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Abstract

We report on our efforts to formulate autonomic network
repair as a reinforcement-learning problem. Our imple-
mented system is able to learn to efficiently restore network
connectivity after a failure.

Our research explores a reinforcement-learning (Sutton
& Barto 1998) formulation we call cost-sensitive fault re-
mediation (CSFR), which was motivated by problems that
arise in sequential decision making for diagnosis and repair.
We have considered problems of web-server maintenance
and disk-system replacement, and have fully implemented
an experimental network-repair application.

In cost-sensitive fault remediation, a decision maker is
responsible for repairing a system when it breaks down. To
narrow down the source of the fault, the decision maker can
perform a test action at some cost, and to repair the fault it
can carry out a repair action. A repair action incurs a cost
and either restores the system to proper functioning or fails.
In either case, the system informs the decision maker of the
outcome. The decision maker seeks a minimum cost policy
for restoring the system to proper functioning.

We can find an optimal repair policy via dynamic pro-
gramming. Let B be the power set of the set of fault states
S, which is the set of belief states of the system. For each
b ∈ B, define the expected value of action a in belief state
s as the expected cost of the action plus the value of the
resulting belief state:

Q(b, a) =




Pr(b0)/ Pr(b)(c(b0, a) + V (b0))
+ Pr(b1)/ Pr(b)(c(b1, a) + V (b1)),

if Pr(b0) > 0 and Pr(b1) > 0,
or Pr(b1) > 0 and a ∈ AR;

∞, otherwise.

Here, bi is the belief state resulting from taking action a in
belief state b and obtaining outcome i ∈ {0, 1}; it is the
subset of b consistent with this outcome. If a is a repair ac-
tion and i = 1, we define the future value V (b1) = 0, as

A B
DnsLookup 0 (2500ms) 0 (2500ms)
DefaultGateway 0 (50ms) 1 (50ms)
PingIp 0 (50ms) 1 (250ms)
RenewLease 1 (2500ms) 0 (1000ms)
UseCachedIP 0 (10000ms) 1 (25000ms)
FixIP 1 (20000ms) 1 (20000ms)

Table 1. A small table of CSFR states. Each
row lists the outcome and cost of a test action
(DnsLookup, DefaultGateway, and PingIP) or
repair action (FixIP, UseCachedIP, RenewLease,
in boldface) for each of the states. The priors
are Pr(A) = .25 and Pr(B) = .75.

there is no additional cost incurred once a repair action is
successful. In all other cases, the value of a belief state is
the minimum action value taken over all available choices:
V (b) = mina Q(b, a). The quantities Pr(b) and c(b, a) are
the prior probability of a belief state and expected cost of an
action, which can be computed easily from a CSFR specifi-
cation of the problem.

Table 1 illustrates a small CSFR example with two fault
states, A and B. The planning process for this example
begins with the belief state {A, B}. It considers the test
actions DefaultGateway and PingIP and the repair actions
FixIP, UseCachedIP, and RenewLease. It does not con-
sider DnsLookup since the action neither provides informa-
tion (always 0), nor has a non-zero chance of repair. In eval-
uating the action PingIP, the algorithm finds that outcome 0
has a probability of .25 and outcome 1 has a probability of
.75. Its expected cost from belief state {A, B} is then

.25(50 + cost({A})) + .75(250 + cost({B})). (1)

The expected cost from belief state {A} is computed re-
cursively. Since all test actions have an outcome with an es-
timated probability of 0, only repair actions are considered.
Of these, RenewLease is chosen as the optimal action, with
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Figure 1. The optimal policy for the small ex-
ample CSFR.

a cost of 2500. Similarly, the optimal expected cost from
belief state {B} is 20000 by taking action FixIP. Substi-
tuting these costs into Equation 1, we find the optimal ex-
pected cost of repair from belief state {A, B}, starting with
PingIP, is 15825. The minimum over all actions from belief
state {A, B} is achieved by DefaultGateway (expected cost
15675), leading to a repair policy shown in Figure 1.

To apply the planning algorithm above in the learning
setting, we observe that complete information about faults
is not available to the learner. Our system collects a set of
partial episodes, E, each of which is considered a separate
fault state for planning purposes.

Work has been done to systematically study and clas-
sify the kinds of faults that can occur in a system, in-
cluding hardware and configuration faults (Li et al. 2002;
Bohra et al. 2004). Our initial autonomic learning-based
approach to diagnosis and repair complements existing sys-
tems research by providing a framework for flexibly intro-
ducing information gathering and repair actions to a self-
healing system without the need for detailed hand tuning.
In our first experiments, we focus on recovering from faults
that result from a corrupted network-interface configura-
tion. Elapsed time to repair is the cost measure the planner
seeks to minimize.

Our test and repair actions were implemented in
Java in a Windows XP environment. The test actions
were: PluggedIn, IsWireless, PingIp, PingLhost, PingGate-
way, DnsLookup, DefaultIpAddr, DefaultNetmask, De-
faultNameServer, DefaultGateway, DHCPEnabled, and Pn-
PReachDns. The repair actions were: RenewLease, Use-
CachedIP, and FixIP.

We constructed a separately running piece of software
we called the “breaker”, programmed to introduce any of
the following faults: Set bad static netmask, Set bad static
gateway, Set bad static IP address, Set bad static value for
DNS server, Set DNS to DHCP with no lease, Set IP address
to DHCP with no lease, and Lose existing DHCP lease.

For our data collection, we ran the network-repair soft-
ware concurrently with the breaker to inject faults. Faults
were selected uniformly at random and executed at regu-
lar intervals of approximately two minutes, providing ample
time for recovery.

The learned policy after 95 repair episodes is illustrated

PingGateway

PingIP

DNSLookup UseCachedIP FixIP

FixIPFixIPRenewLease
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UseCachedIP
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Figure 2. A learned policy for the network-
repair domain.

in Figure 2. In this policy, RenewLease is attempted only
when PingGateway, PingIP and DNSLookup all fail, with
UseCachedIP as the backup repair action. RenewLease
works differently from UseCachedIP and FixIP in that it
obtains the IP parameters dynamically. In almost all the
other cases, UseCachedIP, being cheaper than FixIP, is
tried first with FixIP used as a backup action. The excep-
tions are the two cases where FixIP is tried without trying
UseCachedIP, which stems from the lack of adequate ex-
ploration. Aside from these imperfections, the policy ap-
pears perfectly suited to our test domain.

This work demonstrates an approach to learning for au-
tonomic network repair. Although we have explored several
other scenarios to which our cost-sensitive fault remediation
model can be applied in simulation, our experience imple-
menting the learning algorithm on a live network helped il-
lustrate the robustness of the basic idea, and also indicated
that we should revisit some of the underlying assumptions
in our model. More in-depth analysis and algorithmic re-
sults are presented in a longer paper (Littman et al. 2004).
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