
64 

Assessing ICU Patient Status 
Using Spectral Analysis Parameters 

he beat-to-beat fluctuations of the RR 
interval series obtained from the ECG 

signal (called heart-rate variability 
(HRV)) and from the systemic arterial 
pressure (SAP) signal are ruled by com- 
plex neural mechanisms under control of 
the autonomic nervous system (ANS). 
The spectral analysis of HRV and SAP 
variability signals may provide a quantita- 
tive and noninvasive measure of the activ- 
ity of the ANS 11-41, In fact, two major 
spectral components are commonly found 

on the HRV spectra. The low-frequency 
(LF) component, centered around 0.1 Hz, 
increases in the presence of sympathetic 
stimuli [5], while the high-frequency (HF) 
component, synchronous with respira- 
tion, is mainly modulated by parasympa- 
thetic (vagal) control [6-71. Furthermore, 
their values accurately reflect the state of 
the sympatho-vagal balance [8]. SAP 
variability shows similar oscillations, 
which have been linked to sympathetic 
modulation of vasomotor activity (LF 
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1. Raw signals and derived beat-to-beat series extracted from the IMPROVE 
data library. 
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2. Beat-to-beat variability series obtained during airway suction. Data are from rec- 
ord #40. (a) RR tachogram, (b) systogram from SAP, (c) systogram from PAP, and 
(d) respiratory series from AWF. 

power in SAP spectrum) [9-111 and to res- 
piration (HF) mainly through its mechani- 
cal effects 1121. Similar rhythms are seen 
also in other signals of cardiovascular ori- 
gin, such as peripheral flow [ 131 and cen- 
tral venous pressure (CVP) [14], thus 
suggesting the widespread influence of 
autonomic control on circulation. 

Although linear models may explain 
HR and SAP dynamics 1151, some nonlin- 
ear processes are certainly involved [4, 
16, 171. Recent findings on fractal sys- 
tems have documented processes that are 

characterized by self-similarity patterns 
and that show Fourier spectra that are non- 
flat and have llf" power distribution; that 
is, the spectra have inverse proportional- 
ity to the frequency values with a scaling 
law defined by a. This 1 If distribution has 
been verified in many biological and 
physiological systems. The initial evi- 
dence of llf behavior was reported for the 
human HRV signal [18] and then con- 
firmed by [19] and [20] for arterial blood 
pressure in dogs. Under normal conditions, 

index cy. shows values near 1, confirming 
the broad-band nature of the spectrum, 
while 0: increases in the presence of patho- 
logical cardiovascular events. The power 
law regression parameter, a -slope, may 
predict the risk of death in patients after 
myocardial infarction [21, 221. 

In this article, we aim to study the useful- 
ness of cardiovascular variability parame- 
ters for monitoring intensive-care unit 
(ICU) patients. Previous results have asso- 
ciated significant changes in HRV parame- 
ters to several cardiological and 
noncardiological diseases 141. Moreover, 
patients who had a favorable course after 
myocardial infarction presented higher val- 
ues of IHRV, leading to the conclusion that 
an augmented HRV may be protective 
against cardiac mortality and sudden car- 
diac death [4]. In ICU patients, the decrease 
in the itotal power and the lack of sympa- 
thetic modulation was associated with in- 
creased mortality [23]. During sepsis 
syndrome, the total HRV and the sympa- 
thetic mediated component were sign& 
cantly lower with respect to the control 
phase [24]. In addition, human endotoxe- 
mia was connected with a loss of physio- 
logical beat-to-beat variability [25]. 

In this study, both long-term and 
short-term spectral parameters [4] are in- 
vestigated. Long-term variability is as- 
sessedl through the evaluation of the 
a-slope on beat-to-beat 24-h spectra, and 
the results are correlated to the patient out- 
come. Short-term variability parameters 

Table 1. List of patients included into the study. D: deceased; S: survived. I 
Main Disorders During Study 
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are calculated before, during, and after an 
airway suction (AWS) maneuver, which is a 
common procedure in intensive care. It is 
used to clean the patients airway from mu- 
cous secretions during respirator-controlled 
ventilation, thus improving gas (oxy- 
gedcarbon dioxide) exchange at alveolar 
level. During AWS, severe pain and tra- 
cheal irritation, which, in turn, induce 
coughing against the ventilator and increase 
airway pressure, are supposed to provoke a 
sympathetic activation. The short-term 
variability parameters, which are computed 
in different time epochs around the AWS, 
may be employed during these events for 
advanced monitoring of A N S  responses to 
this therapeutic intervention. 

