
SLA Based Profit Optimization in Autonomic
Computing Systems

Li Zhang
IBM

T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

zhangli@us.ibm.com

Danilo Ardagna
Politecnico di Milano

Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133 Milano, Italy

ardagna@elet.polimi.it

ABSTRACT
With the development of the Service Oriented Architecture
(SOA), organizations are able to compose complex applica-
tions from distributed services supported by third party provi-
ders. Under this scenario, large data centers provide services
to many customers by sharing available IT resources. This
leads to the efficient use of resources and the reduction of
operating costs. Service providers and their customers often
negotiate utility based Service Level Agreements (SLAs) to
determine costs and penalties based on the achieved perfor-
mance levels. Data centers often employ an autonomic com-
puting infrastructure and use a centralized dispatch and con-
trol component (a dispatcher) to distribute the user requests
to backend servers, and to set the scheduling policies at each
server. This dispatcher can also decide to turn ON or OFF
servers depending on the system load. This paper designs a
set of dispatching and control policies for the dispatcher in
such service oriented environments. The objective is to max-
imize the provider’s profits associated with multiple class of
SLAs. We show that the overall problem is NP-hard, and de-
velop meta-heuristic solutions based on the tabu-search algo-
rithm. Experimental results are presented to show the benefits
of our approach.

Categories and Subject Descriptors:
[Performance and Reliability]: Quality of Service

General Terms: Performance, Algorithm, Management.

Keywords: Service delivery, monitoring, quality, and man-
agement, e-Business, Service reliability and availability Qual-
ity of service models.

1. INTRODUCTION
With the development of the Service Oriented Architecture
(SOA), organizations often compose complex applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSOC’04,November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011 ...$5.00.

from distributed services supported by third party providers.
Under this scenario, large data centers provide services to many
customers by sharing available IT resources. This leads to the
efficient use of resources and the reduction of the operating
cost. The service providers and their customers often nego-
tiate utility based Service Level Agreements (SLAs) to deter-
mine costs and penalties based on the achieved performance
levels. The service provider need to manage its resource to
maximize its profits. Utility based optimization approaches
are commonly used to provide load balancing and to obtain
the optimal trade-off among job classes for Quality of Service
levels. Utility functions are also used as guidelines and for re-
alizing high level trends. One main issues of these systems is
the high variability of the workload. The ratio of the peak load
to light load for Internet applications is usually on the order of
300% [7]. Due to such large variations in loads, it is difficult
to estimate workload requirements in advance, and worst-case
capacity planning is either infeasible or extremely inefficient.
In order to handle workload variations, many data centers have
started to implement autonomic computing infrastructuresand
employ self-managing techniques for resource allocations [12,
6, 4]. In such systems, resources are dynamically allocated
among applications considering short-term demand estimates.
The goal is to meet the application requirements while adapt-
ing the IT architecture to workload variations.

Figure 1 shows the hardware architecture of a data center
implementing an autonomic infrastructure. Applications are
allocated and de-allocated on demand on heterogeneous server
clusters by the dispatcher. Each server can run under different
operating systems and instantiate application processes on de-
mand. Operating system, applications and data are accessed
by storage networking technologies (SAN/NAS systems).

The main components of the dispatcher [15] include a mon-
itor, a predictor and a resource allocator. The system monitor
measures the workload and performance metrics of each ap-
plication, identifies requests classes and estimates requests ser-
vice time. The predictor forecasts system load conditions from
load history. The allocator determines the best system config-
uration as well as the assignment of applications to servers.

This paper focuses on the design of a resource allocator for
such service oriented environments. The scheduling policy is
designed to maximize the revenue while balancing the cost
(or energy) of using the resources. The overall profit (util-
ity) includes the revenues and penalties incurred when Qual-

173

Figure 1: Autonomic Infrastructure Architecture

ity of Service guarantees are satisfied or violated. The rev-
enue depends on the QoS levels in a discrete fashion. The
revenue gained per request increases with the achieved per-
formance level. This revenue function is realistic and is cur-
rently adopted in many Web hosting contracts. The allocator
can establish the request volumes and the scheduling policy at
each server. The allocator can also decide to turn ON or OFF
servers depending on the system load. We show that the over-
all problem is NP-hard. We further develop meta-heuristic so-
lutions based on the tabu-search algorithm. The neighborhood
exploration is based on a fixed-point iteration, which requires
solving a new network allocation flow problem. Experimental
results are presented to show the benefits of our approach.

The remainder of the paper is organized as follows. Sec-
tion 2 describes other literature approaches. Section 3 intro-
duces the overall system model. The optimization problem
formulation is presented in Section 4. Section 5 analyzes the
structural properties of the optimization problem. The struc-
tural properties are the basis for the search algorithms in Sec-
tion 6. Experimental results in Section 7 demonstrates the
quality and efficiency of our solutions.

