
Personal Autonomic Computing Self-Healing Tool

Roy Sterritt Saulai Chung
School of Computing and Mathematics,

Faculty of Engineering
University of Ulster

Northern Ireland
r.sterritt@ulster.ac.uk

Abstract

The objective of the research reported in this paper
was to develop a proof of concept self-healing tool for
the personal computing environment operating in a
peer-to-peer mode and consisting of a pulse monitor
and a vital signs health monitor. The prototype
developed in Java, JNI and C utilising UDP to
communicate to its peers proved the feasibility of the
pulse and vital signs concepts and their ability to
provide some self-healing properties within a PC
environment. The functionality also opens new
opportunities to provide self-configuring, self-
optimising and self-protecting autonomic capabilities to
personal computing.

1. Introduction

Self-healing, an emerging research discipline [1] is
considered one of the four autonomic computing [2]
properties required to achieve self-managing systems
[3]. This is often harder to obtain for personal
computing due to its flexible nature and diverse user
base [4].

The pulse monitor has been recommended as an
extension of the Globus Heartbeat Monitor (HBM) for
Grid computing [5], as a construct within an autonomic
manager [6][7] and a reflex mechanism within a
telecommunications fault management architecture [8].
This paper looks at utilising the pulse monitor together
with a health check mechanism in a PC environment to
construct a self-healing tool. The tool operates in a
peer-to-peer (P2P) mode without any additional
environment on top of the Windows OS.

Section 2 discusses the background technologies; AC,
Personal AC, P2P, heartbeat and beacon monitoring.
Section 3 looks at the tool’s design followed by its
implementation in section 4. Finally section 5 concludes
and summarises the main points.

2. Background

2.1 Autonomic Computing (AC)

IBM introduced the autonomic computing initiative
in 2001, with the aim to develop self-managing systems
[9]. With the growth of the computer industry, with
notable examples being highly efficient networking
hardware and powerful CPUs, autonomic computing is
an evolution to cope with rapidly growing complexity of
integrating, managing, and operating computing based
systems. Computing systems should be effective [7],
they should serve a useful purpose when they are first
launched and continue to be useful as conditions change.
The realization of autonomic computing will result in a
significant improvement in system management
efficiency. The disparate technologies that manage the
environment work together to deliver best performance
results [2].

The autonomic concept is inspired by the human
body’s autonomic nervous system [2]. The autonomic
nervous system monitors heartbeat, checks blood sugar
levels and keeps the body temperature normal without
any conscious effort from the human. There is an
important distinction between autonomic activity in the
human body and autonomic responses in computer
systems. Many of the decisions made by autonomic
elements in the body are involuntary, whereas autonomic
elements in computer systems make decisions based on
tasks chosen to delegate to the technology [2].

Upon launching Autonomic Computing IBM defined
four key self properties; self-configuring, self-healing,
self-optimizing and self-protecting [3][2]. In the few
years since the self-x list has grown as research expands
bringing about the general term selfware, yet these four
initial self-managing properties along with the four
enabling properties; self-aware, environment aware, self-
monitor and self-adjust, cover the general goal of self
management.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

2.2 Personal Autonomic Computing

Personal Autonomic Computing is AC in a personal
computing environment [4]. In some respects, achieving
autonomic computing within server environments will be
an easier task than within personal computing. Servers
are likely to have received the level of investment to
ensure in-built fault tolerance and include extensive
redundancy – including facilities such as 'hot swapping'
[10]. Personal devices are often machines built on the
faster, cheaper and smaller philosophy with limited, if
any redundancy. Servers are also likely to have a user
base of highly skilled teams, whereas personal devices
are often in the hands of non-technical users who often
also act as the administrator. Other considerations are
required for personal computing such as flexibility of
location (e.g. laptops) and of hardware (e.g. palm
devices) and software configuration that complicate
further the goal of achieving autonomic computing
[4][7].

Examples of autonomic capabilities within personal
computing are;

� Self-configuring Microsoft Windows XP has an
automatic update function. It updates itself to catch
updated or newly released component(s) [4].

� Self-healing Windows XP Professional provides a
checkpoint function to backup the system and
recover up to the checked point if the system has
crashed.

� Self-optimizing Microsoft Windows XP Professional
now optimizes the user interface based on the way
the system is used. For instance it attempts to keep
the desktop clean and uncluttered by removing items
not recently used. Due to the nature of personal
computing the user is asked to confirm that these
changes take place [4].