Methods 
Series Extraction 

All data were extracted from the IM- 
PROVE data library (DL) [26-271. The 
beat-to-beat variability series, obtained 
from the raw signals of the DL, contained 
traditional measures such as RR interval 
tachograms from ECGs, systograms 

(SAPS, i.e., the beat-to-beat values of sys- 
tolic arterial pressure), diastograms 
(SAPd, i.e., the beat-to-beat values of dia- 
stolic arterial pressure) series from the 
systemic ar ter ia l  p ressure ,  and 
respiration-related series from airway 
pressure (AWP) and airway flow (AWF) 
signals. In addition, other beat-to-beat 
measures were computed from pulmo- 
nary arterial pressure (systolic (PAPS) and 
diastolic (PAPd) values) or from the CVP 
signal (mean values (CVPm)). 

QRS detection and RR interval meas- 
urements were automatically performed 
by a derivative/threshold algorithm [28]. 
Because of the low sampling rate (100 
Hz), we performed a QRS parabolic inter- 
polation and we measured the RR interval 
as the distance between the maximum of 
two successive interpolating parabolas, 
thus reducing the influence of low sam- 
pling rate [29-301. The accuracy in QRS 
detection, the absence of missed or misde- 
tected beats, or the presence of artifacts, 
were visually checked and corrected by 
the operator using a commercially avail- 

able software (Cardioline Remco Italia, 
AD35 Top). Each beat was automatically 
classified (normal, ventricular, artifact) 
and the code was used to improve the suc- 
cessive analysis. 

The position of the R wave was used as 
a reference point for the extraction of the 
other beat-to-beat series. In particular, the 
systogram and the diastogram were ob- 
tained on both systemic and pulmonary 
pressures by measuring the systolic and 
the diastolic values inside the cardiac cy- 
cle (see Fig. 1). The beat-to-beat CVP se- 
ries was extracted by computing the mean 
value inside the cardmc cycle. To reduce 
noise, CVP, SAP, and PAP signals were 
low-pass filtered (cut-off frequency 15 
Hz) before extracting the beat-to-beat se- 
ries. Finally, two respiratory-related se- 
ries were obtained by sampling the airway 
pressure and the airway flow signals in 
correspondence with the QRS complex on 
the ECG. Respiratory signals were previ- 
ously filtered by a low-pass filter (cut-off 
frequency 0.5 Hz), in order to reduce arti- 
fact and noise and to avoid aliasing. 
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3. Global results obtained from the population studied. For each parameter, the mean difference change from the basal values 
are plotted in each epoch considered. The 95% CI are superimposed. Values are in dB units (see text for details); * p  < 0.05. 
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4. Examples of l/f spectrum from (a) RR interval, (b) SAPS and (c) PAPS series. The 
linear log-log regression is superimposed in the range 104-10-2 Hz. Both slope and 
regression coefficients are shown. 

Spectral Analysis 
Spectral analysis was performed by 

means of a parametric approach based on 
the autoregressive (AR) model. In this ap- 
proach, the signal, y(t), is seen as the out- 
put of an AR model of p order, and its 
spectrum can be computed as: 

where Llk {k=1,2,  ...,p} are the model coef- 
ficients, o2 is the variance of the 
white-noise process feeding the model, At 
is the sampling interval (At = 1, for RR ta- 
chogram series), and zls are the poles of 
the model. The spectral estimation is ob- 
tained from the identification of model 
coefficients. Several techniques do exist 
that make it possible to identify the model 
coefficients that give the best fit of the 
data, y( t) [ 3  11. From the evaluation of the 
model poles, it is possible to divide the 
spectrum into bell-shaped curves, in cor- 
respondence with each spectral peak, and 
to compute the values of power, Pi, and 
frequency, f i ,  of each spectral component 
from the position and the residual, r,, of 
each pole: 

= 2narctg (Im( zt ) / Re( z,)) 

The power, PI,  becomes 2 Re (ri) 02in 
the case of complex conjugate pole pairs, 
and Re(ri) in the case of a real pole [32- 
341. In this article, parametric estimation 
was obtained through the Levinson- 
Durbiri algorithm, while model order was 
automatically selected through AIC 
(Akaike Information Criteria [35]), 
among those orders that guarantee the 
whiteness of the prediction error [36]. 