2. RELATED WORK
Recently, the problem of maximization of SLA revenues in
shared data center environments has attracted vast attention
by the research community. Overviews of self-managing in-
frastructures can be found in [3, 7, 14, 6]. The problem of
maximizing SLAs can be formulated as the dual problem of
minimizing system response times and maximizing through-
put as in [16]. That work considers the problem of hosting
multiple web sites at the data center and proposes a static al-
gorithm to assign Web sites to a set of servers. This algorithm
is executed once a week, based on long term predictions. A
dynamic algorithm implements a real time dispatcher and as-
signs incoming requests to servers considering short term load
forecasts. In [13] continuous yield functions are introduced

and the problem of maximization of yield is formulated as a
scheduling problem. The work proposes a greedy scheduling
algorithm while incoming requests are assigned to servers ac-
cording to the queue length. The effectiveness of the overall
approach is verified by simulation. The authors in [6] faced
the dual problem of minimizing customers’ discontent func-
tion considering an online estimate of service time require-
ments and their response times. The optimal Generalized Pro-
cessor Sharing (GPS) scheduling policy is identified by the La-
grange multipliers. In [11], the authors proposed an analytical
formulation of the problem to maximize the multi-class SLAs
in heterogeneous web clusters considering the tail distribution
of the requests response times. This problem is solved by a
fixed point iteration which converges to the global optimum of
the system (the cost function is concave continuous and dif-
ferentiable), but the number of servers in every cluster is fixed
independent of the load condition. The control variables are
the GPS parameters at each cluster and the frequency of re-
quests assigned to different clusters. The load is balanced in
each cluster. The problem of minimizing the costs associated
with servers is considered in [7], where the main costs associ-
ated with the use of resources is energy consumption. The au-
thors proposed a greedy resource allocation algorithm which
reconfigures cluster farms on the basis of servers utilization.
Finally, [5] presents a study which estimates the benefits of
resource multiplexing of on-demand data center environments
with respect to the spatial allocation granularity and the tem-
poral allocation granularity. The spatial allocation granularity
refers to the granularity of the control, or the resource units
allocated to customer classes. The temporal allocation granu-
larity refers to the inter-scheduling time of the controller. The
study proposes an analysis to evaluate the temporal granularity
with respect to the accuracy of the predictor.

3. THE SYSTEM MODEL
We consider the data center as a distributed computer sys-
tem consisting of M heterogeneous clusters. Each cluster is
built from a number of homogeneous machines. There are
totally K classes of request streams. Each class of requests
can be served by a collection of servers. The dispatcher as-
signs the incoming requests to individual servers in the clus-
ter. The dispatcher can also determine the scheduling policy
at each server. Each server has a GPS scheduler. The allo-
cation of weights for each class can be set by the dispatcher.
The controller can also turn OFF and ON individual servers
inside the clusters in order to reduce the overall cost. In our
model, the SLA is defined by considering only service re-
sponse times. For each job class, a step-wise utility func-
tion is defined to specify the per request revenue (or penalty)
incurred when the corresponding average response times as-
sumes a given value. Figure 2 shows, as an example, the
plot of a utility function. Intuitively, customers are willing
to pay a higher rate per request when their requests are served
with lower response times. We observe the discontinuity in the
function in Figure 2. As we will discuss in the next sections,
this discontinuity in the cost function and the discrete nature
of the problem make the optimization problem NP-hard. In
the literature the load balancing problem with SLA profits was
faced considering always continuous convex and differentiable

174

Figure 2: Utility Function

cost functions (see for example [7, 11, 16, 12]). Step-wise
functions of the mean response times are more intuitive from
the customer point of view, and are currently adopted [4]. A
user request can be supported by multiple-tier applications.
We apply our control schemes and solve the optimization for
independent tiers. The data center is modeled by a queueing
network composed of a set of multi-class single-server queues
and a set of multi-class infinite-server queues. The former rep-
resents the collection of servers within heterogeneous clusters.
The infinite-server queues represent the user-based delays, or
think times, between the server completion of one request and
the arrival of the subsequent requests within a session (see Fig-
ure 3). User sessions begins with a class k request arriving to
the data center from an exogenous source with rate λk. Upon
completion the request either returns to the system as a class k′

request with probability pk,k′ or it completes with probability
1−∑K

l=1 pk,l. Let Λk denote the aggregate rate of arrivals for
class k requests Λk =

∑K
k′=1 Λk′pk′,k + λk. A user request

class corresponds to a single interaction of the end user within
the execution of a service of the SOA model.

The following notation will be adopted in later sections:

Mi := number of homogeneous servers within

cluster i;

yi := number of cluster i servers ON;

Ci := capacity of a single server in cluster i;

µk := service rate for class k jobs at a server of

capacity 1;

λi,k := load at cluster i for class k jobs;

λi,m,k := load at server m in cluster i for class k jobs;

φi,m,k := scheduling GPS parameter for class k jobs

at server m within cluster i;

Ri,m,k := response time for class k jobs at server m

in cluster i;

Uk(R) := utility step-wise function for class k jobs;

vl,k := revenue/penalty incurred when the response

time for class k jobs lays in the l-th level;

L := number of thresholds for utility functions;

ci := cost of a server in status ON in cluster i.

Figure 3: Network Queue Model

Note that ci, the cost associated with turning on a server
in cluster i, is a function of inter-scheduler time. In prac-
tice, ci ∝ Ci, if power is the main cost associated with turn-
ing on a server. The analysis of multi-class queueing system
is notoriously difficult. We use the GPS bounding technique
in [17] to approximate the queueing system. Under GPS the
server capacity devoted to class k requests at time t (if any) is
Ciφi,m,k/

∑
k′∈K(t) φi,m,k′ , where K(t) is the set of classes

with requests waiting at server m in cluster i at time t. Re-
quests within each class at every server are executed either in
a First-Come First-Serve (FCFS) or a Processor Sharing (PS)
manner. Under FCFS, we assume that the service require-
ments for class k requests at cluster i have an exponential
distribution with mean (Ciµk)−1, whereas under PS service
requirements of class k requests at cluster i follow a general
distribution with mean (Ciµk)−1, including heavy-tail distri-
butions for Internet applications. Since many servers exploit
the local operating system mechanisms for scheduling work
within a class, the assumption of PS within each class is rea-
sonable for a wide range of servers found in practice [11]. In
the approximation, each multi-class single-server queue asso-
ciated with server m in cluster i is decomposed into multiple
single-class single-server queues with capacity greater than or
equal to Ciφi,m,k. The response times evaluated in the iso-
lated per-class queues are then upper bounds on the corre-
sponding measures in the original system.