� Self-protecting An example of a protection
mechanism is encryption. Windows XP is built with
an encryption capability that allows directories to be
encrypted. Microsoft Internet Explorer is embedded
with security protocols such as SSL and TSL.
Norton’s Antivirus (Symantec Corporation) software
automatically scans all emails to check if they
contain any virus. Microsoft Excel prompts an alert
if the user opens a spreadsheet containing a macro
which may have a virus.

2.3 Peer-to-Peer (P2P)

Peer-to-Peer (P2P) is a paradigm in which each
workstation on a network has equivalent capabilities and
responsibilities [11]. This differs from the Client/Server
architecture, in which a Server is a dedicated computer
to serve Client requests. The Server machine is usually
always available so that Clients can connect to it at

anytime. Peer-to-Peer is not a new concept; IP routing is
peer-to-peer. To make P2P distinctive, nodes must
operate outside the DNS (Domain Name Server) system
and each node has significant autonomy from central
servers. P2P computing offers a company a cost-efficient
way of sharing computer resources, improving network
performance, and increasing overall productivity.

In traditional P2P networking, computers are
connected together as a workgroup and configured for
the sharing of resources such as files and printers. In
particular, the computers are located near each other
physically and run on the same networking protocols.
Today, computers are connected together over the
Internet. Computers (including hand-held devices) can
join the network from anywhere with little effort.

Peer-to-Peer architectures enable computers to share
services and resources directly between one another.
Computers range from a large server to a handheld
device. Resources and services include the exchange of
information, processing cycles, cache storage, and disk
storage. P2P technologies benefit distributed computing
as it provides efficient communication and quality of
service [12]. The function of one of the P2P
technologies is for reclaiming unused computing cycles
on desktop computers and harnessing them into a virtual
supercomputer [13]. In this platform, a large job can be
broken into small pieces and run on separate machines in
parallel. At the same time, it reduces the load on servers
hence allowing them to perform specialized services
more effectively. In the P2P-enabled distributed
computing model, a managing server is configured to
send different pieces of one computing job to a set of
peers, who then distribute it on to 2nd-tier peers, then 3rd-
tier peers, and so on. Collaboration in P2P computing is
allowing teams which are in different geographic areas
to work together. As with file sharing, collaboration can
decrease network traffic by eliminating e-mail and
decreases server storage needs by storing files locally,
the result increases productivity. P2P computing also
allows networks to work together using intelligent
agents. Agents work on a workstation and communicate
various kinds of information back and forth [12]. Agents
may also initiate tasks on behalf of other systems on
different workstations. A virus alert is an example.

In this research the peers form a ‘neighbour-hood
watch’ scheme—looking out for each others health.

2.3 Heartbeat and Beacon Monitoring

Within Grid Computing, the OGSA (Open Grid
Services Architecture) has a facility referred to as the
Globus Heartbeat Monitor (HBM) which is designed to
detect and report whether registered processes are still
alive or not [14], by providing or failing to provide a
‘heartbeat’. The heartbeat monitor may be considered a

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

specific type of environment-awareness since from a
system perspective these heartbeats provide awareness
of the individual functioning elements [7].

The DS1 (Deep Space 1) [16][17] was launched in
July 1998 by NASA. The beacon monitor was one of the
twelve new feats of technology used in DS1. Its goal was
to decreasing the total volume of down linked
engineering telemetry, through reducing the frequency of
downlink and the volume of data received per pass [17].
With beacon monitoring, the spacecraft assesses its own
health and will transmit one of four sub-carrier
frequency tones to inform the ground how urgent it was
to track the spacecraft for telemetry [15]. Table 1
summarizes the tone definitions.

Table 1 – Beacon tone
Tone Description
Nominal All functions as expected

No need to downlink
Interesting Interesting – non-urgent event.

Establish communications when
convenient.

Important Communications need to take place
within timeframe or else state could
deteriorate.

Urgent Emergency. A critical component
has failed. Cannot recover
autonomously and intervention is
necessary immediately.

No Tone Beacon mode is not operating

The tones are generated by phase-modulating the RF
carrier by a square-wave sub-carrier using 90 degrees
modulation angle. The resulting downlink spectrum will
consist of tones at odd multiples of the sub-carrier
frequency above and below the carrier. Only the tones at
the fundamental frequency will be used to represent the
transmitted message.

