Instantaneous traffic flow through port A40 when delays are identical.
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Fig. 11. Instantaneous traffic flow at port A30 when DA30�DA40 = 160 ms.

Fig. 12. Instantaneous traffic flow at port A40 when DA30�DA40 = 160 ms.
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Fig. 13. Instantaneous traffic flow at port A30 when DA30�DA40 = �160 ms.

Fig. 14. Instantaneous traffic flow at port A40 when DA30�DA40 = �160 ms.
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