4. OPTIMIZATION PROBLEM
Given the system model in Section 3 we formulate the cost
optimization problem below. We would like to maximize the
overall profit by controlling the request routing and the pro-
cessor sharing scheduling policies.

max

M∑
i=1

(
yi∑

m=1

K∑
k=1

Uk(Ri,m,k)λi,m,k − ciyi

)
(1)

yi∑
m=1

λi,m,k = λi,k (2)

M∑
i=1

λi,k = Λk (3)

λi,k ≥ 0 if yi > 0 (4)

175

K∑
k=1

φi,m,k ≤ 1 (5)

Ri,m,k =
1

Ciµkφi,m,k − λi,m,k
; yi > 0; (6)

λi,m,k < Ciµkφi,m,k

Uk(Ri,m,k) =

L∑
l=1

vl,kSATl,k(Ri,m,k) (7)

SATl,k(Ri,m,k) = 1 ⇔ zl−1,k < Ri,m,k ≤ zl,k;

z0 = 0; zL+1 = ∞
L∑

l=1

SATl,k(Ri,m,k) = 1 (8)

yi ∈ [0,Mi]; yi integral

Equation (2) entails that the traffic assigned to individual
servers in a cluster equals the overall load assigned to the
cluster. Equation (3) defines the overall load of class-k jobs
as a function of exogenous arrivals and feed-back probabil-
ity. Note that in autonomic computing systems the exogenous
arrival rate can be the prediction of the arrival rate for the cur-
rent inter-scheduler period. Equations (4) assign requests to
clusters according to the status of the cluster (servers ON or
OFF). Finally, equations (5-7) express GPS scheduling bounds
and utility functions in terms of response times (the condition
λi,m,k < Ciµkφi,m,k guarantees that resources are not satu-
rated). Equation (8) guarantees that at each server, each job
class is assigned to one SLA level, SATl,k(R) is the indicator
function for class k job which equals 1 if the response time
R lays in the l-th level and is 0 otherwise. Here yi, λi,m,k

and φi,m,k are decision variables and overall we have a Mixed
Integer Programming problem.

In the following section, after fixing some variables, the
problem will be reduced to a multi-choice binary knapsack
(MKP) and an NP-hard network flow resource allocation prob-
lem. So the overall problem is NP-hard. The problem is solved
by implementing a tabu-search algorithm; the evaluation of the
neighborhood is based on a fixed point iteration of MKP and
network flow resource allocation problems. The optimization
technique will be discussed in Section 6.

5. ANALYSIS OF THE PROBLEM
Let us first fix the number of servers ON in a cluster. The
problem of finding the best routing and scheduling parameters
λi,m,k and φi,m,k, in order to maximize revenue at a single
server, becomes a multiple-choice binary knapsack problem
and a network flow resource allocation problem.

The Multi-choice Binary Knapsack Problem (MKP) is a
variant of the classical Knapsack Problem. Let there be n
groups of items. Group l has nl items. Each item of the group
has a particular value and it requires resources. The objective
of the MKP is to pick exactly one item from each group to
maximize the total value of the collected items, subject to the
resource constraint of the knapsack. In mathematical notation,
let cl,k be the value of the k-th item in l-th group, wl,k the
resource requirement, W the resource bound of the knapsack

and xl,k = 1 if the k-th item in l-th group is picked in the
solution, 0 otherwise. Then the problem is:

max

n∑
l=1

nl∑
k=1

cl,kxl,k

n∑
l=1

nl∑
k=1

wl,kxl,k ≤ W

nl∑
k=1

xl,k = 1 xl,k ∈ {0, 1}

If the number of servers ON and the load at each server are
fixed, then in order to maximize the objective function, one
can maximize revenues at single servers obtaining

∑M
i=1 yi

sub-problems:

max

K∑
k=1

L∑
l=1

vl,kλi,m,kSATl,k(Ri,m,k(φi,m,k))

SATl,k(Ri,m,k(φi,m,k)) = 1 ⇔
zl−1,k <

1

Ciµkφi,m,k − λi,m,k

≤ zl,k ⇔
1

zl,k
≤ Ciµkφi,m,k − λi,m,k <

1

zl−1,k

K∑
k=1

φi,m,k ≤ 1

L∑
l=1

SATl,k(Ri,m,k(φi,m,k)) = 1

Here φi,m,k are the decision variables with i = 1, ..,M , m =
1, .., yi and k = 1, ..,K. In order to satisfy the constrains and
save resources for scheduling, the previous inequality can be
satisfied by setting:

SATl,k = 1 ⇔ φi,m,k =
1

zl,kCiµk
+

λi,m,k

Ciµk

This corresponds to selecting one interval of the utility func-
tion (see Figure 2) when the response time equals to the upper
bound of the interval. We now have the MKP problem where
parameters are defined by:

cl,k = vl,kλi,m,k

wl,k =
1

zl,kCiµk
(9)

W = 1 −
K∑

k=1

λi,m,k

Ciµk
(10)

xl,k = SATl,k(Ri,m,k(φi,m,k))

All groups have size L, the number of thresholds of utility
functions. Note that equation (10) corresponds to the system
equilibrium condition defined in equation (7), while the bound
that keep selecting one item from every group in the MKP for-
mulation corresponds to select one interval of the utility func-
tion for each SLA request job class.