The two primary flight software innovations
implemented through the beacon monitor are onboard
engineering data summarization and beacon tone
selection [17]. The tone selector module maps fault
protection messages to beacon tone states. Transforms
and adaptive alarm thresholds are the components to
create top-level summary statistics, episode data, low-
resolution “snapshot” telemetry, and user-defined data.
These two components aim to minimize the number of
false alarms.

3. Self-Healing Tool Design

The assumption behind the tool is that dying/hanging
processes on the PC are signs or indicators to the health

of that PC. These vital signs may indicate that the PC is
becoming unstable and possibly in immanent danger of
hanging or unreliable for current processes running on
that machine. As well as restarting the detected hung
process(es) the peers are notified of the situation via a
change in pulse.

This is particularly useful in situations where the PC
is unattended for example running a web server, and the
user may be notified via a peer PC that the machine is in
difficulty. Another useful situation is when machines in
the peer group are sharing work load, for example via
Harmony PC grid services [18]; a peer is notified in
advance of immanent danger and can recover data and
re-allocate work to another peer. Such an approach is
more proactive than responding once the machine has
hung, and as such offers fuller potential for autonomic
capabilities.

The underlying functionality of the tool is a heart-
beat monitor; if a process hangs it should be restarted
and the pulse monitor takes note. Upon several
processes hanging or the same process repeatedly
hanging within specified timeframes, a change occurs in
the monitor’s perception of how healthy the machine is
and as such brings about a change in the pulse being
broadcast from that PC.

Since the tool operates in a P2P mode it also takes
responsibility to watch out for its neighbours; as such
other PCs (peers) will register with it and it will monitor
their pulse.

Figure 1 depicts an overview of the Pulse Monitor
construct. An internal monitor inside a host takes care of
monitoring its health condition which is represented by a
Pulse. Each host is able to send its Pulse to a peer via an
external monitor. The ‘knowledge & database’ stores the
pulse level and rules (i.e. predefined knowledge) which
may adapt over time; the monitoring logs; and the
history of neighbour hosts. A computer system is
different from a biological system; human biology
reflection is involuntary while the decision making in
computer systems is based on a set of predefined rules or
policies. For example, rules such as the ‘pulse sending
interval’ and ‘terminate the failed process after three
trials of re-starting the process’, are re-configurable.

The host sends the degree of urgency to the peer’s
pulse external monitor instead of just a ‘beat’. The
urgency level is transformed based on the number of
failed processes (Table 2).

The amount of processes required to cause a change
in pulse is adaptable and need not necessarily remain at
the values depicted in Table 1, as is the time window for
qualifying failing processes.

Similar to the connection between the Local Monitor
and Data Collector of the Globus HBM, the connection
between two hosts is established using the UDP (User
Datagram Protocol). TCP (Transmission Control

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Protocol) provides a reliable, connection-oriented,
continuous-stream service. However, TCP requires a
significant amount of overhead. In contrast to TCP, UDP
has a low-overhead. As this tool only transmits small
size messages, UDP is more suitable than TCP.

Figure 1 – Pulse Monitoring

Table 2 – Pulse value
Urgency
Level

Description Pulse Change Trigger
(adaptable)

0 Nominal no failed process
1 Interesting 1 failed process
2 Important 2 failed processes
3 Urgent 3 or more failed processes
— No Pulse Pulse monitor, or comms

has failed

Figure 2 summarizes the functionality of the pulse
monitor API. It scans the host periodically to check its
health condition; it transforms the health condition to a
pulse value and will send it to connecting neighbours (if
any). If a process is found to have failed, the tool will try
to re-start that process.

Figure 2 – Pulse Monitoring use-case diagram

4. Self-Healing Tool Implementation

This section looks at the implementation of the proof
of concept.

4.1 Health Monitor Implementation

The Pulse Monitor is developed in Java. The Health-
Monitor operates under the Microsoft Windows
environment using the running processes as vital health
signs. Since this health component is OS specific it is
not developed in Java but C with the Windows SDK
used to collect the process information.

Figure 3 – Obtain process information

In the Windows environment, applications consist of
executable files and DLLs [19]. A running application is
known as a process. A process consists of one or more
threads. A thread is the basic unit to which the operating
system allocates processor time to execute its process
code. Each process is assigned an identifier, and is valid
until the process terminates. A module is an executable
file or DLL. Each process consists of one or more
modules [19].