llf Parameters 
Systems with periodic or quasi- 

periodic behavior have spectra that show a 
small number of components, while 
broad-band spectra are generally charac- 
terized by more complex patterns, which 
are typical of stochastic noise or determi- 
nistic chaos. A particular broad-band spec- 
trum has power values that scale with the 
frequency, according to the following law: 
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P ( f ) = f "  For each patient, a single power spec- 

Mean RR 

t" was calculated on the whole data rec- 
ord by using the fast Fourier 
algorithm. After plotting the spectrum on a 
log-log scale, the log (power) was re- 

tween 10 and 10 Hz. The a parameter 

where a is a constant. In the range l<a<3, 
the curve has noninteger (fractal) dimen- 
sion. A power-law spectrum of this kind 

and is typical of a fractal process [37]. 
does not possess a privileged time gressed on log (frequency) in the range be- 

Variance LF power HF power 
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5. Mean and standard deviation values of the a-slope parameters as obtained for the 
study population on (a) RR, (b) SAP, and (c) PAP spectra. 

was obtained as the slope of the regression 
line on ithe power spectrum for time-series 
length exceeding 90,000 points. 

No filtering procedures were per- 
formed, maintaining the original integrity 
of the data. Possible presence of high-fre- 
quency artifacts, such as those induced by 
ectopic beats, only slightly affect the re- 
sults, a!$ the analysis is mainly concerned 
with the very LF (VLF) and ultra LF 
(ULF) (components (up to HZ). 

Despite of the apparent simplicity of 
the method, which does not require any a 
priori hypothesis, this approach has dem- 
onstratled a powerful capability in the 
global evaluation of time-series proper- 
ties [21-221. Different and more compli- 
cated methods exist for estimating the 
long-range dependence and self-  
similarity of time series [38]. Some of 
these aire particularly useful to confirm the 
long memory characteristics in biological 
processes, as the behavior of VLF and 
ULF component in cardiovascular vari- 
ability series seems to suggest. 

Patient and Event Selection 
Data for the IMPROVE DL were col- 

lected from a heterogeneous ICU patient 
population. The various diagnoses and 
medications may differently influence the 
beat-to-beat HRV parameters. We there- 
fore decided to focus the short-term 
analysis on a common repetitive stimulus 
such as the AWS. In order to reduce the ef- 
fect of confounding variables, the DL an- 
notations were screened by clinical 
experts. At least the 30 minutes preceding 
the selected AWS had to be free from 
nursing activities and changes in the rate 
of vasoactive drug infusion. We selected 
15 patients out of the 59 recordings of the 
DL. Patients had various courses of illness 
and both positive and negative outcomes. 
The demographic data are shown in Table 
1. The selected population had no arrhyth- 
mias, in0 rhythmic dysfunctions that might 

1 Table 3. Mean spectral parameters from records #56, #59a, and #59b of the DL. 1 
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alter the variability analysis, and good 
quality of their ECG and pressure signals 
during and after AWS. 

For analysis of the suction periods, dif- 
ferent time epochs were defined. They in- 
cluded five periods centered around each 
episode: Period I or basal period (roughly 
20 minutes before the beginning of the 
suction), period I1 (in the five minutes pre- 
ceding the suction), period I11 (during 
AWS), and finally periods IV and V (5 
and 10 minutes after the end of AWS, re- 
spectively). In these periods, the simulta- 
neous presence of pseudo-stationary 
segments on all the beat-to-beat series 
were manually annotated by an operator 
through interactive software and then 
used for the successive analysis. Because 
the number of suction periods varied 
among the patients, we considered only 
one suction period for each patient for sta- 
tistical analysis. 

(a) 

Statistical Analysis 
Spectral parameters show a great 

interindividual spread of values. Therefore, 

100 

PSD 
(m m H g2/Hz) 

a normalization procedure is required to 
make the data comparable. The procedure 
used in this article is a decibel (dB) trans- 
formation of the data, with individualized 
baselines. This transformation has two ad- 
vantages: 1) it makes the indexes directly 
comparable and 2) the logarithmic trans- 
formation, inherent in decibel measure, 
reduces skewness of the variables. Data 
were transformed according to the follow- 
ing expression (baseline values were dif- 
ferent for different patients): 

dB change from baseline = 
log(current valuehaseline)) 

Mean values of dB-transformed data 
and the 95% confidence interval (CI) of 
the mean were computed for every vari- 
ability parameter in each epoch consid- 
ered. It is worth noting that with a 
number of cases (n > lo), the absence of 
overlap between two confidence limits 
indicates that the two sample means dif- 
fer at the specified level of confidence 
[39]. Regression analysis and paired 
t-test were used as necessary. Staiistical 

PSD 
(m m H g2/Hz) 

significance was accepted whenp < 0.05. 