176

Figure 4: Network Flow Model

Now consider a directed network consisting of nodes V and
direct arcs A. The arcs av1v2 ∈ A carry flow fv1v2 , from
node v1 ∈ V to node v2 ∈ V . The flow is a real variable that is
constrained to be bounded below by a constant lv1v2 and above
by a constant uv1v2 . Suppose a single source node s ∈ V ,
satisfies

∑
asv2

fsv2 − ∑
av1s

fv1s = R > 0. This value R,
the net outflow from the source, is a constant and represents
the amount of resource available to be allocated. There are
n sink nodes v2 ∈ N ⊆ V which have the property that
their net inflow

∑
av1v2

fv1v2 −
∑

av2v3
fv2v3 > 0. All other

nodes v2 are transshipment nodes that satisfy
∑

av1v2
fv1v2 −∑

av2v3
fv2v3 = 0. A function Fv2(x) is associated with each

sink node v2 and the optimization problem is:

max
∑

v2∈N
Fv2(

∑
av1v2

fv1v2 −
∑

av2v3

fv2v3)

∑
asv2

fsv2 −
∑
av1s

fv1s = R

lv1v2 ≤ fv1v2 ≤ uv1v2 ∀v1, v2 ∈ V
If the number of server ON and the scheduling policy at

each server are fixed, then in order to maximize the objective
function one can establish the load at each server and solve the
following K sub-problems:

max
∑L

l=1 vl,kλi,m,kSATl,k(Ri,m,k(λi,k))∑yi
m=1 λi,m,k = λi,k∑M

i=1 λi,k = Λk (11)

λi,k ≥ 0 if yi > 0

SATl,k(Ri,m,k(λi,k)) = 1 ⇔
zl−1,k < 1

Ciµkφi,m,k−λi,m,k
≤ zl,k ⇔

Ciµkφi,m,k − 1
zl−1,k

< λi,m,k ≤ Ciµkφi,m,k − 1
zl,k∑L

l=1 SATl,k(Ri,m,k(λi,m,k)) = 1

Here λi,m,k are the decision variables with i = 1, ..,M , m =
1, .., yi and k = 1, ..,K. This problem is a special case of the
network flow resource allocation problem where the overall
flow is defined by equation (11), (i.e., the aggregate arrivals
for class k jobs) and the network is shown in Figure 4. A plot

Figure 5: Sink Cost Function

of sink cost functions is shown in Figure 5. The cost function
is discontinuous and the intervals where the function is linear
are defined by:

(fm
l−1, f

m
l] =

(
Ciµkφi,m,k − 1

zl−1,k
, Ciµkφi,m,k − 1

zl,k

]
.

Note that transhipments nodes represent server clusters, whi-
le sink nodes correspond to individual servers. The interval
bounds are a function of the scheduling policy, the capac-
ity of servers, and of utility function thresholds. Therefore,
different sink nodes are characterized by different cost func-
tions, with corresponding intervals characterized by the same
slope. Note also that the slopes are decreasing from left to
right and a sink function can obtain its maximum in any in-
terval (the maximum of a sink function depends on the slopes
and on the widths of intervals). If we consider different cost
functions these are translated by δ = −Ciµkφi,m,k (see Fig-
ure 4). Note also that if a server has limited capacity (i.e.,
Ciµkφi,m,k − 1/zl,k < 0) some intervals may be missing.
The cost functions are neither convex nor differentiable for
sink nodes. Therefore, the network flow resource allocation
problem is NP-hard [10]. Nevertheless, the following proper-
ties of the optimal solution can be proved.

THEOREM 1. In the optimum solution of a flow problem at
most one server is assigned to a request rate different from a
sink function upper edge interval.

PROOF. If we relax equation (11) bound, the optimization
problem has a trivial optimal solution. It assigns to each server
the load which corresponds to the individual optimum of sink
functions. (Note that each sink node corresponds to a server).
Let’s assume that in the optimal solution, two servers are as-
signed to a load λ′, λ′′ which do not coincide to upper edges
of corresponding intervals. Let v′ and v′′ be the correspond-
ing slopes and assume v′ > v′′. Then the solution can be
improved by increasing the load λ′ assigned to the first server
while decreasing λ′′ of the second one in order to satisfy the
flow equation (11) until λ′ coincide with the upper edge of the
interval. This contradicts the hypothesis that the solution is
optimal.

177

Table 1: Utility Function Proportionality Coefficients
Thresholds Costs

1.5 1000
5 250
10 150
20 100
50 50

100 30
1000 20
2000 10
5000 5

10000 −109

This property basically says that in the optimum solution
there is only one λ free assignment.

THEOREM 2. In the optimal solution of the flow problem,
theλ free assignment is in the interval which corresponds to
the lowest level of performance.

PROOF. Let’s consider an optimum solution, let λ′ be the
free assignment, and v′, the slope of the corresponding inter-
val. Assume that there is an assignment λ′′ which coincide
to an upper edge of an interval such that the corresponding
slope v′′ is greater that v′. Then the solution can be improved
increasing λ′ while decreasing λ′′ in order to satisfy the flow
equation (11). This contradicts the hypothesis that the solution
is optimal.

6. OPTIMIZATION TECHNIQUE
In the previous section we have shown that the optimization
problem is NP-hard. We now provide structural properties
of the problem. Based on these insights, we develop a tabu-
search algorithm in order to find a quasi-optimal solution. The
neighborhood exploration is based on a fixed point iteration
procedure together with solving a network flow problem. The
fixed point iteration procedure of the MKP determines the op-
timal scheduling policy, and the network flow problem deter-
mines the optimal routing policy. The next section will discuss
the fixed point iteration procedure. Section 6.2 will describe
the tabu-search algorithm implementation.

