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Abstract— Self-management has often been proposed as a
means to reduce the growing complexity of administration in
distributed systems. We argue that this can be achieved through
aggressive automation of management tasks. To reach a high level
of automation we propose to take an inference-based approach:
codify best practices so that they can be reasoned about and
adapted at runtime. Concerns specific to distributed systems are
dealt with by the innate support for knowledge sharing.

We introduce the methodology along with a reference archi-
tecture. The method’s validity is tested by applying a preliminary
implementation to a handful of practical problems.

I. INTRODUCTION

Computer networks interconnect a growing number of in-
creasingly heterogeneous devices. Correspondingly, adminis-
tration complexity is rising, leading to a reduction in over-
all system stability and an increase in maintenance cost.
Management actions and subtle changes in the underlying
infrastructure can have potentially widespread, unforeseen
consequences.

To increase resilience we need to decrease dependence on
human intervention. Not only is manual labor costly, recent
figures show that it is the major cause of security related issues
in enterprise networks [1]. Also, humans are increasingly be-
coming the performance bottleneck in the system, for instance
when dealing with worm containment.

We propose an integrated approach to management of dis-
tributed resources: reducing perceived administration complex-
ity by automating resource management tasks where possible.
The ultimate goal is to make manual management disappear
completely. In contrast to many other projects, however, our
approach is decidedly bottom-up. By way of incremental steps
(i.e., automating existing tasks) and support for composing
complex tasks out of reusable smaller ones, the system be-
comes more self-organized. Adaptation occurs through run-
time task optimization, based on up-to-date knowledge of the
environment.

The precise actions to take depend on application-specific
constraints, resource scarcity and interdependence of pro-
cesses. For this reason a decision-making process must have
detailed knowledge of the runtime environment, the submitted
jobs and the administrative policies. Management tasks are
generally well understood and decomposable, therefore they
lend themselves well to automation.

We here propose to take an inference-based approach to
handling complex management tasks. We argue that this ap-
proach has advantages over other efforts in self-management.

In particular, it scores well on the following desirable prop-
erties: understandability, reusability, interoperability and ex-
tensibility. While the popularity of inference and knowledge-
based approaches to network management is increasing, to
our knowledge this is the first project that attempts to achieve
these goals at this level. We describe the architecture and a
first prototype.

II. METHODOLOGY

To be able to remove the human from the loop we must
transfer his domain knowledge to an automated environment.
Traditionally, micro-management tasks have been automated
by ad-hoc shell scripts. While scripting can aid in solv-
ing simple problems, it falls short in the face of increased
complexity as imperative programs encode relatively static
procedures. Adaptation to new environments needs manual
intervention. What we propose can be seen as a next step
in scripting: employing expert systems to adapt task handling
code automatically.

We will show that expert systems can be instructed to carry
out monitoring and micro-management tasks more easily than
scripts. Additionally, formal representation may help increase
code and domain knowledge reuse. Especially of interest in
distributed systems is the ease with which knowledge can be
shared. Explicit knowledge exchange between partners in the
distributed environment can help reduce work duplication and
increase effectiveness in dealing with many issues from QoS
negotiation to worm containment.

Adaptation can be achieved through a number of technolo-
gies, e.g., emergent behavior, Bayesian networks or hardwired
parametric adaptation. For management tasks, expert systems
hold some advantages over other methods:

1) understandability A line of reasoning, by virtue of
its logical representation, can be easily followed and
understood. This greatly benefits product development
through reduced debugging time. Also, for this reason
expert systems are less controversial than other methods
of introducing self-adaptiveness.

2) reusability As explicit statements can be combined to
create more (correlated) information, the total knowl-
edge is greater than the sum of its parts (which is not true
if knowledge is embedded and thus highly fragmented).

3) interoperability Translation between two formal lan-
guages is mostly trivial, while making two ad-hoc sys-
tems interoperate tends to be very cumbersome indeed.

Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM’05) 

0-7695-2342-0/05 $20.00 © 2005 IEEE



4) extensibility High-level languages make knowledge en-
gineering straightforward, which in turn encourages
knowledge modification and extension by end-users.