Results 
The section is divided in three parts; 

the first two are dedicated to presentation 
of the results obtained from short-term 
and long-term analysis while the third 
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6. Power Spectrum Density (PSD) for RR tachogram (a,d,g), systogram (b,e,h) and AWF (c,f,i) in different epochs for the same 
patient. Data were divided into separate files in the DL (#56, #59a, #59b). 
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presents results obtained from particular 
DL records. The selection of the de- 
scriptive cases was done to demonstrate 
both the potential usefulness and the 
possible problems connected with the 
extraction of spectral parameters from 
ICU patients. 

Short-Term Parameters 
As an example, Fig. 2 shows the vari- 

ability series during and after airway 
suctioning, beginning at sample #200. 
AWS produced changes in the variabil- 
ity series, affecting both the mean values 
and the oscillatory pattern of the series. 
In particular, mean RR interval was re- 

duced, while mean SAP and PAP values 
increased. All these parameters showed 
a slow course of recovery toward the 
presuction values, which lasts up to over 
1500 samples after the AWS (roughly 
12 minutes in this case). RR and SAPs 
values showed the slower recovery 
trend. Several artifacts, on each beat- 
to-beat measure during the suction, are 
clearly visible in the figure, suggesting 
not to consider data during these epochs. 

The main variability results are 
shown in Table 2 and Fig. 3. Suction 
caused changes in both RR interval and 
pressure values. RR interval decreased 
significantly (mean f std:606.24 +. 
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7. Hourly trend for the RR spectral parameters. The trends evidence the dra- 
matic reduction in all the spectral parameters before the death of the patient 

90.65 vs 576.69 +. 72.72 ms; p < 0.05). 
During suction, the nonstationary and 
sometimes noisy pattern of the beat-to- 
beat series did not allow reliable analy- 
sis of the slpectral parameters of HRV. 
LF power, however, was increased after 
suction, as (compared to the basal value 
(14.49 +. 17.38 (basal) vs 30.2 +. 42.97 
ms2; p < 0.05). On the contrary, neither 
HF power (21.87 f 90.63 vs 37.8 f 
122.48 ms2; ns) or RMSSD values (7.37 
+. 12.28 vs 11.51 f 22.00 ms; ns) were 
increased in the same period. In the fol- 
lowing epoch (epoch V) data returned 
closer to their basal values. 

Systolic SAP (110 f 18 vs 133 +. 30 
mmHg; p < 0.05), PAP (27 f 17 vs 37 f 
20 mmHg; p < 0 .OS) and CVP values (3 
+. 5 vs 9 2 7 mmHg; p < 0.05) were all in- 
creased during suctions, but only SAPs 
values remained at an elevated level af- 
ter suction and decreased gradually 
thereafter. The increase during AWS af- 
fected LF, HF power, and RMSSD val- 
UGS. All these measures, however, were 
relatively noisy during epoch 111, which 
reduces their reliability. 

Long-Term Parameters 
Examples of the 24-hour spectral 

pattern for RR, SAP, and PAP series 
are shown in Fig. 4. Data are obtained 
from record #27. Figure 4(a) illus- 
trates the RR series of a subject who 
survived after intensive care. It shows 
values of the slope near 1, thus indicat- 
ing a condition of normal cardiovascu- 
lar regulatory mechanisms. Even the 
SAP and PAP spectrum analysis (Figs. 
4(b) and (c)) confirm the presence of a 
long time correlation. 

The r e d t s  of the long-term analy- 
sis are summarized in Fig. 5 for the two 
populations. The a-slope parameter 
computed over the 24-hour spectrum 
RR interval series differed in deceased 
and survival patient groups (1.44 f 
0.35 vs 1.13 f 0.10, respectively; p < 
0.05). The slope of the SAP (1.21 f 
0.17 vs 1.27 f 0.21; ns) and PAP time 
series (1.05 5 0.25 vs 1.18 f 0.35; ns) 
did not evidence differences between 
the two groups. 