6.1 Fixed Point Iteration Procedure
The solution of the MKP problem is based on the HEU heuris-
tic described in [2] which provides solution on average equal
to 94% of the optimum. On the other hand, the literature does
not provide any results for the network flow allocation prob-
lem and we have developed a local search approach in order to
find a solution. The local search performs two dual moves in
order to improve the initial solution:

• Increase the performance level of low performance
servers by a unit and allocate their load to servers with
higher performance level.

• Decrease the performance level of high performance
servers by a unit and allocate their load to servers with
lower performance level.

Based on the properties described in theorem 1 and 2, at each
move, the load of the server with higher slope is increased and
the load at the server with the lowest slope is decreased, in
order to satisfy flow equation (11).

The local search starts increasing GPS parameters deter-
mined by the MKP solution. GPS parameters are modified
in order to allow more degrees of freedom for performing the
two moves in the second phase. We have implemented two
approaches to increase GPS parameters which derive two dif-
ferent fixed point iteration procedures:

• At each server, GPS parameters are increased fairly
among job classes assigned to the server, until their sum
equals to 1,

• At each server only one job class GPS parameter is in-
creased (again until sum locally equals to 1). The job
class is chosen by separately solving a flow problem for
each SLA class and selecting the class that gives the best
improvement in the solution of the flow problem.

In order to evaluate the quality of the solution, results of
the two approaches are compared with results of an exhaustive
search algorithm. Here we only need to compare the perfor-
mance of the algorithms for a fixed set of servers. Therefore,
the cost associated with servers is neglected and only revenues
are considered. Results are obtained by randomly generating
service rates µk and class request rate Λk . The number of
thresholds varied between 5 and 9, the utility functions have
fixed thresholds, proportional to the service time 1/µk, and
the cost scheme is also proportional to the service time [15].
The data center utilization varies between 0.2 and 0.8. Table 1
shows proportional coefficients for thresholds and costs. Note
that independent of the number of steps adopted, the revenue
associated with the last step equals −109, in this way we are
guaranteed that the last thresholds is never violated.

Tests consider some small instances of the problem, three
job classes and a data center with alternatively three and four
servers. The exhaustive search is very time consuming, when
the load is light (0.2 utilization of the overall capacity of the
data center) with 5 servers the solution of a single problem re-
quires a day. Overall 2600 tests were run and results are almost
independent by the number of thresholds of utility functions.
Results are shown in Table 2. We compare the solution with
revenues of the proportional assignment scheme. The propor-
tional assignment scheme employs:

λi,m,k = Λk
Ciµk∑M
l=1 Clµk

φi,m,k =
λi,m,k/µk∑K
l=1 λi,m,l/µl

Note that this proportional allocation scheme is a natural
way to assign the traffic and server capacity. It is provably
the best load balancing scheme in terms of stability regions
and it is used as a benchmark in the SLA profits maximization
literature [11].

Table 2 shows the average error, the maximum error (with
respect to the exhaustive search), the average improvement
and maximum improvement with respect to the proportional
assignment scheme. The table also reports the results of a third

178

Table 2: Fixed Point Iteration Results
Av. err% Max err% Av. impr% Max impr%

FPI1 15.73% 66.63% 131.75% 423.98%
FPI2 15.40% 69.16% 134.44% 413.37%

FPI 1+2 12.21% 66.17% 145.71% 423.98%

heuristic which takes the maximum between the solutions of
fixed point iterations 1 and 2. This is the implementation that
has been adopted in the tabu-search. In this way both the av-
erage error and the average improvement can be enhanced.

Exhaustive search results show that the optimal solution is
very different from the proportional assignment scheme. It
often favors the use of dedicated servers for job classes instead
of balancing the load among servers of clusters. The main
reason is that dedicated servers give better performance. Let’s
consider as an example two different servers with the same
capacity and two job classes. If the two job classes has, for the
sake of simplicity, the same arrival rate λ and the same service
time 1/µ the proportional assignment scheme has a response
time R1 = R2 = 1/(0.5(µ − λ)) twice than the dedicated
server scheme R1 = R2 = 1/(µ− λ).

Plot in Figure 6 shows, as an example, the trace of the ex-
ecution for the two fixed point iteration procedures. The plot
shows that the fixed point iterations converges very quickly
(usually less than 50 iterations). The execution time is about
10 seconds.

6.2 Tabu Search Algorithm
The overall optimization problem (1) is solved by implement-
ing a tabu-search algorithm [9]. The tabu search is an adaptive
procedure with the ability to make use of many other methods
and specialized heuristics, which it directs to overcome the
limitations of local optimality. Tabu search and meta-heuristic
approaches can be seen as a generalization of the local search
strategy. Let us consider a combinatorial optimization prob-
lem in the following form:

min c(x) : x ∈ X

where the cost function c(x) could be linear or nonlinear and
the condition x ∈ X is assumed to constrain specified com-
ponents of x to discrete values. The basic idea of local search
is to find a solution through a sequence of moves that lead
from one solution to another. Formally, a move s is a map-
ping defined on a subset X(s) of X, s : X(s) → X . As-
sociated with a feasible solution x is the set S(x) which con-
sists of those moves s ∈ S that can be applied to x, S(x) =
{s ∈ S : x ∈ X(s)} . A neighborhood of an admissible
solution x, referred to as N(x), is the set of solutions that
can be reached from x by applying all possible moves S(x),
N(x) = {x′ ∈ X : x′ = s(x), s ∈ S(x)} . The local-search
algorithm starts from an initial feasible solution x ∈ X and
explores the neighborhood N(x) searching for a solution x′

that improves the cost function c(x). If x′ is found in N(x),
the local search will explore N(x′). On the contrary, if N(x)
does not contain any solution improving the cost function, the
local-search algorithm terminates returning x as a local opti-
mum. The pitfall of this basic idea is that the cost function