Figure 3 illustrates how to obtain the list of process
information in Windows platform. The performance
monitoring in the Windows Platform Software
Development Kit has the technologies to deal with
process, thread, module, heap, processor, memory and
event. The Process Status Helper (in psapi.dll) provides
an interface to obtain information about processes [19].
The Windows system maintains a list of running
processes. The EnumProcesses function retrieves all
running process identifier. The OpenProcess function
opens an existing process object to obtain the handle of
a process. The EnumProcessModules function retrieves

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

a handle for each module of a process. The
GetModuleBaseName function retrieves the name of a
module. A list of running processes with their identifier
and name can be obtained by using these functions.
However, the list does not have the processes status. To
find out if the process is running normally, or if it has
hung, it is necessary to first obtain the window of that
process. Next, send a message to the window to see if it
can respond or not. The EnumWindows function
enumerates all top-level windows and as such has to be
called with the EnumWindowsProc function. The
EnumWindowsProc function is an application defined
callback function. It receives top-level window handles.
It is a placeholder for the application defined function.
The window handle associated with a process is then
passed to the SendMessageTimeout function to check if
the window is responding or not. It returns without
waiting for the time-out period to elapse if the window
appears to not respond or has hung.

The Health-Monitor will terminate a process if the
process has failed but can’t be recovered (or re-started).
The TerminateProcess function terminates a process and
all of its threads. It stops execution of all threads within
the process and requests cancellation of all pending I/O.

4.2 Health Monitor and Pulse Monitor Interfacing

Java Native Interface (JNI) [20] is used to interface
between the Java based Pulse Monitor and the C coded
Health Monitor. JNI defines a standard naming and
calling convention so the Java Virtual Machine (JVM)
can locate and invoke native methods. Within JNI,
native methods can create, update, and inspect Java
objects; Java can pass any primitive data types or objects
as parameters to native methods; native methods can
return primitive data types or objects back to the Java
environment; Java instance or class methods can be
called from within native methods; native methods can
catch and throw Java exceptions.

The interface could have been developed in COM or
J/Direct instead of the JNI approach, however these
provide solutions which are even more OS specific [21].
With the approach used, in order to make the Health-
Monitor run on different platforms such as UNIX,
simply modify the collect process information methods
in the C program.

Since the process list (the source of health indicators)
is dynamic, an array is not flexible enough to store the
list. A Vector class is used to hold the process
information. The Vector class in Java is designed to
store heterogeneous collections of objects thus providing
methods for working with dynamic arrays of varied
element types. Three Vector variables are declared in the
Java program to hold process information; process
name, process identifier, and process status. A function

is defined in the Java program for the C program to add
elements into these Vector variables. The FindClass
function returns a reference to a class. The
GetMethodID function performs a symbolic lookup on a
given class and returns the method ID of an instance
method. The CallObjectMethod is the function to invoke
the method call of the found instance method.

4.3 Pulse Monitor Implementation

The External-Monitor provides the communications
function with other hosts, using UDP (User Datagram
Protocol) sockets (see Figure 4). UDP is described as
unreliable, connectionless, and message-oriented [22]
yet is good for sending short messages like those
required for the Pulse Monitoring application, where all
messages are less than 100 bytes. A socket is a handle
for a communications link over the network to another
application [22]. Sockets are often used in client/server
applications whereby a centralized service waits for
remote machines to request resources, handling each
request as it arrives. For clients to know how to
communicate with the server, it must know the port
number on which the server is waiting. A client must
then bind to this port to establish a socket connection.
Two applications cannot bind to the same port on the
same machine simultaneously. In TCP/IP protocol,
ports used for standard services are well-known [23], for
instance port numbers below 1024 are reserved and
cannot be used. The well-known ports are controlled and
assigned by the IANA (Internet Assigned Numbers
Authority) and on most systems can only be used by
system processes or by programs executed by privileged
users. For example, port 21 is for FTP service; port 23 is
for Telnet service; port 25 is for SMTP service and port
80 is for HTTP service.

Figure 4 – Socket communication

However, there are other options available for
sending messages between remote machines. The
Remote Method Invocation (RMI) provided by Java has
the technology for distributed systems. The RMI feature

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

enables a program running on a client computer to make
method calls on an object located on a remote server
machine [20]. The RMI concept is based on an object
advertising itself to the world by registering with a
naming service (RMI Registry) and a client binds to an
object through this RMI Registry. This is not an
appropriate choice on the Pulse Monitoring application
for two reasons: 1. the application is in peer-to-peer
mode not client/server mode; 2. it is not ideal for a host
that always has to advertise itself to the world.