III. ARCHITECTURE

Principal to our view are pervasive, knowledgeable local
experts acting on behalf of stakeholders in the network. The
task at hand, then, can be subdivided into two parts: (1)
the construction and instruction of individual experts and (2)
the coordination of communication between the actors in the
network. By focusing on practical management challenges
we will pursue a bottom-up, hands-on approach. Building a
prototype local expert has our first priority. Increasing knowl-
edge engineering return-on-investment through information
exchange and reuse will be addressed in the second leg of
our research.

A. local experts
The central element in our management environment is

the local expert. This application receives runtime statistics
from the network middleware and policies from its (human)
controllers. Low-level runtime data is extracted by refactoring
or mirroring existing monitoring tools such as SNMP or Tivoli
while higher-level policies can be entered in a formal syntax or
indirectly through friendlier (web) interfaces. Much research
has already been undertaken into policy based network and
grid management [2], [3].

Locally, we employ a model-based adaptation approach,
similar to Muscettola [4] and Garland [5], but more flexible
as the internal rules of an expert system can be scrutinized
themselves. An expert builds up a model of its environment
by correlating runtime system information. Through deduction
he can draw more meaningful conclusions from these base
facts. Depending on the given policies he may then choose
to intervene directly, thus creating a closed-loop system or
”self-managing habitat”. Alternatively, he can opt for the less
intrusive mode of solely reporting high-level information to
his controller.

Many practical expert systems in use today have been built
on top of predicate logic parsers. A major drawback of the
dichotomous (true/false) nature of predicate logic is that it
suffers from an incomplete representation of reality. In truth,
we often have too little information to draw a conclusion with
certainty. Various types of uncertainty can be discerned and
even more methods to address them [6]. But unfortunately
there is no silver bullet. We employ the most widely-used
approach, rule-based reasoning, as it is flexible enough to
accommodate for specialized methods where necessary.

The main challenges are (1) to define a language suitable for
encoding policies and building a model of the environment,
(2) to build an inference engine to work with the language
and (3) to connect this expert to the network fabric through
off-the-shelf tools.

B. global partners
Contrary to initiatives such as zeroconf, ad-hoc and sensor

nets, we explicitly target enterprise networks and the internet,

as our knowledge-based approach will ease communication
and cooperation among widely dispersed actors. A pressing
concern, then, involves scaling the presented local solution to
potentially millions of interconnected devices. The distributed
architecture poses additional challenges: where in the networks
should we position the experts? How many experts do we
need? How can they communicate safely and practically? How
can we maintain such a distributed system?

Research in this field is active. On the one hand, we
have systems-oriented research initiatives to implement the
knowledge plane [7] vision of a global information space.
On the other, we are beginning to see results from the
knowledge representation society’s efforts in building global
knowledge-exchange languages, notably the semantic web [8]
technologies. Building on these are plans for next generation
integrated fabrics, among which are knowledge-oriented [9]
and semantically driven grids [10] and virtual organizations of
autonomous agents [11]. While these are exciting endeavors,
our project attacks the problem from another, bottom-up, angle
by expanding upwards from the individual expert.

Not only is this a pragmatic approach, we also feel it may
be complementary to the aforementioned initiatives as the
knowledge that we build up may subsequently serve as core
concepts for any of the other approaches.

Regarding expert placement we note the following: central-
ized, or hierarchical approaches to distributing control are ill-
suited to the internet as it inherently lacks centralized control
(notwithstanding archaic tools such as DNS). Administrative
boundaries are becoming increasingly vague, with groups of
actors temporarily pooling their resources (p2p), individuals
using many different resources at once (ubiquitous and perva-
sive computing) and systems becoming ever more interwoven
(grids).

While knowledge may be seen as globally true, we expect
optimization strategies to be inherently biased. Also, third-
party information may be unreliable, intentionally or not.
Therefore experts in a global space are to be user-centric and
skeptical: able to fulfill their goals independently, although
possibly through cooperation, with knowledge that is not 100%
reliable. Thus, while not focusing directly on competing and
cooperating autonomous entities (e.g., ‘agents’), conceptually
our work fits nicely within the view of virtual organizations.