Figure 6: Fixed Point Iteration Execution Trace

c(x) of most real problems has multiple local optima, which
can be significantly different from the global optimum. Meta-
heuristic approaches have been proposed as extensions of the
local search algorithm and do not stop at the first local op-
timum. Tabu search guides local search to continue explo-
ration without becoming confounded by an absence of improv-
ing moves and possibly without falling back into a local opti-
mum from which it previously emerged. From its ability to
incorporate and guide another procedure, tabu search may be
viewed as a meta-strategy. Tabu search proceeds in the follow-
ing way: if a solution x is found to be a local optimum with no
x′ ∈ N(x) improving the cost function, a solution x′′ ∈ N(x)
worsening the cost function can be selected. N(x′′) is then
explored, excluding x and a predefined number of previously
explored solutions in order not to cycle around the same local
optimum. Cycling is avoided by introducing tabu moves: a
subset T of S is created; elements of T are determined by his-
torical information of the search process, moves in T are not
applied to select the next solution for some iterations.

In our implementation, the neighborhood of the current so-
lution is defined by two moves which alternatively increase
and decrease the number of servers ON at each cluster. The
evaluation of each move requires a fixed point iteration of the
MKP and the network flow allocation problems in order to ob-
tain λi,m,k, φi,m,k values. The fixed point iteration discussed
in the previous section converges very quickly. But we can not
guarantee it converges to a global optimal solution. For this
reason in the evaluation of a move the fixed point iteration is
executed twice. The first execution considers as initial solution
the solution obtained by applying the proportional assignment
scheme. The second execution, tries to take advantage of the
current solution for routing and scheduling policies in the fol-
lowing way:

• If the move turns ON a server, then for the new server
we apply the scheduling policy of the cluster bottleneck;
the new server and the bottleneck server share equally
the load. For the other servers in the cluster, the routing
and scheduling policy remains the same as the previous
iteration.

• If the move turns OFF a server, then its load is assigned
to others servers in the same cluster proportionally ac-
cording to servers’ spare capacity, the scheduling policy
is unmodified. That is the scheduling of the previous
iteration is applied.

179

The execution that take advantage of the current scheduling
and routing assignment is more efficient and leads to the next
current solution in almost 70% of cases. The neighborhood
of a solution is defined by all solutions that can be obtained
by applying these moves to all clusters. The search is guided
by a tabu-search meta-heuristic in which only the short-term
memory mechanism has been implemented. Since the neigh-
borhood has almost the same size during the algorithm execu-
tion, the tabu list has a static size proportional to the number of
clusters in the system. Note that the neighborhood exploration
has complexity O(MK

∑M
i=1 Mi). In fact, each fixed point

iteration has complexity O(K
∑M

i=1 Mi), since it solves K
flow problems and a scheduling problem for each server ON
(the overall number of server is

∑M
i=1 Mi) and the tabu-search

neighborhood has size O(M).
In order to obtain good results, we faced the problem of

finding a high quality initial configuration for servers at the
data center. The number of servers ON yi are the main vari-
ables of the problem, since they affect performance and cost
function. On the other hand, λi,m,k and φi,m,k affect only per-
formance and can be considered fine tuning variables, while at
high level, the performance of a data center mainly depends
on the number of servers adopted. In order to find a good ini-
tial solution for the tabu-search algorithm, we have developed
two different methods to identify the initial configuration of
servers ON.

The first method finds the initial solution by applying a gree-
dy algorithm that assigns dedicated servers to job classes, ex-
ploiting the structure of the optimal solution discovered from
exhaustive search results. The greedy assigns job classes to
dedicated servers in a way that job classes have the same per-
formance level at every server. Note that if job class k is as-
signed to the performance level l then the revenue associated
with the class is simply vl,kΛk. The procedure starts assuming
that all requests can be satisfied according to the best quality
level. In the following, the algorithm iteratively tries to assign
job classes to dedicated servers and, if the capacity available
at the data center is not sufficient, then the performance level
of the class that corresponds to the minimum loss in revenue
(that is the class k such that (vl,k − vl+1,k)Λk is minimum) is
decreased.

The second method finds the initial solution by assigning
again dedicated servers to job classes but the assignment is
identified by the solution of a multiple-choice multiple-dimen-
sion knapsack problem (MMKP). A multiple-dimension knap-
sack problem is one kind of knapsack where the resources are
multi-dimensional, i.e. there are multiple resource constrains
for the knapsack. The MMKP problem is a combination of the
MKP problem presented in Section 5 and a multiple-dimension
knapsack. Formally, let there be n groups of items, group l has
nl items, let cl,k be the value of the k-th item in l-th group,
wl,k,i the amount of resource i required by the k item in the l
group and Wi the amount of the i resource. Then the problem
is:

max

n∑
l=1

nl∑
k=1

cl,kxl,k;

n∑
l=1

nl∑
k=1

wl,k,ixl,k ≤ Wi

nl∑
k=1

xl,k = 1;xl,k ∈ {0, 1}

Figure 7: Utility Function, Multiple Class Dedicated Servers

In this case, we assign job classes to dedicated servers in-
side each cluster which share the load assigned to the cluster.
Let us denote with yi,k the number of servers dedicated to job
class k at cluster i. Class load is assigned to cluster propor-
tionally to their capacity, i.e., λi,k = Ci∑M

i=1 Ci
Λk. Now let us

consider a very simple system consists of a single class and
single cluster. Let C be the capacity of servers and c the cost
associated with servers in status ON. If the load is balanced
among servers in the clusters then the response time is given
by R = 1