Report of Cases 

der to demonstrate possible problems in 
the interpiretation of spectral patterns for 
ICU pati(-nts. Two examples will be 
shown: in the first, the spectral parame- 
ters are uised to monitor the status of an 

W e  a1z.o prescnt specific cases in or- 
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ICU patient, while in the second case, the 
influence of the external ventilator on RR 
interval is considered. In Fig. 6, the spec- 
trum of RR, SAPs, and AWF series have 
been computed for the same patient in dif- 
ferent epochs. Data come from various 
records of the DL (records #56, #59a, 
#59b). The first file was recorded 2 days 
after the patient entered the ICU; while the 
two successive files were registered 12 
days later, within 6 hours and within 0.5 
hour before the death of the patient, re- 
spectively The spectral pattern changes 
considerably from the first recording (Fig 

A U  

0 

6(a-c)) to the final (Fig. 6(g-i)). Global 
variance decreases in going from the up- 
per spectra to the lower ones, affecting 
both LF and HF rhythms in the RR and 
SAPS series. In particular, the LF rhythm 
disappears in both RR and SAPs spectra 
in Fig. 6(d,e), while the residual HF 
modulation is induced by the external 
ventilator. No variability is found in the 
lower spectra except for the mechanical 
influence of the ventilator on SAPs. 

The heavy reduction in spontaneous 
variability is clearly evidenced in the 
hourly trend of spectral parameters shown 
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8. Tachogram obtained from record #3 of the DL. The spectral characteristics of the 
RR series (a) suddenly change, as shown by the different spectral patterns in (b, c). 
The two PSDs are obtained from the left part (b) and from the right part (c) of the 
tachogram, respectively. 
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9. Superimposition of RR interval tachogram (red line) and ventilation beat-to-beat 
series (black line). In (a), the mechanical ventilator modulating the RR variability 
induces cycling variation corresponding with each ventilatory act. In (b), the exter- 
nal ventilation is able to trigger a nonlinear interaction, and the RR variations are 
induced with a rate 1:4 respiratory acts. It may be interesting to note that a one-to- 
one response is still present in (b). 
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in Fig. 7. Both LF and HF powers and 
variance show a decreasing trend in the 
hours preceding the death. In particular, 
the fall in LF rhythms seems to precede 
the decreasing in both total variance and 
HF power values. No LF rhythms are 
found in the 2 hours preceding the death of 
the patient. In Table 3, the mean hourly 
values in the last 6 hours of the recording 
are compared with the basal period. The 
basal period includes the first 10 hours of 
record #56 (see also Fig. 7 for reference). 
The table shows that LF power is signifi- 
cantly reduced just 5 hours before the 
death of the patient, while both HF and to- 
tal variance parameters, in the same pe- 
riod, maintain values similar or higher 
than in basal conditions. A significant de- 
crease in total variance is found two hours 
later, when no more LF components are 
detectable in the spectra. 

The second example shows possible 
effects of mechanical ventilation on HRV. 
The ventilator exerts sinusoid positive 
pressure on the cardiovascular system, 
which may interfere with physiological 
mechanisms of control. Frequently, such 
an interaction could be interpreted as lin- 
ear, as in the case of respiratory sinus ar- 
rhythmia quantified through spectral 
techniques. However, sometimes nonlin- 
ear interactions can be seen such as during 
entrainment [40] or coupling cycle. In or- 
der to display nonlinear interactions be- 
tween mechanical ventilation and HRV, 
Fig. 8 shows the tachogram obtained from 
patient #3 of the DL. Two epochs can be 
clearly recognized. In the two epochs, 
both the signal variance and the harmonic 
contents of the signals are different (Fig. 
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8(a)). In particular, while a HF rhythm 
predominantly influences the spectrum of 
the first part of the tachogram (Fig. 8(b)), 
the spectrum of second part shows a stable 
rhythm that falls into the LF range (Fig. 
8(c)). Such a rhythm could be erroneously 
attributed to the common source of LF fre- 
quency oscillations, if one simply looks at 
the PSD of the tachogram. However, this 
is a rhythm that is triggered by respiration, 
as shown in Fig. 9(a, b). This figure was 
obtained by superimposing the beat-to- 
beat series of RR and respiration. Fig. 9(a) 
refers to the first part of the tachogram of 
Fig. S(a), while Fig. 9(b) is obtained in 
correspondence with the second part of 
the same RR series. In the latter case, res- 
piration induces variations in RR intervals 
that are synchronized every four inspira- 
tions, with the typical period-doubling 
pattern that characterizes nonlinear inter- 
actions [41]. 

