Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

lacopo Carreras, Antonio Francescon

CREATE-NET Research Association

Trento, Italy

Enrico Gregori

IIT-CNR Pisa, Italy

Athens, 5 October 2005 WAC 2005: IFIP TC6 International Workshop on Autonomic Communication

WAC 2005 Athens, 5 October

Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

Presentation Outline

- Motivation
 - Future Autonomic Pervasive Environments
- Nomadic Wireless Sensor Network
 - Architecture and Protocols
- Case study: a parking lot finding application
 - Simulation description
 - Simulation results
- Conclusions and future work

Future Pervasive Environments

- Multitude of "interconnected smart devices"
 - Every object equipped with a radio transceiver
- Extremely heterogeneous devices
 - Sensors, RFIDs vs. PDAs, laptops, smart phones
 - Different logical roles in the network
 - Source of information vs. consumers of information
- Extremely dynamic environment
 - Opportunistic autonomic communications
- Moving away from data transmission systems
 - Information mostly related to a specific context
 - Exchange information rather than data
 - Situated communications and services

WAC 2005 Athens, 5 October

Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

Different Solutions for New Challenges

- Number of communicating devices is going to explode
 - the classical end-to-end approach is not a viable solution
 - Difficult to address every single node
 - Not possible to manage such a network
- The quantity of data flowing in the network is going to explode
 - Traditional communication can hardly deal with all this

Call for new communication paradigms!

Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

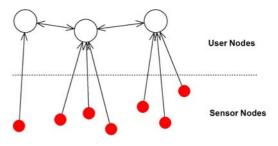
Nomadic Sensor Network Architecture (NSWN)

• 2-Tier network architecture

- Sensor Nodes (S-Nodes)

- Extremely simple and cheap
- Provide information about
 - An object (RFIDs)
 - Or the environment (sensors), ...
- Augmenting pervasive services

- User nodes (U-Nodes)


- Sophisticated mobile devices
 - Powerful in terms of available energy, processing power, communication and storage
- "Physically" moving together with the user
- Running pervasive services

WAC 2005 Athens, 5 October

Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

Nomadic Sensor Network Protocols

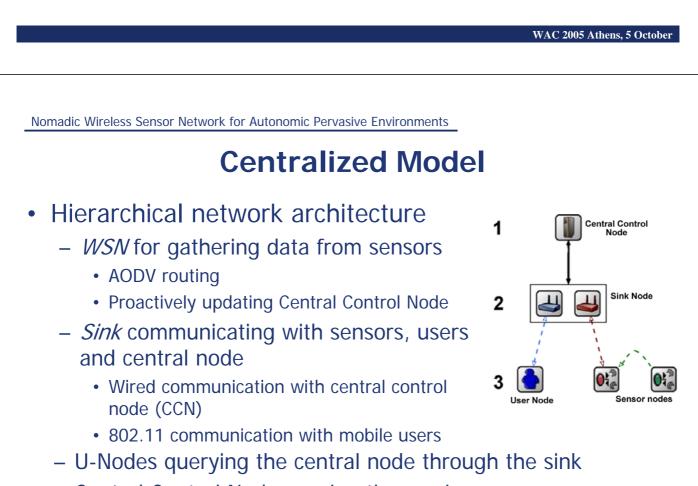
- S-node:
 - Only read by U-nodes in proximity
 - No store and forward policies
 - Single-hop broadcast communication
- U-node:
 - Store S-Nodes readings in their device memory
 - Diffuse stored information according to an epidemic-like relaying algorithm while moving
 - Exploitation of the users' mobility
 - No need for routing

Information Filtering

• Information Filtering mechanism to manage the exchanged data

- Applied by U-nodes' services on the exchanged information
- Exploit the spatial/temporal dependence of the exchanged data for removing useless information
 - No need to diffuse information outside the region of utilization/interest
- Reduces networking requirements
 - Shifting the complexity at the service level

WAC 2005 Athens, 5 October


Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

Case Study: Parking lot Finding System

- Parking lot finding application
 - Each parking spot of the city is equipped with a sensor
 - City is uniformly subdivided into blocks
 - Area around the train station, around the Theater,...
 - Mobile users are looking for a free parking spot in a random block
 - Parking lot finding system is guiding the user to a free parking spot
 - Suggests the nearest free parking spot in the chosen block
- Evaluated through simulations
- Nomadic Approach vs. Centralized System vs. Random Search

Random Search Model

- Random search model
 - No system assistance in the search of a free parking spot
 - Users drive randomly
 - Choose a random block
 - Once entering it, moves randomly as long a free parking spot is not found