Cµ−λ/y
;λ < Cµy and the cost function becomes

U(R)λ− cy.
If we consider the utility function in Figure 2, it is easy to

see that the optimal values of y can be found by considering
the discontinuity points of the utility function. This is because
in the same interval, the response time is smaller and poten-
tially the number of server ON is greater. But the overall rev-
enue is the same. So, each discontinuity point could be char-
acterized by a couple yl = � λ

Cµ−1/zl
�, fl, where the latter is

the value of the cost function obtained with y = yl. The opti-
mal number of server ON could be evaluated this way simply
by inspection. Now consider the general system under study
but assign job classes to dedicated servers. Then the response
time is given by Ri,k = 1

Ciµk−λi,k/yi,k
;λi,k < Ciµkyi,k.

Considering each job class k and cluster i then the set
{(fl,k,i, yl,k,i)} can be determined (see Figure 7) as discussed
previously. Let be xl,k,i = 1 if class k is assigned to cluster
i and the corresponding SLA is l, and xl,k,i = 0 otherwise.
Then we can consider the problem:

max

M∑
i=1

K∑
k=1

L∑
l=1

fl,k,ixl,k,i

K∑
k=1

L∑
l=1

yl,k,ixl,k,i ≤ Mi (12)

L∑
l=1

xl,k,i = 1 xl,k,i ∈ {0, 1} (13)

where the set of constrains (12) implies that at most Mi servers
in each cluster are assigned and constrains (13) assign each job
class to exactly one SLA level in each cluster.

Also this MKKP problem has been solved implementing
HEU heuristic proposed in [2]. Next section will show re-

180

Figure 8: Revenue for Different Data Center Configurations

sults that can be obtained by adopting the two different initial
solutions.

7. EXPERIMENTAL RESULTS
In this section we present experimental results to illustrate the
effectiveness of our approach. The number of clusters varies
between 2 and 10. We consider the overall data centers with
200 servers and 200 job classes (and utility functions). Ser-
vice times were random generated and for each test case the
load was increased in a way that the utilization of data center
resources varied between 0.2 and 0.8.

We begin with a simple exercise to decide the cost associ-
ated with servers. The cost of a unit capacity server has been
evaluated considering the revenues obtained. Plots in Figure 8
shows revenues obtained by applying an exhaustive search al-
gorithm on data centers characterized by various capacities
and configurations for increasing load (numbers in parenthe-
sis specify the capacity of servers adopted). It is interesting to
note that revenues increase almost linearly but start decreas-
ing after a maximum that is obtained when the data center
utilization is about 0.5-0.6. After the maximum, job classes
are assigned to lower levels of performance and the increasing
load implies a loss in revenues instead of a potential benefit for
the Service Provider. Figure 9 shows that the maximum rev-
enue grows linearly with data center capacity with coefficient
almost equal to 160. In our tests we used 120 as unit capacity
cost; sensitivity analysis showed that a ±20% variation of unit
cost coefficient implies on average a ±15% variation of our
results.

Figure 10 reports, as an example, the trace of execution of
the tabu-search algorithm, while Table 3 reports the average
execution time for different problem instance sizes. Plots show
that the tabu-search approach is efficient since the current op-
tima can be improved after the analysis of worsening solutions.
Usually the initial solution obtained with the HEU heuristic
gives better performance in terms of both the initial and the
final solution when the load is high. When the load is light,
better results can be obtained by the greedy approach. The
second best solution identified by the algorithm usually dif-
fers from the best one by at most one server. Sometimes, the
second best solution uses the same number of servers as the
identified optimal but adopts different scheduling and routing
policies.

An estimate of the quality of our solution is obtained by

Figure 9: Maximum Revenue vs. Data Center Capacity Plot

comparing our results with results of an exhaustive search al-
gorithm. Tests considered data centers with two clusters shared
by 3 job classes for increasing loads. In order to keep the anal-
ysis tractable a cluster with yi servers ON was modeled as
a single server with capacity Ciyi. Results are quite good.
The reason is, with this approximation, the exhaustive search
performance of a single cluster are yi times better than that
obtained with yi servers. The average error was about 30%
varying between 5-70%. The error increases with the utiliza-
tion of the data center since the number of servers adopted in
the solution also increases and the inaccuracy of the estimation
grows.

In order to compare our results with the adoption of the pro-
portional assignment scheme, the number of servers to turn
ON is evaluated as the number of servers that keeps the utiliza-
tion of the data center equals to 0.6. This is according to the
greedy solutions which adopt utilization thresholds in resource
allocation control as described in [7] and [1] (We empirically
verified that applying proportional assignment, SLA are opti-
mized when resource utilization is approximately 0.6). Con-
sidering this scenario, our approach improves SLA revenues of
one order of magnitude since for the same load our controller
is able to reduce the number of servers ON. We further inspect
the solutions and identified islands of servers which share the
load inside clusters. But in general, the load is not equally
balanced among all of the servers of a cluster.

