
Reflection, Self-Awareness and Self-Healing in OpenORB
Gordon S. Blair

Computing Department
Lancaster University

Lancaster, LA1 4YR, UK
+44 1524 65201

gordon@comp.lancs.ac.uk
Hector Duran-Limon
Computing Department

Lancaster University
Lancaster, LA1 4YR, UK

+44 1524 65201

duranlim@comp.lancs.ac.uk

Geoff Coulson
Computing Department

Lancaster University
Lancaster, LA1 4YR, UK

+44 1524 65201

geoff@comp.lancs.ac.uk
Paul Grace

Computing Department
Lancaster University

Lancaster, LA1 4YR, UK
+44 1524 65201

p.grace@lancaster.ac.uk
Nikos Parlavantzas
Computing Department

Lancaster University
Lancaster, LA1 4YR, UK

+44 1524 65201

parlavan@comp.lancs.ac.uk

Lynne Blair
Computing Department

Lancaster University
Lancaster, LA1 4YR, UK

+44 1524 65201

lb@comp.lancs.ac.uk
Rui Moreira

Computer Engineering Department
University Fernando Pessoa

4249-004 Porto, Portugal
+351 22 507 1300

rmoreira@ufp.pt

ABSTRACT
There is a growing interest in the area of self-healing systems.
Self-healing does however impose considerable demands on
system infrastructures—especially in terms of openness and
support for reconfigurability. This paper proposes that the self-
awareness inherent in reflective technologies lends itself well to
the construction of self-healing systems. In particular, the paper
examines the support provided by the Open ORB reflective
middleware technology for the construction of this increasingly
important class of system.

Categories and Subject Descriptors
C.3.11 [Software Architectures]: Patterns (reflection).

General Terms
Design

Keywords
Middleware, reflection, self-awareness, self-healing.

1. INTRODUCTION
There is growing interest in the distributed systems community in
the general area of self-repairing, self-healing or self-organizing
software systems [1, 2]. This work is partially stimulated by

industrial initiatives such as IBM’s autonomic computing [3]. To
quote from their web site, “IBM invites the world, our customers,
competitors and colleagues to accept the Grand Challenge of
building and deploying computing systems that regulate
themselves and remove complexity from the lives of
administrators and users”. This is an extremely challenging and
long-term vision but one that has considerable potential in terms
of masking out failure or environmental changes, and also dealing
more generally with the evolution of systems to changing user
needs or platform capabilities. The approach is particularly
attractive for emerging application domains such as mobility and
ubiquitous computing.
Self-healing systems do however place particular demands on the
underlying infrastructure. In this paper, we are particularly
interested in the demands in terms of openness. In other words, to
support the healing process, it is necessary to have access to
various aspects of the system structure and to be able to
reconfigure such aspects at run-time. It is also important that such
changes do not endanger the overall integrity of the (running)
system. More specifically, this paper explores the extent to which
reflection, and its inherent property of self-awareness, provides
natural support for self-healing systems. In particular, we
investigate the Open ORB architecture developed at Lancaster
University and discuss the potential of this reflective middleware
technology to support self-healing systems.
The paper is structured as follows. Section 2 introduces the three
technologies underpinning Open ORB, namely reflection,
component technologies and component frameworks. Section 3
then presents Open ORB, highlighting its multi-model reflective
architecture. Following this, section 4 discusses self-healing in
Open ORB. In particular, the section examines support for self-
adaptation in Open ORB and also considers 3 examples of self-
healing systems. Finally, section 5 summarises the discussion and
introduces some areas demanding further investigation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSS '02, Nov 18-19, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-609-9/02/0011 ...$5.00.