- Central Control Node running the service
 - CCN updating the destination
 - CCN virtually reserving a free parking spot

Simulated Users

- 2 kind of simulated users:
- Served users
 - Running the parking lot finding service

Unserved users

- transparently freeing and occupying the parking spots
 - OccupiedTime is the time the parking is occupied
 - *FreeTime* is the time the parking is left free
 - The lower is the FreeTime the more difficult is to find a free parking spot

- Implemented in the sensor

Unserved users behavior

WAC 2005 Athens, 5 October

Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

Served Users Simulated Behavior

 Users behaves cyclically according to the following three steps:

– Driving

• users move randomly for a random DrivingTime.

Searching

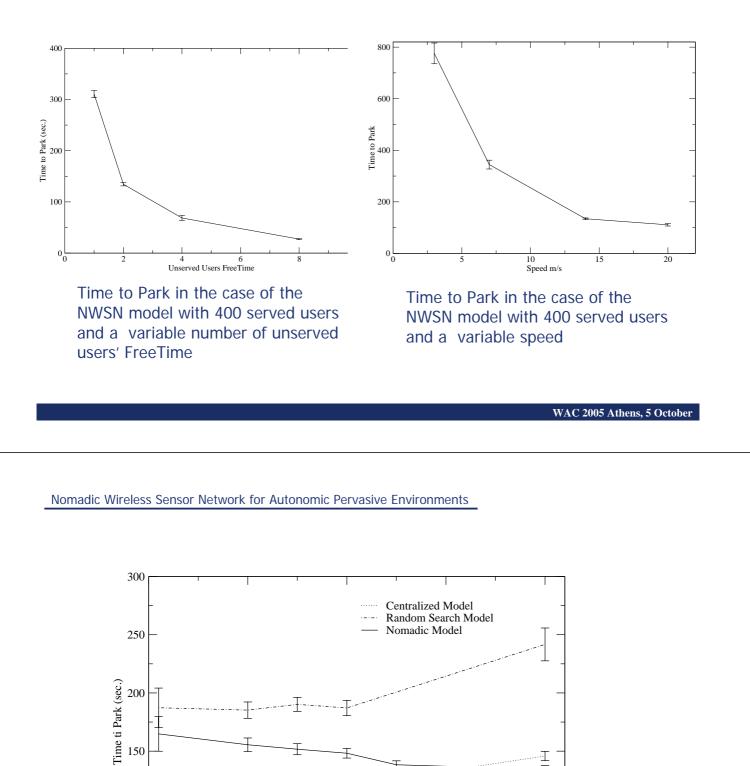
- 1. user selects a random block as the destination
 - Corresponds to "Look for a parking near the station"
- 2. queries the parking lot finding system
 - Application provides the coordinates of a sensor expected to be free
- 3. moves to the destination
- 4. if the destination is free parks, otherwise goes back to 2

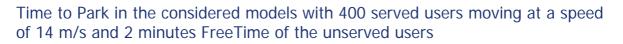
– Parking

• user parks for a random ParkingTime

Performance Metric

- Time to Park : time needed for a user to find a free parking spot starting from the instant he enters the destination block
 - Metric independent from the initial position of the user


WAC 2005 Athens, 5 October


Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

Simulation Settings

- Square area of 4000 x 4000 m
 - City uniformly subdivided into 16 blocks
 - 2028 sensors uniformly distributed, 50 m distance among 2 of them
 - Served users
 - moving according to a Random Waypoint mobility pattern over a manhattan network
 - 13 x 13 streets, 2 lanes each
 - 802.11 protocol, 150 m communication range
 - Varied the number of mobile users
 - Unserved users
 - variable FreeTime (2 to 10 minutes), 80 minutes OccupiedTime
- Each simulation is evaluated with its 95% confidence interval
- Scenario simulated in Omnet++

Simulation Results

300

200

Number of Served Users

100

50 L

100

400

Nomadic Wireless Sensor Network for Autonomic Pervasive Environments

Conclusions and Future Research Directions

- Conclusions
 - NWSN architecture
 - enable an efficient spreading of information by means of opportunistic message exchanges
 - An adequate mobility of users is needed
 - Support of pervasive services
 - performance comparable to centralized solutions
- Future research directions
 - Define an analytical framework
 - of the epidemic-like spreading
 - of the information filtering mechanism
 - Define a general framework for services description
 - Evolution/adaptation

WAC 2005 Athens, 5 October