IV. IMPLEMENTATION

Both as proof-of-concept as well as to learn how we can
best codify management knowledge we have built a prototype
expert system based on the previously discussed architecture:
BetaGIS1.

Expert systems have been proposed for wide-area automa-
tion before in the vision for a semantic web [8]. While most
knowledge engineers, especially those working within the
semantic web, directly expand their knowledge-bases through
forward-chaining, we chose a goal-directed, or backward-
chaining approach to inference. The most decisive factor was

1More information can be found at http://www.few.vu.nl/∼wdb/betagis
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implements(TOOL, compiler),
accepts(TOOL, IN), mime(IN, text/x-csrc),
produces(TOOL, OUT), ext(OUT,’.x86.o’),
available(TOOL, HOST).
node_status(HOST,up).

Fig. 1. example query for a C to x86 compiler

our reliance on real-time data, such as remote sensors for
CPU load or network availability, which makes precomputing
correlated facts largely a wasted effort. BetaGIS was built on
top of SWI-Prolog, which already has support for many of
the features we require, such as an HTTP server and Semantic
Web language handlers.

As our problem space encompasses many issues and Prolog
is a versatile language we took care not to end up with a
chaotic bag of unrelated code. Indeed, in order to cater to a
wide range of problems with minimal code overlap we are
continuously refining a base set of primitives. It is precisely
the reusability of these primitives and the subsequent corre-
lation of relatively disjunct knowledge that breeds potential
adaptation (and may in addition serve as important input to
other projects). As is explained next, the primitives found so
far can be divided into two groups: relationships and tasks.

A. relationships

Relationships interconnect concepts and their instances. As
a practical example, let us assume that an expert stores
knowledge about a C compiler. Useful things to know are what
sort of input it requires (gcc accepts C sourcecode), what sort
of output it produces (gcc produces x86 object code), on what
machines it is available, whether the machine is up, etc. Next,
when implementing (for instance) a parallelizing version of
make an expert can automatically find appropriate nodes on
which to compile.

For this reason, the relationships that we implement cover
not just the well-known InstanceOf and ChildOf rela-
tionships from description logic, but also less generic rela-
tionships, such as those concerned with ordering: needs,
wants and the already introduced accepts and produces.
Other relationships that have proven useful are implements
for task to tool translation (gcc implements a compiler)
and available for retrieving realtime information (gcc is
available at node X).

As an example, the snippet of pseudocode in Figure 1
searches for a C to x86 compiler. Note that in Prolog words
starting with capitals are free terms (variables), while all others
have been bound. In the example we are trying to find such
values for TOOL and HOST that all given relations evaluate
to true. The first line searches for a tool that implements a
compiler. The next two lines constrain the type of compiler:
it must accept files of mimetype text/x-csrc and return files
having the filename extension ’.x86.o’. Then, the last two lines
select a suitable location for execution: a reachable host at
which the requested tool is available.

The example shows a drawback of predicate logic parsers:

they only search for a correct answer, not an optimal one.
However, such shortcomings can be circumvented. The exam-
ple could find an optimum by selecting the node with the most
free cycles.

B. task-handling framework
The second part of our core concepts covers not passive

relationships but active processes. For this work we were able
to build upon earlier research into the design of a flexible pro-
cessing framework (FFPF [12]). Process descriptions are fairly
simple: they detail what input, output and options processes
require or accept. We use Prolog predicates to encode these
statements. There are two types of descriptions: those encoding
atomic tasks and those encoding composite ones. Atomic tasks
embed actions such as running an executable. They are trivially
encoded, e.g., task(name,input,output,options).
Composite tasks can be built by combining other (possibly
composite) tasks through explicit operators for sequential and
parallel execution (resp. seq and par), similar to Occam [13].
This model of interrelated definitions supports the creation
of an archive of task blueprints. As the prolog engine can
’understand’ these blueprints it can slightly alter them to
adjust to new circumstances. The precise number of parallel
compilations, for instance, is easily adapted from a general
parallelization pattern.