In Java UDP programming, UDP communication
carries out the following: creates an appropriately
addressed datagram to send; sets up a socket to send and
receive datagrams for a particular application; inserts
datagrams into a socket for transmission; waits to
receive datagrams from a socket and decodes received
datagrams to extract the message, its recipient, and other
meta information. The DatagramSocket class provides a
function to create socket object and packets
communication [20]. A datagram socket is the sending
or receiving point for a packet delivery service. Each
packet sent or received on a datagram socket is
individually addressed and routed. The DatagramPacket
class represents a datagram packet, which are used to
implement a connectionless packet delivery service.
Each message is routed from one machine to another
based solely on information contained within that
packet. A packet is a self-contained message that
includes information about the sender, and length of the
message, and the message itself. The send function sends
out a datagram packet to a destination address. The
receive function blocks until a datagram packet is
received. It waits for a packet forever unless a timeout is
enabled.

Before two hosts can send the pulse to each other,
they first have to register to each other. When the
External-Monitor starts, it immediately connects to its
registered neighbour. The External-Monitor disconnects
from all connecting neighbours when it ends. Un-
registering from a neighbour will remove that host from
its neighbour list and they no longer send the pulse to
each other.

As mentioned above, unlike TCP, UDP is an
unreliable service protocol. The use of only one port to
serve all messages may overload a port and hence
increase the probability of loosing a message. There are
six UDP sockets created on different ports to wait for
incoming messages;

� to register to it, port 4001
� to un-register from it, port 4002
� waiting neighbours connecting to it, 4003
� waiting neighbours disconnecting from it, 4004
� neighbours sending pulse to it, each host defines

its own port number

� waiting neighbours to check if the host is still on
or not, 2222

Timeout is not enabled on these sockets because they
have to wait for incoming messages forever. When it
receives a message, it then calls the corresponding
function and replies an acknowledgement to the sender.
The reason for dedicating different ports to serve a
particular purpose is to minimize the loss of messages.
To send a message, a separate socket port is open. The
timeout is enabled to wait for a reply to ensure the
message is delivered. When finished, this socket will
close.

As stated the health tool and pulse monitor are made
up of four components; Main-Monitor, Internal-Monitor,
External-Monitor, and Health-Monitor (Figure 5): All
components have to be executed synchronously, since
multiple jobs are required to be carried out at the same
time. Java has built-in support for threads through which
it is possible to achieve multitasking. The Thread class
implements Runnable interface by default. The Runnable
interface enables a class to execute code in its own
thread. The Runnable interface has an abstract function
run. The code of these monitors is written in the run
function. The job will only start when the start function
is called.

The sleep function causes a thread to pause for a
dedicated period of time. The Internal-Monitor sends
process status to the Main-Monitor periodically. After it
sends all process status to the Main-Monitor, it will
sleep (for a defined period) to give the CPU time to
handle other components. The Main-Monitor does the
same, when it receives process status, it will carry out
the appropriate action and when complete it will sleep
for a predefined period of time. The yield function
works like sleep, allowing other threads to execute and
when it is complete, the CPU time is returned to the
current thread object. The destroy function destroys a
thread object without any cleanup.

Figure 5 – Pulse Monitor

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

With reference to Figure 5; the Main-Monitor is a
coordinator in the Pulse monitoring component. It
initiates the Internal-Monitor and the External-Monitor,
whereby the Main-Monitor communicates with the
Internal-Monitor which in turn sends process status to
the Main-Monitor which determines what action to take
based on each process status. The Main-Monitor would
then send the decision to the Internal-Monitor.
Concurrently, the Main-Monitor communicates with the
External-Monitor, when it receives process status from
Internal-Monitor, transforming the process status into a
Pulse. The Pulse is then sent to the External-Monitor to
propagate to its neighbours. When the External-Monitor
receives a Pulse from its neighbours, it sends the pulse to
the Main-Monitor which outputs the received neighbour
status into a log file.

The Internal-Monitor is responsible for the
monitoring of processes running on the machine. The
Health-Monitor is responsible for obtaining process
information. The External-Monitor is responsible for the
communication between its neighbours.