In most of the cases, our resource allocator adopts all servers
available at the data center when the load reaches about 50%
of its capacity. When the load is light, turning some server
OFF provides better results. In order to evaluate the effective-
ness of turning servers OFF, Table 4 compares results that can
be achieved by our resource allocator with results that can be
obtained by turning all servers ON and adopting our optimal
routing and scheduling policies (that is by applying the fixed
point iteration). Overall 200 tests were considered, as the table
shows turning servers OFF allows to improve the cost function
by about 25%, exploiting the trade off between higher rev-
enues (which can be obtained by turning all servers ON) and
the costs associated with servers.

8. CONCLUSIONS
We proposed an resource allocation controller for autonomic
computing data center environments which maximizes the pro-
vider profits associated with multi-class Service Level Agree-

181

0

10000

20000

30000

40000

50000

60000

70000

80000

0 20 40 60 80 100

Iteration

N
et

 R
ev

en
u

es

Greedy Current Solution Greedy Current Optima
MKKP Current Solution MKKP Current Optima

Figure 10: Execution Trace of the Tabu-search Algorithm for
Different Initial Solutions

ments. The cost model consists of a class of utility functions
which include revenues and penalties incurred depending on
the achieved level of performance and the cost associated with
servers. The overall optimization problem is NP-hard and we
developed a meta-heuristic solution based on the tabu-search
algorithm. Experimental results show that revenues that can be
obtained with a proportional assignment scheme can be signif-
icantly improved. We verified the quality of our solution with
exhaustive search. Future work will extend the model in order
to include the tail distribution of response times in the opti-
mization problem.

9. REFERENCES
[1] Abdelzaher, T. F., Shin, T.,F., Bhatti, N. 2002.

Performance Guarantees for Web Server End-Systems:
A Control-Theoretical Approach. IEEE Trans. on
Parallel and Distributed Systems. 13, 1, 80-96.

[2] Akbar, M. M., Manning, E.,G., Shoja, G., C., Khan, S.
2001. Heuristic solution for the Multiple-Choice
Multiple-Dimension Knapsack problem. Conference on
Computational Science, San Francisco, USA.

[3] Appleby, K., Fakhoury, S., Fong, L., Goldszmidth, G.,
Kalantar, M., Krishnakumar, S., Pazel, D. P., Pershing,
J., Rochwerger, B. 2001. Oceano- SLA Based
Management of a Computing Utility. In Proc. of the
IFIP/IEEE Symposium on Integrated Network
Management, 855-868.

[4] Boutilier, C., Das, R., Kephart, G. Tesauro, G. Walsh W.
2003. Cooperative Negotiation in Autonomic Systems
using Incremental Utility Elicitation. To appear,
Uncertainty in Artificial Intelligence.

[5] Chandra, A., Goyal, P., Shenoy, P. 2003. Quantifying the
Benefits of Resource Multiplexing in On-Demand Data
Centers. In Proc. of the 1st Workshop on Algorithms
and Architectures for Self-Managing Systems, San
Diego, CA.

[6] Chandra, A., Gong, W., Shenoy, P. 2003. Dynamic
Resource Allocation for Shared Data Centers Using
Online Measurements. In Proc. of ACM SIGMETRICS
2003, Poster Session.

[7] Chase , J. S., Anderson, D. C. 2001 Managing energy
and server resources in hosting centers. In Proc. of the

Table 3: Average execution time (in minutes) of the tabu search
algorithm for different problem sizes

M Total numb. of servers K Av. execution time
4 80 80 2.5
6 120 120 7.1
8 160 160 13.3

10 200 200 30.6

Table 4: Average improvement of the cost function obtained by
turning servers OFF as a function of data center utilization

Data center utilization Av. impr%
0.2 30.5%
0.3 27.86%
0.4 17.22%

eighteenth ACM symposium on Operating systems
principles, 103-116.

[8] Chen., X., Mohapathra, P, Chen, H. 2001. An Admission
Control Scheme for Predictable Server Response Time
for Web Access. In Proc. of WWW 2001, 545-554.

[9] Glover, F., W., Laguna, M. 1997. Tabu Search. Kluwer
Academic Publishers.

[10] Kim, D., Pardalos, P.M. 1999. Dynamic Slope Scaling
and Trust Interval Techinques for Solving Concave
Piecewise Linear Network Flow Problems. Networks
35, 3, 216-222.

[11] Liu, Z., Squillante, M. S., Wolf, J. 2001 On maximizing
service-level-agreement profits. In Proc. of the 3rd ACM
conference on Electronic Commerce, 213-223.

[12] Liu, Z., Squillante, M. S., Wolf, J. 2002. Optimal
Resource Management in e-Business Environments with
Strict Quality-of-Service Performance Guarantees.
IEEE Conference on Decision and Control.

[13] Shen, K., Tang, H., Yang, T. 2002. A Flexible QoS
Framework for Cluster-based Network Services.
citeseer.nj.nec.com/485133.html.

[14] Urgaonkar, B., Shenoy, P., Roscoe, T. 2002. Resource
Overbooking and Application Profiling in Shared
Hosting Platforms. ACM SIGOPS Operating Systems
Review, 36, 239-254.

[15] Verma, A., Ghosal, S. 2003. On Admission Control for
Profit Maximization of Networked Service Providers. In
Proc. of WWW 2003 Conference, 128-137.

[16] Wolf, J., Yu, P. S. 2001. On balancing the load in a
clustered web farm. ACM Transactions on Internet
Technology, 1,2, 231-261.

[17] Zhang, Z. L., Towsley, D., Kurose, J. 1995. Statistical
analysis of the generalized processor sharing
scheduling discipline. IEEE Journal on Selected Areas
in Communications, 13,6, 1071-1080.

182