9

2. BASELINE TECHNOLOGIES
2.1 Reflection
Reflection [4] is now widely adopted in language design, as
witnessed for example by the Java Core Reflection API [5].
Reflection is also increasingly being applied to a variety of other
areas including operating system design [6], concurrent languages
[7] and increasingly distributed systems, e.g. as [8] or [9].
Crucially, there is now a growing community working on the area
of reflective middleware [10].
The main motivation for this research is to overcome the “black-
box” philosophy of many existing middleware platforms by
providing more openness; and to achieve this in a principled (as
opposed to ad-hoc) manner through a comprehensive reflective
architecture [11]. The key to the approach is to offer a meta-
interface, or meta-object protocol (MOP), supporting access to the
engineering of the underlying platform. This MOP provides
operations to inspect the internal details of a platform
(introspection), and by exposing the underlying implementation,
it is also possible to insert behaviour, e.g. quality of service
monitors. In addition, the MOP typically provides operations to
alter the underlying middleware (adaptation), e.g. changing the
implementation of the underlying transport protocol to operate
efficiently over a wireless link or inserting a filter to reduce the
bandwidth requirements of a media stream.
More generally, middleware platforms typically offer two
(complementary) styles of reflection:
• Structural reflection is concerned with the underlying

structure of systems, e.g. in terms of the set of interfaces
supported (cf. introspection in [5]). More advanced
possibilities include support for adapting the behaviour of
objects and architectural reflection [11]. In the latter
approach, the MOP provides access to the architecture of the
system, e.g. in terms of components and connectors.

• Behavioural reflection is concerned with activity in the
underlying system, e.g. in terms of the arrival of invocations.
Typical mechanisms include interceptors (as found in
CORBA) and dynamic proxies in Java [5]. Some research
has also been carried out on providing access to underlying
resources and associated resource management [12].

A significant number of experimental platforms have now
emerged including Open ORB [11] (Lancaster University),
Dynamic TAO, LegORB and UIC [13] (all University of Illinois
at Urbana-Champaign), Flexinet [14] (APM, Cambridge), Open
CORBA [15] (Ecole des Mines de Nantes) and OOPP [16]
(University of Tromsø).

2.2 Components
In parallel with the above developments, there has been increasing
interest in the role of components in distributed systems.
According to Szyperski [17], a component can be defined as “a
unit of composition with contractually specified interfaces and
explicit dependencies only”. In addition, he states “a software
component can be deployed independently and is subject to
composition by third parties”. A key part of this definition is the
emphasis on composition; component technologies rely heavily
on composition rather than inheritance for the construction of
applications, thus avoiding the fragile base class problem (and the
subsequent difficulties in terms of system evolution) [17]. To
support third party composition, they also employ explicit
contracts in terms of provided and required interfaces. The overall

aim is to reduce time to market for new services through an
emphasis on programming by assembly rather than software
development (cf. manufacturing vs. engineering).
In terms of middleware, most emphasis has been given to
enterprise (or server-side) component technologies, such as
Enterprise Java Beans (EJB) or the CORBA Component Model
(CCM). In such technologies, components execute inside a
container, which provides implicit support for distribution in
terms of support for transactions, security, persistence and
resource management. This offers an important separation of
concerns in the development of business applications; i.e. the
application programmer can focus on the development and
potential re-use of components to provide the necessary business
logic, and a more “distribution-aware” developer can provide a
container with the necessary non-functional properties. Containers
also provide additional functionality including life-cycle
management and component discovery.

2.3 Component Frameworks
The application of component frameworks forms the third key
technology underpinning the OpenORB architecture. Component
frameworks are defined by Szyperski as "collections of rules and
interfaces that govern the interaction of a set of components
plugged into them" [17]. Essentially, component frameworks are
reusable architectures that embody domain-specific constraints
and strategies for composing components. For example, in Open
ORB we employ a protocol component framework that describes
how protocol stacks can be assembled from "plugged-in"
components.
The main contribution of component frameworks is that they
provide a means of enforcing desired architectural properties and
invariants by constraining the interactions among their plug-ins in
a domain-relevant manner. The enforced properties can be both
functional (e.g., how some functionality is decomposed among
plug-ins) and extra-functional (e.g., modifiability or performance
of plug-in assemblies). As additional benefits, component
frameworks simplify component development through design
reuse, enable lightweight components, and increase the system's
understandability and maintainability.
Component frameworks in Open ORB play a twofold role. First,
they help structuring the middleware architecture into a set of
specialized and focused domains (e.g., composing communication
protocols or distributed bindings), that are each based on a
component framework. The component frameworks have clearly
identified dependencies and can easily be recombined into new
architectures. Second, component frameworks are used to
constrain the scope of dynamic reconfigurations and ease the task
of integrity maintenance. Specifically, assemblies of components
conforming to a component framework are "reified" by
components that expose component-framework specific meta-
interfaces for reconfiguration. This has the advantage that the
meta-interfaces can exploit the domain-specific knowledge
embodied in the component framework to enforce a desired level
of integrity across reconfiguration operations. Furthermore, the
desired level of integrity and consistency can be suitably traded-
off against the degree of afforded flexibility.
To give a concrete example, we employ a multimedia streaming
component framework, which accepts media filter plug-ins. The
associated meta-interface allows clients to reconfigure a media
filter graph with minimum perceived disruption of the media
stream by exploiting a (domain-specific) buffering mechanism.