The basic building blocks of the framework are atomic
tasks: descriptions of individual actions through which Be-
taGIS can interact with its environment. Through these it can
utilize the large set of available (management) tools, such as
grep, net-snmp or procfs, just like human experts. We
rely on templates to create appropriate commands on-the-fly.
The following simplified code snippet shows a template for the
UNIX diff command. It contains the name, the command
template and room for input, output and options, similar to
a task. The last argument, written on the second line, is a
constraint set. In this case, the input must be a list of two
elements and the output a single element.

template(diff,’diff $opt $in1 $in2 > $out1’,
In,Out,_,( length(In,2),atomic(Out) ))

Templates are matched with task requests to find a suitable
fully bounded solution. As binding free terms is a two-way
process in Prolog, both users and resources can constrain the
option space. Let’s reinspect the example in Figure 1. The
accepts and produces relationships can be embedded in
the following gcc template:

template(gcc, ’gcc $opt -o $out $in’, In, Out,
’-m386’,(mime(In, text/c-csrc),ext(Out,’.x86.o’))

This template will for instance combine with task-request

task(compiler, Cmd,’a.c’,’a.x86.o’,_)

into

task(compiler,’gcc -m386 -o out.x86.o in.c’,
’a.c’,’a.x86.o’,’-m386’)

Supplementing these adaptable script snippets are predicates
for specifying recurring tasks and for event handling. These
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are used in background tasks, such as monitoring and mainte-
nance. Together, these concepts are already powerful enough
to encode many day-to-day management tasks. However, if
needed we may extend them with other language constructs,
such as flow-control (loops, switches) or even support a more
formally grounded coordination language like Manifold [14].

At run-time, task specifications are translated into appropri-
ate ‘static’ scripts. We can currently create shell scripts and
visual flowgraphs. A drawback of this scripted approach is
a lack of runtime feedback and consequent loss of control.
On the other hand, removing the inference engine from the
runtime system makes the process more easily traceable.

The maturity of the task-handling framework is best demon-
strated by the fact that the expert system’s own tasks are en-
coded in it. For instance, an automated knowledge-acquisition
task is used to recursively build up knowledge about the
network: foreign devices, their access methods and resources
(tools, data and hardware) are queried in a configure-like
manner. New information, e.g., obtained from the hosts file,
can lead to more inspections, theoretically ad infinitum, while
stale data is overwritten or removed. This process is written
down using the task-handling code so that it automatically
adjusts to new locations.

C. interfaces

While BetaGIS can directly control its environment by
executing tasks, this mechanism isn’t sufficient for interacting
with end-users and peers. For that purpose it will need a more
high-level method of communication. The SWI-Prolog shell
is not sufficient for a myriad of reasons, among which are
concerns about ease of use and automation. Instead, BetaGIS
has an built-in HTTP client and server. As shown in Figure 2,
the HTTP server supports three different interfaces.

The simplest interface accepts raw prolog queries and
generates responses wrapped in a minimal envelope. As such,
it allows BetaGIS to be asked questions from remote locations.
Through command line HTTP requests (e.g. with wget) the
interface even allows the embedding of BetaGIS actions into
scripts. For instance, a host can add itself to the network at
boot-time by executing the following shell script.
wget ${GISURL}/query?query=configure\($HOSTNAME\)

Entire toolchains can be replaced with their remote cousins

in this fashion. For example, a gcc call can be intercepted
and redirected to BetaGIS without the user knowing that other
resources will actually carry out the request.

The second interface concerns interaction with end-users.
This BetaGIS portal can help less tech-savvy users specify
tasks or information requests in an easy-to-grasp graphical
manner. Difficult queries are embedded in opaque HTML links
that can be bookmarked for later use. Wizard-like interfaces
encourage step-by-step knowledge acquisition, for instance
for composite task specification. For monitoring purposes,
the interface has also been given plot generation support. It
visualized data in the manner of IBM’s Tivoli or its open-
source cousin Nagios, but as yet less refined.

A currently unused third interface allows communication
with Semantic Web applications through RDFS+OWL lan-
guage parsing. Many of our concepts are not compatible with
RDFS or OWL at the moment, but we are contemplating
changing this after the dictionary stabilizes.

Future extensions already shown in Figure 2 but not yet
implemented concern SMTP for sending alerts and SOAP for
integrating our task-handling framework with Web Services.