5. Summary and Conclusion

Today, computer-based systems are more and more
difficult to manage. Autonomic computing helps to
address the complexity issues by using technology to
manage technology. A computer system is self-managing
if it has some self-configuring, self-healing, self-
protecting, and self-optimizing properties [3][2]. Self-
healing is concerned with ensuring effective recovery
when a fault occurs without human interaction. To
achieve the self-healing objective, a system must be self-
aware and environment-aware. In a biological system,
the human body reacts with the external environment
involuntarily; while in computer-based systems,
autonomic elements make decisions based on the
available technologies.

The objective of this research was to develop a proof
of concept self-healing tool for the personal computing
environment operating in a peer-to-peer mode consisting
of pulse monitor and a vital signs health monitor.

The Pulse Monitoring application (PBM) is an API
that communicates with other autonomic components
and the external environment. Pulse Monitoring is
extending the HBM construct. HBM essentially only
checks whether hosts are providing a ‘heartbeat’ or not.
The lack of heartbeat will alert the designated controller
that the system has died. Besides, checking whether the
system is ‘alive’ or not, the PBM also indicates the
health level (using NASA Beacon Monitors descriptors;
NOMINAL, INTERESTING, IMPORTANT, or
URGENT) of the system. The architecture of Globus

Grid HBM is hierarchical, HBMLM (Local Monitor)
reports to the HBMDC (Data Collector); the HBM is a
client/server relationship, the HBMDC must be always
available such that the HBMLM can report to it. While
PBM is peer-to-peer, all hosts have equivalent
capabilities and responsibilities. They are monitoring
each other with minimal human interaction. A host has
its autonomy to register & un-register with other hosts.
Two hosts become neighbours after they register to each
other. There is no limit on how many neighbour(s) that a
host can register with. Hosts send Pulses to each other
only when they are connected. Therefore, a host does not
necessarily always have to be available, as a registered
host may find another peer.

Pulse Monitoring self-healing tool contains four
components; Main-Monitor, Internal-Monitor, External-
Monitor, and Health-Monitor. Health-Monitor and
Internal-Monitor monitor processes on a machine.
Health-Monitor can re-start or terminate a failed process.
External-Monitor communicates with the external
environment, it sends/receives Pulses to/from other hosts
(neighbours/peers); monitoring neighbours by sending a
message to check if the neighbour is ‘alive’ or not when
it detects that the neighbour hasn’t sent its pulse and
reboot a neighbour when necessary. Conversely, the host
is being monitored by its neighbours in the same way.
Main-Monitor is responsible for monitoring Internal-
Monitor and External-Monitor. Main-Monitor would re-
start them if they are ‘dead’.

The aims of this proof of concept have been
achieved. As a tool the Self-Healing prototype could be
expanded in many ways. For instance, the Health-
Monitor is now Windows platform specific, it could be
extended to run on other operating systems, such as Unix
or Linux etc. Each operating system has its own
terminology on processes; the way an OS controls its
processes can vary. The Health-Monitor could be
extended to detect which operating system it is running
on and to call the corresponding function to obtain
process information.

Also the knowledge about a process in the Internal-
Monitor is essentially start and terminate. The Internal-
Monitor could be enhanced to automatically install/un-
install a process (or application). This would need a
knowledge base storing specific information and
procedures of how to install/un-install each program.

Further autonomic options could evolve from the
environment knowledge gained by the tool; for example,
the ability to spot a process running intermittently or
unstably. It may have a history of failing after running
for a certain period of time on some executions. In this
case, the process (the application) may need re-
configuration or re-installation in order to run smoothly,
in effect providing options for self-configuring and self-
optimising and in so doing preventing the system

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

degrading further (thus providing proactive self-
protection and self-healing).

Acknowledgements

This work was undertaken through the Centre for
Software Process Technologies, which is supported by
the EU Programme for Peace and Reconciliation in
Northern Ireland and the Border Region of Ireland
(PEACE II).

References

[1] D. Garlan, J. Kramer, A. Wolf, (eds.) Proc.
Workshop on Self-healing Systems (WOSS’02),
ACM Press, Charleston, South Carolina, Nov. ‘02

[2] IBM, “An architectural blueprint for autonomic
computing”, April 2003

[3] R. Sterritt, D. Bustard, “Autonomic Computing-a
Means of Achieving Dependability?”, Proc. IEEE
Int. Conf. on the Engineering of Computer Based
System (ECBS’03), Huntsville, Alabama, USA,
April 7-11 2003

[4] D. F. Bantz, C. Bisdikian, D. Challener, J. P.
Karidis, S. Mastrianni, A. Mohindra, D. G. Shea,
M. Vanover, “Autonomic personal computing”,
IBM Systems Journal, Vol 42, No 1, 2003

[5] R. Sterritt, “Pulse Monitoring: Extending the
Health-check for the Autonomic GRID”, IEEE
Workshop on Autonomic Computing Principles and
Architectures (AUCOPA’ 2003) in Proc. IEEE Int.
Conf. Industrial Informatics (INDIN 2003), Banff,
Alberta, Canada, 22-23 August 2003.