10

Component frameworks are closely related to the notion of
architectural style, which has similarly been exploited to achieve
style-specific adaptation for self-repairing systems [2].

2.4 Analysis
Our research indicates that reflection, component technologies
and components frameworks are highly complementary.
Reflection provides the necessary level of openness to access the
underlying platform architecture whereas components provide an
appropriate structuring mechanism. The compositional approach
inherent in components also provides a clean basis on which to re-
configure the underlying architecture. Finally, component
frameworks have the potential to impose appropriate constraints
on this adaptation process.

3. THE OPEN ORB ARCHITECTURE
3.1 Overall Approach
The overall goal Open ORB is to develop a more configurable
and re-configurable middleware technology through a marriage of
reflection, component technologies and component frameworks.
In particular, Open ORB is structured as a set of (configurable)
component frameworks and reflection is then used to discover the
current structure and behaviour, and to enable selected changes at
run-time. The end result is a flexible middleware technology that
can be specialised for a range of application domains including
mobile and ubiquitous computing, and real-time systems. We are
also currently investigating if the techniques can be used in areas
such as programmable networks and to support longer-term
evolution of software in for example the banking sector.
One of the key aspects of the Open ORB architecture is its ‘multi-
model’ approach to structuring meta-space. In particular, meta-
space is partitioned into a number of complementary meta-space
models covering both structural and behavioural aspects. The
motivation of this approach is to provide a separation of concerns
and hence to reduce the complexity of the overall meta-interface.
This is particularly important in distributed systems given the
wide range of concerns that must be considered (in comparison to
the design of a single programming language for example). The
structure of meta-space is captured by figure 1 below.

Figure 1: The structure of meta-space.

We consider this structure in more detail below.

3.2 The Meta-Space Models
3.2.1 Supporting Structural Reflection
In reflective systems, structural reflection is concerned with the
content and structure of a given component [7]. In our
architecture, this aspect of meta-space is represented by two
distinct meta-models, namely the interface and architecture meta-
models. These represent a separation of concerns between the
external view of a component (i.e. its set of interfaces), and its
internal construction (i.e. its software architecture).
The interface meta-model provides access to the external
representation of a component in terms of the set of provided and
required interfaces. In particular, it is possible to enumerate all
provided (or required) interfaces offered by a given component, or
to discover the type signature associated with a given interface.
This meta-model therefore provides a capability similar to
introspection facilities in the Java reflection API, allowing a
programmer to interact with a dynamically discovered
component.
The architecture meta-model then provides access to the
implementation of the component as a software architecture,
consisting of two key elements: a component graph and an
associated set of architectural constraints (cf. components
frameworks as introduced above). The concept of the component
graph is central to this design, and is represented by a set of
components (more specifically interfaces) connected together by
local bindings, where a local binding represents a mapping
between a required and provided interface in a single address
space. Distribution can be added by introducing (distributed)
binding components into the graph (cf. connectors in the software
architecture literature). An extensible set of binding types is
supported offering interaction models such as remote invocation,
publish/subscribe, continuous media flows, group communication,
etc. Normally this structure would be hidden from a user of a
component. However, the architecture meta-model can be used to
both discover and also adapt this structure at run-time.
If unconstrained, this is a rather dangerous approach to advocate.
Consequently, we extend the software architecture to include a set
of architectural constraints. A type management system offers one
level of constraints, i.e. a new component must be a valid
substitution of the old component (cf. subtyping of the respective
interfaces). This is however not enough; it is also important to
take a more global view of the architecture in determining the
validity of adaptations. For example, changing a compression
component may require a similar change to the peer
decompression component. Similarly, it may be necessary to
preserve a given architectural style over time such as pipes-and-
filters. Our approach is to record such constraints explicitly in the
architecture and to ensure that adaptations preserve the
architectural rules before committing the changes (cf. atomic
transactions).
Note that the approach described above is applied recursively in
that a component within a component graph may itself have
architecture, accessed via its architecture meta-model (i.e. at a
meta-meta- level relative to the uppermost component. For
example, a binding component within a graph may have a
structure consisting of stubs and protocol components. This
recursion terminates with primitive components, which have no
visible underlying structure, and whose internal implementation
details are inaccessible to the programmer.