V. CASE STUDIES

BetaGIS is, as its name implies, first and foremost a research
vehicle. Through its deployment we hope to find out which
concepts are useful, even central, to management tasks and
how we can optimally make use of these. More specifically we
mean to attack the challenges posed at the end of Section III-
A. To do so we also need ammunition in the sense of practical
problems. So far we’ve implemented solutions for a small but
diverse set of problems that we believe indicate the potential
of expert systems such as BetaGIS.

A. end-user experiences

Environment personalization is a building block of ubiqui-
tous computing. Our formalized tasks can help achieve this
goal. Let’s take, for instance, the mundane task of printing.
In general a user wants to print a file at the nearest printer,
preferably without having to specify the device explicitly (he
may not even know its name).

Within BetaGIS, the location of an object can be spe-
cified using an extensible set of predicates. At the mo-
ment locations on the Vrije Universiteit campus, zip-
codes and URLs are understood. These can be cor-
related, as in vuloc(FEW,’R5.23’) is near to
zipcode(nl(’1081HV’)). At runtime, the near rela-
tionship and its cousin nearest can then be used to send
the job to the printer nearest to the machine I am using. And
to tell me where to fetch my print-outs, ofcourse.

B. distributed compilation

One highly decomposable task that has been the target
of parallelization before is the make process. Tools such as
DistCC and Prom [15] distribute compilation subtasks. But
they do not address multistep compilations (yacc) or tool
selection (icc vs gcc). BetaGIS can search for the optimal
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toolchain at runtime. Relationships such as produces and
needs construct a composite task, while implements and
available ensure the task can be handled by the system.

C. monitoring OpenPBS

As a prototype of an advanced management task, we have
almost completed the implementation of a fault recognition
and recovery mechanism for the Portable Batch Scheduler
(PBS), a set of network daemons controlling high-performance
clusters. PBS has been found quite brittle. As not just the
hardware, but also the OpenPBS software itself can fail at
any time, we built background health sensors, together with
event-handlers for known error conditions. Errors and their
respective recovery mechanisms were identified through tradi-
tional knowledge engineering techniques, such as interviews.
Consequently they are direct copies of the administrator’s
manual actions (e.g., logfile inspection, job cancellation and
server rebooting). BetaGIS’s ability to use standard shell tools
helped reduce development time and program complexity for
this scenario.

D. BetaGIS internals

The quintessential test for a piece of control software
is whether it can monitor and control itself. BetaGIS uses
its task-handling code for many of its internal actions. The
configure task discussed in Section IV-B is one. Another,
the web front-end, relies on on-demand graph construction
through external tools such as dot and GNU graph for
its visualization methods. Image requests are automatically
forwarded to these applications. When multiple locations carry
the application an optimization technique is applied, such
as load-balancing. Similar mechanisms exist for remotely
executing tasks in general (e.g., through sh, ssh, snmp,
http).

VI. RELATED WORK

Perry and Wolf first proposed modeling software as an archi-
tecture of interdependent processes [16]. Architecture-based
adaptation [17], even task-oriented [18], has been suggested
previously. But so far adaptation is limited to optimization
of quantified values, which are often hard to define correctly.
The same problem also plagues approaches based on Bayesian
reasoning [19]. Solutions specific to distributed systems [20],
[21] lack BetaGIS’s ability to leverage existing off-the-shelf
tools. Systems-oriented approaches have so far been mostly
limited to parametric optimizations. Delphoi [22] gathers low-
level data and relates it to higher-level queries, but as queries
are hardwired at compile-time, they are limited in scope.
MDS-2 [23] implements a distributed knowledge exchange but
lacks the inference needed to handle more demanding requests.

VII. CONCLUSION

Distributed systems become more robust and easier to
manage when they become less reliant on human intervention.
Automation based on formal encoding of best practices plus
knowledge-based adaptation can help close the loop. A key

advantage of the chosen approach is its support for the existing
hard- and software infrastructure.

Validating our method, a prototype expert system was
shown to be able to handle example problems. We plan to
extend our work by (1) incorporating resource bounds and
access restrictions into the framework and (2) scaling the
solution to wide-area networks, as discussed in Section III-B.
At the same time, we will extend and formalize our language
and undertake more elaborate testing.
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