Discussion and Conclusions 
Only limited data are currently avail- 

able on cardiovascular variability beat- 
to-beat series in ICU patients. We there- 
fore analyzed both short-term and long- 
term variability parameters in ICU pa- 
tients extracted from the IMPROVE DL. 
Short-term parameters, obtained from 
HRV, showed decreased RR interval val- 
ues and an increased LF power in the five 
minutes following the AWS maneuver. 
Neither HF power nor RMSSD values in- 
creased, suggesting an increased sympa- 
thetic activity induced by AWS. Such an 
activation may be expected on a clinical 
basis. In fact, the manipulation of larynx 
and upper trachea with laryngoscopopy 
and endotracheal intubation causes a sym- 
pathoadrenal response with increase in ar- 
terial pressures and heart rate [42-43]. 
Similar responses are seen in ICU patients 
during and after AWS. Short-term pa- 
rameters, obtained from SAP, did not 
show relevant variations, except an in- 
crease in SAP mean value and in RMSSD 
immediately after the suction. Similar re- 
sults were found for both PAP (just a 
slight increase in LF power after the suc- 
tion) and CVP index. Although the ANS 
control indexes did not change consis- 
tently, the increase is certainly relevant 
from a clinical point of view. 

Long-term parameters significantly 
differ between patients who survived and 
those who did not. The former showed 
a-slope values close to 1 (almost normal 
values), while the latter had significantly 

higher values. As pointed out in the meth- 
ods section, spectra following the scaling 
law can be identified only when the 
a-slope value exceeds 1 : the patients ana- 
lyzed have RR signals with strong 
power-law relations. In the class of pa- 
tients who survived, a assumes values 
higher in respect to physiologically nor- 
mal subjects and more similar to the val- 
ues that can be found in the analysis of 
HRV signal in hypertensive patients [44]. 
The increase of a-values in patients who 
died confirmed the prognostic value of the 
index for the evaluation of death risk. On 
the contrary, slope of PAP and SAP spec- 
tra did not differ between the two groups. 

Results obtained for pressure variabil- 
ity in ICU patients seem to indicate a 
greater stability of these signals. Short- 
term and long-term indexes maintain or 
show only small changes with respect to 
normal patterns, even in nonphysiological 
conditions. These results indirectly con- 
firm the RR series as a most sensitive in- 
dex of altered physiological status. 

The changes in short-term variability 
parameters during and after AWS, and 
previous results on HRV parameters, in 
ICU patients [23-251 suggest that cardio- 
vascular variability analysis may be help- 
ful in monitoring the ANS balance during 
ICU treatments and disorders. Our meas- 
ures followed the end course of the pa- 
tients who died. Results show a drastic 
reduction of all the variability parameters, 
which started 5 or 6 hours before the pati- 
ent’s death. In particular, disappearance 
of the LF components in both RR and SAP 
spectra is in agreement with previous re- 

sults [23], which indicated in the de- 
pressed LF rhythm a predictor of 
mortadity in ICU patients. 

Even if variability parameters may in 
the future have clinical relevance for the 
routine monitoring of ICU patients, their 
interpretation presents several problems. 
Variclus factors (such as different disor- 
ders, diagnoses, and medications) might 
influence the RR and SAP variability. 
Thus. the correct attribution of spectral 
changes to the proper causes may be very 
complex. In addition, short-term variabil- 
ity parameters during arrhythmias, atrial 
fibril lation, or when cardiac contractions 
are ruled by a pacemaker may provide dif- 
ferent information that must be properly 
interpreted. Finally, the use of mechanical 
ventilation for most ICU patients may 
heavily influence physiological variabil- 
ity, making it sometimes difficult to at- 
tribute changes in the spectral rhythms to 
sympathetic or parasympathetic activity. 
In thje example presented, the ventilator 
triggered a huge rhythm in the RR inter- 
val. Such a rhythm was found to fall in the 
LF range as a result of nonlinear period- 
doubling mechanisms. This interaction 
may also have clinical relevance with 
ANS control. Despite these problems, 
long- term parameters were predictive of 
patient death even in the presence of dif- 
ferent disorders and moderate arrhyth- 
mias during the recordings. 

In conclusion, both short-term and 
long-term spectral parameters were em- 
ployed for the assessment of patient status 
in the ICU. Short-term parameters were 
sensitive to the AWS and may also be em- 
ployed to monitor the response to differ- 
ent therapeutic interventions. Long-term 
parameters showed significantly in- 
creased a-slope values in nonsurviving 
patients. This result suggests that the 
a-slope value on 24-h RR spectra may be 
a relevant prognostic index. 
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