11

3.2.2 Supporting Behavioural Reflection
Behavioural reflection focuses on activity in the underlying
system [7]. More specifically, Open ORB distinguishes between
actions taking place in the system, and the resources required to
support such activity. These two aspects are represented by the
interception and resources meta-models respectively.
The interception meta-model is arguably the most straightforward
in the Open ORB design. In keeping with a number of reflective
middleware proposals, this meta-model enables the dynamic
insertion of interceptors. Such interceptors are associated with
interfaces (more specifically, local bindings) and enable the
insertion of pre- and post- behaviour. This applies equally to all
styles of interface supported in Open ORB (operational,
continuous media, etc). This mechanism is useful, for example, to
dynamically introduce monitoring or accounting into a running
system. Similarly, interceptors can be used to introduce additional
non-functional behaviour, such as security checks or concurrency
control.
The resources meta-model in contrast is quite unique to the Open
ORB design, offering access to underlying resources and resource
management [12]. We strongly believe that for many classes of
application (including multimedia applications) it is just as
important to be able to adapt resource usage and management
policies as to evolve the basic structure of the system, e.g. when
now operating in a mobile environment.
The resources meta-model is based around the abstractions of
resources and tasks. Resources can be either primitive (e.g. raw
memory or OS threads) or complex (e.g. buffers or user-level
threads multiplexed on to kernel-level threads). They are created
by resource factories and managed by resource managers, the
latter typically building complex resources by adding value to, or
combining, primitive resource instances. For example, a user level
scheduler is a resource manager that builds user level threads
from OS threads. Tasks are then the logical unit of activity in the
system with the precise granularity varying from configuration to
configuration. For example, there could be a single task dealing
with the arrival, filtering and presentation of an incoming video
stream, or alternatively this could be divided into a number of
smaller tasks. Importantly, tasks can span component boundaries
and are thus orthogonal to the structure of the system. Tasks are
essentially the unit of resource allocation, i.e. tasks have a pool of
resources to support their execution.

3.3 Implementation
Initial implementations of the Open ORB architecture were
developed using Python, due to the support for rapid prototyping
inherent in this language [18]. More recently, the architecture has
been re-implemented with the explicit goal of provide a high
performance implementation of our reflective middleware
technology. To this end, we have defined a lightweight and
efficient reflective component technology based on a subset of
COM. The resultant Open COM technology is then used to
construct configurable and re-configurable families of
middleware. More specifically, a given middleware instance is
constructed as a set of component frameworks. As an example,
figure 2 illustrates our current implementation of a CORBA-
compatible platform; the middleware architecture is organised
into three layers. The binding layer contains the binding
component framework that accepts a variety of binding type
implementations. The communications layer contains the protocol
component framework. Within this framework, a reconfiguration

manager maintains information about the current protocol stack,
which can then be adapted using the architecture meta-interface.
At the lowest level, the resources layer has several component
frameworks for buffer, transport, and thread management. Again,
adaptation can be tailored for the particular domain. For example,
the thread management component framework enables the
dynamic installation of scheduler components and the migration
of existing threads between schedulers.

BT implementations

Binding
Layer

Comms
Layer

Resource
Layer

Binding
CF

Protocol
CF

Buffer
Mgt. CF

Thread
Mgt. CF

Multimedia
Streaming
CF

Protocols

Filters

Buffer policies

Transport
Mgt. CF

SchedulersTransports
Figure 2: CORBA-compatible implementation of Open ORB.

Further details of this implementation can be found in [19].

4. OPEN ORB and SELF-HEALING
4.1 Self-Adaptation
Open ORB supports the ability to discover meta-information
about the current system, both in terms of its structure and
ongoing behaviour. These aspects can also be adapted by using
the appropriate meta-interfaces. This however is not sufficient to
support self-healing. There are essentially two approaches to
adaptation that can be supported by this approach:
• Applications or system services can support monitoring and

adaptation as an external service, or
• Components for monitoring and adaptation can be injected

into meta-space to provide such a service.
It is the latter approach that is most interesting in terms of self-
healing systems. We have previously explored an approach to
such self-adaptation in Open ORB. In particular, we have
developed styles of management component that can be
introduced (dynamically) into the various meta-space models (see
table 1 below).

Table 1. Styles of management component.

 Monitoring

Event Collector

Strategy Selectors Select an appropriate adaptation strategy (i.e. strategy
activator) based on feedback from monitors.

Collect QoS events and report abnormal behaviour to
interested parties.

Monitor

Observe behaviour of underlying functional
components and generate relevant QoS events.

Control

Implement a particular strategy, e.g. by manipulating
component graph.

Strategy
Activators

Policies for monitoring and strategy selection are expressed as
timed automata, which then map directly on to management

12

components which then act as timed automata interpreters at run-
time. They then interface to other components in the system using
event notification, i.e. they register for events of interest, receive
events, react to them and then emit events to interested parties (cf.
reactive objects [20]). This use of timed automata also allows us
to carry out formal analysis of the behaviour of the QoS
management subsystem in isolation, and also when composed
with a model of the rest of the system.
Further details can again be found in the literature [21].

4.2 Examples of Self-Adapting Systems
We present three contrasting examples to illustrate the potential of
this reflective approach in supporting self-healing systems:
1. Self-adaptive stream binding. Through its general binding

mechanism, Open ORB can support stream bindings
representing continuous media flows in the system. Building
on this capability, we have previously experimented with a
self-adaptive audio binding. In the experiments, we use the
architecture meta-model to gain access to the buffer
component at the receiver end and then monitor when this
buffer becomes either full or empty. Depending on the
current context, we can then either increase the buffer size or
change the transmission quality of the audio [21]. This
example has also recently been extended to adapt both the
audio transmission strategy and also the resource usage/
management (via the resources meta-model) thus illustrating
how self-adaptation can span multiple meta-models [22].

2. Self-adaptive mobile middleware. One of the key
requirements of mobile middleware is the ability to
interoperate with nearby services and users [13]. Mobile
applications and services are implemented on a range of
middleware platforms (e.g. RPC, message-oriented and
event-based), therefore, the middleware must be able to
adapt itself to the current environment in order for
interactions to continue, allowing classes of mobile
applications to be developed independently of fixed
middleware types. For example, a tourist guide client
application can be developed that can be used in different
locations even though the tourist information is advertised
through application services implemented on different
middleware types.
To provide this functionality, we have developed a
dynamically reconfigurable binding framework, which
allows the middleware behaviour to change between SOAP,
IIOP and publish-subscribe functionality (it is feasible for
any binding type implemented as a configuration of
components to be plugged into the framework). Therefore,
the type of binding is dynamically changed depending on the
available services in the current environment. For example, a
request for tourist information may be made as a SOAP
request in one location and through a publish-subscribe
channel in another.
Furthermore, in order for self-adaptation to take place the
middleware must be aware of its current context; that is,
what types of services are currently available. For this
purpose, we have implemented a service discovery
framework, which can change between multiple service
discovery personalities (e.g. Service Location Protocol and
Universal Plug and Play), allowing all available services to
be discovered. This information then drives the appropriate
reconfiguration of the binding framework.

The mobile middleware is therefore able to heal itself in
order to support the continuing operation of mobile
applications in heterogeneous environments. However, there
are other aspects of the mobile environment that require
dynamic adaptation of the middleware; mobile devices have
limited resources (e.g. battery power and memory) and
Network QoS is poor in wireless networks. Therefore the
operation of the middleware must be dynamically adapted to
provide the best level of service to the application (using
similar techniques to example 1). In the future, we will
investigate the integration of resource and context
frameworks that can allow the mobile middleware platform
to be aware of a greater range of environmental context (not
just the available services) and manage the middleware’s
operation and use of the device’s resources based upon this
information.

3. Self-adaptive network architectures. We have recently
become interested in extending our approach to open/
programmable network architectures. Our approach here is to
uniformly implement all layers of the programmable
networking architecture—including the router’s OS software,
fast-path packet handling, per-flow/ per-application packet
handling, and signaling—in terms of the Open COM / Open
ORB technologies. For example, we use (optimised) Open
COM components as fast-path schedulers, queues, etc; and
we employ Open ORB as a signaling engine. This approach
has the potential to endow programmable networks with
extremely rich and comprehensive self-healing functionality.
For example, we can apply generic self-monitoring and
adaptation techniques (e.g. using reflection and the self-
adaptation pattern of section 4.1) to areas as diverse as
congestion management (e.g. adding a RED-based
congestion manager to a router on the basis of congestion
monitoring), and self-healing physical topologies (e.g.
automatically managing redundant physical paths in mission
critical disruption-prone networking environments).

The first two examples have been fully implemented, and work is
currently ongoing to port the Open COM technology to a
heterogeneous network of standard PC-based and Intel IXP1200-
based programmable routers [23] to enable experimentation in the
third area outlined above.

5. CONCLUSIONS
This paper has presented an analysis of reflection and its potential
in supporting self-healing systems. Openness and
reconfigurability are clear prerequisites for self-healing systems,
and it is already well-recognised that reflective technologies
enhance such properties of a system. Furthermore, the examples
presented in section 4.2 above have strengthened our belief that
reflection coupled with an appropriate framework for self-
adaptation provides precisely the right technology for the
construction of sophisticated self-healing systems. We also feel
that middleware is the right place to locate such techniques given
the unique role of middleware in providing platform-independent
programming models for the construction of distributed
applications. We thus conclude that the self-awareness inherent in
reflective middleware technologies such as Open ORB are
naturally supportive of self-healing systems.
This is however a preliminary analysis and further work remains
to be done to test this hypothesis more fully. We are particularly
interested in studying more advanced mechanisms for self-

13

adaptation including for example biologically-inspired approaches
such as machine learning and neural networks. We are also
interested in combining such approaches with studies of context to
provide context-aware adaptation.

6. REFERENCES
[1] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D.,

Johnson, G., Medvidovic, N., Quilici, A., David S.
Rosenblum, D.S., Wolf, A.L., “An Architecture-Based
Approach to Self-Adaptive Software, IEEE Intelligent
Systems, Vol. 14, No. 3, pp. 54-62, May/June 1999.

[2] Schmerl, B., Garlan, D., “Exploiting Architectural Design
Knowledge to Support Self-repairing Systems”, Proc. 14th
International Conference on Software Engineering and
Knowledge Engineering, Ischia, Italy, July 2002.

[3] Autonomic Computing Home Page,
http://www.research.ibm.com/autonomic/.

[4] Kiczales, G., J. des Rivières, D.G. Bobrow, “The Art of the
Metaobject Protocol”, MIT Press, 1991.

[5] Sun Microsystems, “Java Reflection”, URL:
http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html

[6] Yokote, Y., “The Apertos Reflective Operating System: The
Concept and Its Implementation”, Proc. OOPSLA’92, ACM
SIGPLAN Notices, Vol. 28, pp 414-434, ACM Press, 1992.

[7] Watanabe, T., Yonezawa, A., “Reflection in an Object-
Oriented Concurrent Language”, In Proceedings of
OOPSLA’88, Vol. 23 of ACM SIGPLAN Notices, pp 306-
315, ACM Press, 1988; Also available as Chapter 3 of
“Object-Oriented Concurrent Programming”, A. Yonezawa,
M. Tokoro (eds), pp 45-70, MIT Press, 1987.

[8] McAffer, J., “Meta-Level Architecture Support for
Distributed Objects”, Proc. Reflection 96, pp 39-62, G.
Kiczales (ed.), San Francisco; Available from Dept of
Information Science, Tokyo University, 1996.

[9] Okamura, H., Ishikawa, Y., Tokoro, M., “AL-1/D: A
Distributed Programming System with Multi-Model
Reflection Framework”, Proceedings of the Workshop on
New Models for Software Architecture, November 1992.

[10] Kon, F., Costa, F., Blair, G.S., Campbell, R., “The Case for
Reflective Middleware: Building Middleware that is
Flexible, Reconfigurable, and yet simple to Use”, CACM,
Vol. 45, No. 6, 2002.

[11] Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M.,
Costa, F., Duran-Limon, H., Fitzpatrick, T., Johnston, L.,
Moreira, R., Parlavantzas, N., Saikoski, K., “The Design and
Implementation of OpenORB v2”, IEEE DS Online, Special
Issue on Reflective Middleware, Vol. 2, No. 6, 2001.

[12] Duran-Limon, H., Blair, G.S., “The Importance of Resource
Management in Engineering Distributed Objects”, Proc. 2nd
International Workshop on Engineering Distributed Objects
(EDO’2000), California, USA, Nov. 2000.

[13] Roman, M., Kon, F., Campbell, R.H., “Reflective
Middleware: From the Desk to your Hand”, IEEE DS
Online, Special Issue on Reflective Middleware, Vol. 2, No.
5, 2001.

[14] Hayton, R., Herbert, A., Donaldson, D., “FlexiNet: A
Flexible Component-oriented Middleware System”, Proc. 8th
ACM SIGOPS European Workshop on Support for
Composing Distributed Applications, Sintra, Sept. 1998.

[15] Ledoux, T., “OpenCorba: A Reflective Open Broker”, Proc.
Reflection’99, Saint-Malo, France, Springer-Verlag, LNCS,
Vol. 1616, 1999.

[16] Andersen, A., Eliassen, F., Blair, G.S., “A Reflective
Component-Based Middleware with Quality of Service
Management”, Proceedings of PROMS’2000 (Protocols for
Multimedia Systems), Cracow, Poland, 2000.

[17] Szyperski, C., “Component Software: Beyond Object -
Oriented Programming”, Addison-Wesley, 1998.

[18] Costa, F. Duran, H., Parlavantzas, N., Saikoski, K., Blair,
G.S., Coulson, G., “The Role of Reflective Middleware in
Supporting the Engineering of Dynamic Applications”, In
Reflection and Software Engineering, Cazzola, W., Stroud,
R. and Tisato, F. (Eds), Springer-Verlag, LNCS Vol. 1826,
pp 79-98, 2000.

[19] Coulson, G., Blair, G.S., Clarke, M., Parlavantzas, N., “The
Design of a Highly Configurable and Reconfigurable
Middleware Platform”, ACM/ Springer Distributed
Computing Journal, Vol. 15, No. 2, pp 109-126, April 2002.

[20] Manna, Z., Pnueli, A., “The Temporal Logic of Reactive and
Concurrent Systems”, Springer-Verlag, New York, 1992.

[21] Blair, G.S., Andersen, A., Blair, L., Coulson, G., Sánchez,
D., “Supporting Dynamic QoS Management Functions in a
Reflective Middleware Platform”, IEE Proceedings
Software, Vol. 147, No. 1, pp 13-21, February 2000.

[22] Duran-Limon, H., “A Resource Management Framework for
Reflective Multimedia Middleware”, PhD Thesis,
Computing Department, Lancaster University.

[23] Intel IXP1200; http://www.intel.com/IXA/.

14