[6] R. Sterritt, “Towards Autonomic Computing:
Effective Event Management”, Proceedings of the
27th Annual IEEE/NASA Software Engineering
Workshop, Greenbelt, MD, Dec. 2002

[7] R. Sterritt, DW. Bustard, “Towards an Autonomic
Computing Environment” 1st Int. Workshop on
Autonomic Computing System in IEEE Workshop
Proc. 14th Int. Conf. on Database and Expert
Systems Applications (DEXA’2003), Sept 1-5 2003

[8] R. Sterritt, D. Gunning, A. Meban, P Henning,
"Exploring Autonomic Options in an Unified Fault
Management Architecture through Reflex Reactions
via Pulse Monitoring", IEEE Workshop on the
Engineering of Autonomic Systems (EASe 2004) in
Proc. 11th Ann. IEEE Int. Conference and
Workshop on the Engineering of Computer Based

Systems (ECBS 2004), Brno, Czech Republic, 24-
27 May 2004

[9] A. G. Ganek, T.A. Corbi, “The dawning of the
autonomic computing era”, IBM Systems Journal,
Vol 42, No 1, 2003

[10] J. Appavoo, K. Hui, C.A.N. Soules, R.W.
Wisniewski, D.M. Da Silva, O. Krieger, M.A.
Auslander, D.J. Edelsohn, B. Gamsa, G.R. Ganger,
P. McKenney, M. Ostrowski, B. Rosenburg, M.
Stumm, and J. Xenidis, Enabling autonomic
behavior in systems software with hot swapping,
IBM Systems Journal, Vol 42, No 1, 2003, pp. 60-
76

[11]What is P2P,
http://compnetworking.about.com/library/weekly/aa093000a.ht
m

[12]Peer-to-Peer Computing is Good Business,
http://www.intel.com/eBusiness/products/peertopeer/ar010102.h
tm

[13]Peer-to-Peer Architecture, http://80211-
planet.webopedia.com/TERM/p/peer_to_peer_architecture.html

[14]The Globus Heartbeat Monitor Specification v1.0,
http://www-fp.globus.org/hbm/heartbeat_spec.html

[15]E. Jay Wyatt, Henry Hotz, Robert Sherwood, John
Szijjarto, Miles Sue, “Beacon Monitor Operations
on the Deep Space ONE Mission”, Jet Propulsion
Laboratory, California Institute of Technology

[16]D. DeCoste, S. G. Finley, H. B. Hotz, G. E. Lanyi,
A. P. Schlutsmeyer, R. L. Sherwood, M. K. Sue, J.
Szijjarto, E. J. Wyatt, “Beacon Monitor Operations
Experiment DS1 Technology Validation Report”,
Jet Propulsion Laboratory, California Institute of
Technology

[17]E. J. Wyatt, M. Foster, A. Schlutsmeyer, R.
Sherwood, M. K. Sue, “An Overview of the Beacon
Monitor Operations Technology”, Jet Propulsion
Laboratory, California Institute of Technology

[18]Naik VK, Sivasubramanian S, Bantz DF,
"Harmony: A Desktop Grid for Delivering
Enterprise Computations," Proceedings of the 4th
Int. Workshop on Grid Computing (Grid 2003),
Phoeniz, Arizona, November 2003

[19]Microsoft Platform SDK Documentation,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/perfmon/base/about_performance_monitoring.asp

[20]“Java Programming Language”, Sun Microsystems,
Inc., Enterprise Services Jan 1999, Revision B.1

[21]Mike Pietraszak, “Using J/Direct to Call the Win32
API from java”,
http://www.microsoft.com/mind/0198/default.asp

[22] Joseph L. Weber, M. Wutka, “Using Java 2”
Publisher: Que Publishing

[23] J. Reynolds, J. Postel, “RFC 1700 – Assigned
Number”, Network Working Group

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

	footer1:

